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Free surface Hele-Shaw flows around an obstacle: A random walk simulation
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This paper presents computer simulations of pressure driven viscous flows that creep in two dimensions
(Hele-Shaw cells We model the time and spatial evolution of free liquid-gas interfaces perturbed by solid
obstacles of various configurations such as wedges, steps, and ellipses. Our goal is to study short- and long-
scale obstacle effects on the interface shape and velocity. Specific focus is given to the dynamics of a triple
(gas-liquid-solid contact line, which determines local wetting of obstacles. As a principal contribution, we
derive a functional relationship between the contact line velocity and the obstacle geometry.
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I. INTRODUCTION ing a thicknes® of the cell to be infinitesimal in comparison
) ) with its length and width, hydrodynamic equations for the
The complex time development of a free interface that,e|ocity v(r,t) and the pressurp(r,t) fields become effec-
separates immiscible fluids in a two-dimensional geometr)ﬁve|y two dimensional, as for=(x,y) [5]. We consider our

(Hele-Shaw cel[1]) has been the subject of extensive theo-tyale-Shaw flow to be driven by a pressure gradiéot in-
retical and experimental studies since the end of the nine

teenth century2]. In this field, most of the research attention ;t\zngﬁ,eg?iitsc::g;?Ilaré:c?r:)?i al,tligek?uig rger\]a;hshs;ga:gn%é)lze
is addressed tonstablecases of the interface evolution, such Laol L Y. 'b'I',t | q

as gravitational and viscous instabilities that were originally aplaces incompressibility law

captured by Lord Rayleigh, Taylor, and Saffma-5]. Sur-

prisingly, the opposite situation atableHele-Shaw hydro- V2p(r,t)=0 1)
dynamics is much less investigated. The reason stems from a '

seeming triviality of stable cases—the moving interface is

imagined to be simply flat and normal to a flow direction, coupled with the Darcy relation

with no peculiarities—which is not always realized.

In the present work, we consider the problem of a uniform
pressure-induced replacement of an inviscid fligds by a b2
viscous oneg(liquid) in a plane Hele-Shaw cell; the related v(r,t)=— EVP(H)- 2
free-boundary formalism definitely yields stable solutions
[6]. The interface between liquid and gas is expected to creep
flat until we superimpose a solid obstacle for the flow—it
should cause a spatial disturbance and, as a consequence,
global curvature of the moving interface. Our goal will be to
investigate the dynamics of this flow-obstacle interaction on
both short and long length scales. Besides its fundamental
importance, such a problem has direct relevance to engineer-
ing applications, e.g., in manufacturing of electronic devices
[7].

The rest of this paper is organized as follows. In Sec. Il
we introduce a mathematical formulation for liquid-gas in-
terfaces creeping in Hele-Shaw cells around solid obstacles.
After that in Sec. Il we describe a numerical technique ap-
plied for modeling the free surface Hele-Shaw flows, a ran-
dom walk simulation. Next in Sec. IV we report numerical
data on the interface dynamics for various obstacle configu-
rations such aga) wedges(b) steps, andc) ellipses. In Sec.

V we discuss the results obtained, deriving a general formula
for the velocity of a triple(gas-liquid-solid contact line,
which determines local wetting of obstacles. Finally, conclu-
sions are provided in Sec. VI.

gas

I'(®)

II. MATHEMATICAL FORMULATION

Let us consider a liquid-gas interface creeping around a
solid obstacle in a plane Hele-Shaw dske Fig. 1L Assum-

FIG. 1. Moving-boundary-value problem for a liquid-gas inter-
face I'(t) creeping in two dimensiongHele-Shaw ce)l around a
*Electronic address: vbogoyav@binghamton.edu solid obstacle.
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In order to specify our dynamic problem, one needs to
extend Eqgs(1) and(2) by appropriate boundary conditions
applied (i) at the liquid-gas interface(ji) on the obstacle
surface, andiii ) far upstreani6]. We define the kinematics
of the liquid-gas interfacd (t) via the normal component
(n) of liquid velocity,

ar
Ez(v)na (3)

and consider a free surface condition,

=0. (4
plrem) FIG. 2. Free surface Hele-Shaw flows creeping around wedge

o o __ Obstacles of angle® [narrowing wedge,60>0 (left); expanding
In the vicinity of the obstacle, we assume a rigidity conditionwedge,#<0 (right)]. Dynamic quantities labeled are a flow veloc-
for the velocity field, ity at infinity, v., ; a contact line velocity ., and a flow distance at
infinity, D.

(V),=0, (5 As an efficient numerical technique, in the present work
we apply phase-fieldandom walkmodeling. Its principal
concept, usually referred to as the diffusion-limited aggrega-
tion, was introduced by Witten and Sander in 1984%], and
then proposed for simulations of the free surface flows in
Hele-Shaw cell$16]. An original trick in the computation is
that Laplace’s law for the liquid pressufé?p=0 [Eq. (1)],
V|y_, =V, =const. (6) can be treated stochastically. For that, one would calculate an
on-lattice visiting probabilityP,, for a virtual particle execut-
ing a random Brownian walki.e., the sequence of discrete
diffusion jumps in randomly chosen equivalent lattice direc-
Solving Eqgs.(1)—(6), our ultimate goal consists in track- tions) within the region of liquid bulk and being adsorbed at
ing the unknown liquid-gas interfade, a two-dimensional the liquid-gas interfacé'(t). Upon this particle adsorption,
curve, in time[6]. Although analytical treatments of similar the interface advances by a small step along the external
problems by the complex variable techniques have been exxormal; consider the analogy therems: P, [16—22. Com-
plored[8,9] and families of rigorous, steady-state solutionsbined with an ensemble averaging to reduce stochastic noise,
have been reported in specific geometfis3-13, for a gen-  these random walk schemes have demonstrated their validity
eral free-boundary problem the dynamlc&) can hardly be and efficiency in modeling two-dimensional free surface
obtained analytically and, therefore, numerical methods oflows for both unstable and stable situatiofi6,23—-27.
finding a solution must be examinéd. Here we implement computational algorithms that have been
tested to exclude effects of lattice anisotropy and grid size
[27].
1Equation (4) neglects a contribution from the two-dimensional
(x,y) curvature of the interfac&(t). It does not, however, imply

allowing a free slip of the liquid-gas interfad&(t) on the
solid wall? Finally, far upstream we take the most regular
case of a uniform flow profile,

IIl. NUMERICAL TECHNIQUE

IV. RESULTS OF SIMULATION

that capillary forces naturally existing in the Hele-Shaw ¢b#- A. Wedge geometry
tween plateshave been excluded. Indeed, these forces are mostly ) )
determined by a curvature of the liquid-gas interface inztlanen- Let us begin studies of the free surface Hele-Shaw flows

sion, normal to the flow plane. Thatcurvature represents a con- With the obstacle geometry of an infinite wedge of angle

stant of the order of b/, so one can subtract the capillary pressure

at the moving interfacd’(t) from a corresponding value far up-

stream,x— —oo, in order to obtain the zero pressure condition asand initial conditions; while these are of sorfreainly mathemati-

Eq. (4). cal) interest, they do not provide accurate solutions for actual flow
2This gives us an essentially correct approximation for the cellproblems. The reason is that, in the general case, equipotentials of a

thicknessb much less than the obstacle length scale. For moresteady-state solution do not satisfy the basic kinematic requirement

detailed discussion about actual picture in the obstacle vicinityfor the moving interface, Eq3) [14]. That is to say, if one chooses

(wetting region, see Sec. V B. as an initial condition a shape of the liquid-gas interfdtahat
SClearly nonsteady solutions of the free-boundary problems are teorresponds to an original equipotential of the steady-state solution,

be different from those found for steady-state regimes. A number ofhe interface will not necessarily follow subsequent equipotentials

investigators have treated steady-state cases for various geometrigsthat solution.

016310-2
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o-72rf FIG. 3. Quasistationary pic-

tures of a liquid-gas interfac®
(solid curve$ creeping around
wedge obstacle@ashed lingsof
angle 6. (@) Narrowing wedges,
#=18°, 45°, and 72°(b) and(c)
Expanding wedges, §=—18°,
—45°, —72°, —90°, —108°,
—135°, —162°, and—180°. Ra-
tios of a contact line velocity
and a velocity at infinityv,, are
recorded.

/ 00<B<90° —90°<B<0°

-180°<@<-90°

58/

(see Fig. 2 As an initial condition at the wedge origin, we wedges[ >0, plot (a)] the contact line moves faster than
consider the liquid-gas interfade to be flat and normal to the interface far away from the obstacle, and for expanding
the flow direction(from left to righy). Proceeding to the wedges[ #<0, plots(b) and(c)], vice versa. This velocity
wedge, the interface becomes globally curved; our goal is tdlifference causes complex dynamic shapesy() of the
capture this change for various values of the angle interface; two specific cases= —90° (“right corner”) and

e (—180°,...,90°). 0= —180° (“straight edge”) are illustrated in Fig. 4.

In Fig. 3, we present results of simulation for a series of A remarkable feature of the wedge geometry is that it
wedges; pictures of the liquid-gas interfalceare shown, as yields a quasistationary free-boundary problem. Consider a
are ratios between velocities at a triggms-liquid-solid con-  time-independent flow at infinity;.. = const; this determines
tact line @) and at infinity ¢, asy—«). The ratiov;/v.,
gradually increases with the wedge anglefor narrowing
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FIG. 5. Scale-invariant contact line velocity (normalized to a
flow velocity at infinity, v,,), as a function of wedge anglé
e (—180°,...,90°). Computational datesolid circles with error
barg are shown together with an interpolation by E@) (dashed
curve.

FIG. 4. Quasistationary shape (y;) of a liquid-gas interfacé’
(normalized to a flow distance at infiniy) for “right corner,” 6
=—090°, and “straight edge,’9=—180°.
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the interface velocityl'/dt as a constant for all correspond-
ing points ofI". In other words, the wedge flow is a scale
invariant and, as a consequence, the contact line velocit
v=0? divided byv.. depends on the wedge angleonly.
This angle dependence has been explored, and results a
shown in Fig. 5; our data are well interpolated by the follow-
ing function (¢ values should be substituted in radighs

“393) 0 @

ve 1+sing 2t 0) 0
v. coss 32

The connection betwearf/v., and ¢ by Eq.(7) provides us
with a basic relation for the free surface Hele-Shaw flows
around an obstacfelt will be generalized in subsequent in-
vestigations of nonstationary, transient problems below. FIG. 6. Free surface Hele-Shaw flows creeping around step ob-
stacles of heighth [down-step(left); up-step (right)]. Dynamic
quantities labeled are a flow velocity at infinity, ; a contact line
B. Step geometry velocity v ; and a front positiorx.

In order to capture transient regimes of the Hele-Shaw _ )
displacement, let us first study free surface flows creepind/Nereé=1 and 2 for the up- and down-steps, respectively.
around a rightdown- or up) step(see Fig. 6 As an initial hen the front positiorx is compgra_ble Wlth the step height
condition imposed just before a base of the step, we considéf) and exceeds its value, the liquid-gas interfadg) be-

the interfacel to follow the wedge quasistationary behavior COMes less and less curvéid would apparently relax to a
[Eq. (7)], i.e., a “corner” shape ¢=—90°, Fig. 4 for the straight line far downstreanx—c), whereas the contact

down-step and a vertical lineg 0°) for the up-step. The velocity v, converges tw,,, obeying the relatiorisee Fig.

contact line velocityv. is expected to undergo singular 9) as
jumps in both value and course at the base, subject of time

and spatial relaxation after that; our goal is to reveal dynamic Ve~ Ve 1 ©)
relations for these down- and up-step transitions. Vo X2
In Fig. 7, we summarize results of simulation; pictures are 1+—
shown of the liquid-gas interfade evolving in time for the h
down-[plot (a)] and up-stepgplot (b)]. As seen from plots,
this step geometry does raise nonstationary problem; assum- C. Ellipse geometry

ing a uniform flow far away from the obstacle, = const as
y—oo, the global interface shape;(y;) and the contact line
velocity v, are no longer scale invariants but definite func-
tions of the front position X). Starting from the step base
x=0, there is a region of singularity as a local interface
curvature and the contact velocity go to infinity. This zero
neighborhood X/h) — 0 has been analyzed in detail and, as a

result, the following scaling is reportddee Fig. & (b)
Ve~ Vo 1
o —
Vo x¢’
“In this relation, the first fraction term on the right side is a prin-
cipal which comes analytically from integral reasdmslume con-
servation, whereas the other two are empirical corrections required
for a better interpolation.
5Recently, there has been reported a family of exact solutions for ™ pte
the wedge geometry13]. These solutions deal with a boundary
condition somewhat different from ours: instead of fixing the flow

velocity far upstream, at— — [Eq. (6)], one fixes a rate of the
liquid-gas interfacegl’/dt, aty—. We note that reported solu- FIG. 7. Dynamic pictures of a liquid-gas interfat&t) (thin
tions give similar results for narrowing wedge8>0), but a dis- curveg creeping around step obstacléhick lines: (a) “down-
crepancy of the order of 10—20 % arises for expanding wedges (step” evolution, (b) “up-step” evolution. These pictures are taken
<0). in equal time intervals.

To continue studying transient dynamic regimes of the
free surface Hele-Shaw flows, let us consider the obstacle to
be an ellipse of anisotropy (see Fig. 1@ this choice ex-
tends the preceding step geometry by taking into account
smooth, nonsingular solutions. Similar to the wedge configu-

016310-4
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FIG. 8. Increments of contact line velocity (relative and nor-
malized to a flow velocity at infinityp..) as functions of front
positionx, measured close to step bage;h. Computational data
(circles and squares for up- and down-steps, respectiaely ap-
proximated by Eq(8) (solid lines with marks

03 b B ]

[arb. units]

o

P
=
o
T
i

C

up—s:tep
— dowh-step

Contact line velocity (v -v ) /v
o
T
i

A T S R S
0.0 0.2 0.4 0.6
Relaxation scale (1 + x2/h2)- [arb. units]

FIG. 9. Increments of contact line velocity (relative and nor-
malized to a flow velocity at infinityp..) as functions of front
positionx, measured far from step base>h. Computational data
(circles and squares for up- and down-steps, respectiaely ap-
proximated by Eq(9) (solid lines.
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o

Yy

(I=Tx

FIG. 10. Free surface Hele-Shaw flow creeping around an el-
lipse obstacle of anisotropy (ratio of diameters iry andx direc-
tions, dy /d,). Dynamic quantities labeled are a flow velocity at
infinity, v., ; a contact line velocity; and a local angle®.

ration, we fix the liquid-gas interfade to be flat and normal
to the flow direction in the beginning, just before the ob-
stacle. As the interface creeps around the ellipse, global
shapel’ and the contact line velocity, become dependent
on coordinates of the flow front; our goal is to investigate
their functional behavior for various values of the anisotropy
coefficienta e (O, . . . ).

In Fig. 11, we present results of simulation for two spe-
cific cases.a=1 [“circle,” plot (a)] and =« [“needle,”
plot (b)]; successive pictures of the liquid-gas interficare
shown[due to reflection symmetry of the ellipse geometry,
we calculate and draw only halfipper part of the free sur-
face flow]. As seen from the dynamics, the global interface
shape ¥; ,y;) and the contact velocity. exhibit rather non-
linear features. The sign of interface curvature is revealed to
change twice between the obstacle vicinity and infinigy (
—o), whereas the contact velocity varies by an order of
magnitude at different flow stages. Characterizing these tran-
sients, we describe and discuss our data in terms of a local
angle # [measured counterclockwise between the tangent of
obstacle surface and the flow directidrom left to right far
from the obstacle, as shown in Fig. 10t makes definite
analogy to the wedge anglé (compare with Fig. 2 for
nonstationary problems.

In Fig. 12, we plot thed dependence of the contact ve-
locity v with respect to its quasistationary valu@ [Fig. 5,
Eq. (7)] for the Hele-Shaw flow around a circlee& 1). The
increment oc—vg) is found to be well interpolated by a
cosine function:

016310-5
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FIG. 11. Dynamic pictures of a
liquid-gas interface I'(t) (thin
curveg creeping around ellipse
obstacles (thick curvelling: (a)
“circle,” a=1 and(b) “needle,”
a=co (horizontal dotted line at
the bottom denotes a reflection

axis). These pictures are taken in
equal time intervals.

0
Ve Ug
o COoSéH.

Uc

As follows from this relation, the

(10

differencev{—v?)

<

<

[~

Contact line velocity (v -v ) / v © [arb. units]

-45 0

45 90

Local angle 6 [deg.]

FIG. 12. Increment of contact line velocity, (relative and nor-
malized to its quasistationary valmé) as a function of local angle

0, measured for the flow around circle=1 [Fig. 11(@)]. Compu-

tational data(solid circles with error bajsare shown together with

an interpolation by Eq(10) (dashed curje

reaches its maximum at the top point of the obstade (
=0°, ngux). The dependence on the anisotropy coeffi-
cienta has been investigated there, and results are shown in
Fig. 13; the relevant velocity increment is reported to be
directly proportional to the ellipse anisotropy,

[atb. units]

o

w

C

=
=

Contact line velocity (v -v ) /v

0.1 1
Ellipse anisotropy a [arb. units]

FIG. 13. Increment of contact line velocity. (relative and nor-
malized to a flow velocity at infinityp,,) as a function of ellipse
anisotropya, measured at top points of obstaclés; 0°. Compu-
tational data fore=3%, 3, 2, 1, %, 2, and 4(squares with error

barg are approximated by Edq11) (solid line).
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X

FIG. 15. Wetting phenomena in vicinity of a triplgas-liquid-
solid) contact line. Dynamic quantities labeled are a contact line
velocity v, and a wetting angl®.

Here the quasistationary factmf (for 6=const) is governed
by Eqg. (7), and K represents &’ correction obeying the
relatior?

Creep-around time ¢ / (d /v ) [atb. units]

K(9,6")=Q(0)(|yo'|"), (13

Ellipse anisotropy a [atb. units]
FIG. 14. Timet* for a liquid-gas interfacé’ to creep around an Wh(_are we suggest and Sepa_rate the angled)] and the
ellipse obstaclénormalized to ratio of diametet, and flow veloc-  derivative[|y6'|”] dependencies. .
ity at infinity, v..=const) as a function of ellipse anisotropy. The unknown functior2 () and the exponent valugin
Simulation data fore=12, %, 2, 1, 4, 2, and 4(solid diamonds ~ EQ- (13) can be determined from our data obtained for the
with error bars are compared with an expectation from Egd)  €llipse obstaclegSec. IV § as follows. Considering first the
(dash-dotted curye Hele-Shaw flow around a circlea=1; Fig. 11a)], y=(1
—x%)¥2 we sefy#’|=1, i.e., the cosine relation by E€LO)
(see Fig. 12 is substituted forQ)(#). Next, for a regular
Ve V" 0.3 (11  ©liipsey= a(1—-x%)12 at the top point of its surfacex(
Vo " =0, #=0°) we have)=1 and|y#’'|”=a?". Since the cor-
responding increment of the contact velocity is propor-
tional to o [Eq. (11); Fig. 13], we need to fix the exponent
at 1/2, so we finally derive the contact line velocity as

V. DISCUSSION

0 ’
=v[1+0.3coshy|yb'|]. 14
In the preceding section, we modeled and analyzed the ve=vel yerl) 14

free surface flows that creep in Hele-Shaw cells around SO"@oupIed with Eq.(7) in Sec. IV A, this formula essentially
obstacles of various configurations such(aswedges,(b)  connects the local(,) and the globald..) properties of the
steps, andc) ellipses. Now we are going to advance our free surface Hele-Shaw flows we have considered.

results; we would, first, derive a more general expression for |n order to provide a test for the validity of the expression
the contact line velocity . and second, consider effects of apove, we have calculated the tint&sfor free surface flows
dynamic wetting in the obstacle vicinity. to creep around ellipse obstacles of various anisotropies by a
numerical integration of Eq14) along the obstacle surface,
and then compared these calculations with actual data from
the random walk simulations; corresponding results are
) ) shown in Fig. 14. As seen, the theoretical expectation pre-
Let us introduce the surface of an obstacle in terms of thejsely describes the simulations in a rather wide range of the

local angle #, as we did for the flows around ellipses gnisotropy coefficienta e (1/4, . . . ,4),i.e., for most of the
(Fig. 10. Assuming a Cartesian set of coordinatesyy,

we define the surface curve by an equation 0(x)

where tzhe azngle 0= arctan(?y/&x) and its derivatives  erpg specific form for the’ correction is suggested by the analy-
{d60ldx,0°619x%, ...} are f'_n'te and _contlnuous. In further sis of data for flows around steps—see the relaxation scale by Eq.
treatments of the contact line velocity with ¢ as a vari-  (g) in Sec. IV B—the increments of the contact veloaitydepend
able, we primarily consider a zero#€const) and a first-  on the term 1/(# x?/h?) = h[ arctang/h)]’ which has an equivalent

A. Contact line velocity formula

order (finite #'=d0/9x) contribution, for the continuous casén(~y) asyé’. The absolute notatiofy ¢”|
o , is used in Eq(13) since the velocity increments are always positive
ve=v[1+K(6,0")]. (12 (Fig. 9.
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ellipse family. This allows us to conclude that E44) ap- Tsc— OsL
pears to be appropriate at least #ry convex geometnyf COSOe=—"— (17
the obstacle surface.
(0sg and og are solid-gas and solid-liquid interphase ten-
B. Consideration of dynamic wetting sions, respective)y

In modeling the Hele-Shaw flows around obstacles, we Thuﬁ one would epr”Citl)r/1 diterminef the vgleﬁtinsghan(j]fel
originally imposed free slip of the liquid-gas interfaté¢t) at each time moment for the Iree surface He'e-Shaw flows

at solid boundariegrigidity condition by Eq.(5)]. This is, ~&round an obstacle from E¢eL5)—(17). After that, in vicin-
however, true only if we exclude from quantitative descrip-'ty of the obstacle_one can estimate and apply local correc-
tion a wetting regior(with a lengh scale of the order of cell 1ONS to the free-slip solutionk(t) [28].

thicknessb) in the obstacle vicinitysee Fig. 1k Inside that

region the interface shape is known to deviate from the free- VI. CONCLUSION

slip solutions, making a wetting angé® which depends on By a random walk computational technique, we have in-
dynamics of the contact line,.(t) [28,29. vestigated the free surface Hele-Shaw flows driven around
The governing function for the wetting angle is gener-  solid obstacles by a uniform pressure gradient far upstream.
ally given by a capillary number Ca defined as We have characterized the time and spatial evolutiom
both short and long scalesf a liquid-gas interface creeping
Co= '“Uc' (15) around obstacles as wedges, steps, and ellipses. Particular

attention has been addressed to the dynamics of a {gpe
i o o ) .~ liquid-solid) contact line for which we have derived a func-
where o is the coefficient of liquid-gas interphase tension. jona| relationship with the local geometry of obstacles. Be-

Considering knowledge of the parameter Ca for a free sUrgjges, wetting phenomena in the obstacle vicinity have been
face Hele-Shaw flow from Eq$7), (14), and(15), dynamic  qnsidered.

wetting angle® in the three-phase system is described by an
experimental Hoffman'’s reIatio[BO]: ACKNOWLEDGMENTS

cos®,—cosO
cos®.+1
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