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An equilibrium similarity analysis is applied to the transport equation{{@®)?), the second-order tem-
perature structure function, for decaying homogeneous isotropic turbulence. A possible solution is that the
temperature variancg?) decays ax”, and that the characteristic length scale, identifiable with the Taylor
microscalex, or equivalently the Corrsin microscale,, varies asx*’2. The turbulent Reynolds and &let
numbers decay as™" 1’2 when m<—1, wherem is the exponent which characterizes the decay of the
turbulent energy(q?), viz., (g?)~x™. Measurements downstream of a grid-heated mandoline combination
show that, like((8q)2), ((86)?) satisfies similarity approximately over a significant range of saalafien\,

Mg, (g%, and(#?) are used as the normalizing scales. This approximate similarity is exploited to calculate the
third-order structure functions. Satisfactory agreement is found between measured and calculated distributions
of (8u(8q)?) and(su(86)?), whereéu is the longitudinal velocity increment.
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I. INTRODUCTION (1) admitted equilibrium similarity, irrespective of the mag-
nitude of the Reynolds number. The ener@y’) decayed
Since the earlier seminal work of Corrdit], much effort  according to a power law, viZg?)~t™ (m<—1), the ex-
has been devoted to studying the decay of temperature fluponentm depending on initial conditions.
tuations in isotropic turbulence. In particular, there have been Speziale and Bernaf@] carried out a fixed point analysis
numerous experimental attempts to investigate the decay @i an equation which combines the transport equation for
temperature fluctuations introduced in grid-generated turbutwo-point velocity correlations{u(x)u(x+r)) with the
lence. Perhaps a major outcome of these studies is the obséransport equation fofe), the mean energy dissipation rate.
vation that the decay rate of the scalas well as the shape Two possible similarity solutions were found, one with
of the scalar spectrunis more significantly affected by ini- (q?)~t~! (at very high Reynolds numbeérand the other
tial conditions than the corresponding velocity characteristicsvith (g?)~t™ (m>—1) achieved in the limit of vanishing
(e.g., Warhaft and Lumle}2], Sreenivasaet al.[3]). turbulence Reynolds number. These authors assumed in es-
An analytical description of the decay of velocity and sence that the velocity derivative skewnesS=
scalar fluctuations in isotropic turbulence was considerably-((au/ax)3)/((au/ 9x)?)%? remained constant during decay
facilitated by the hypothesis of self-preservation or similar-and inferred thaR, should be constant. This follows imme-
ity, initially applied to the equation for two-point velocity diately from Georgé¢7], who says only that the produstR,
correlations(Karman and Howarth4]) (see Antoniaetal. s constant with no further assumption about eitSer R, .
[5], hereafter referred to as |, for a brief review of previousFor both Georgé7] and Speziale and Bernard, the relevant
results pertaining to the similarity of the velocity figldnd  velocity scale Wa$q2>l/2 and, the relevant length scale was
later extended to two-point temperature correlatighs Al- \, the Taylor microscale.
though the consequences of similarity have been investigated George[9] examined the conditions under which the sca-
widely, grid turbulence data have not provided a fully satis-lar spectral equation
factory verification of the hypothesi®.g., Monin and Ya-
glom[6]). The analyses of Geord&] and Speziale and Ber- 9
nard[8] both dealt with the velocity field but the approaches S Eo(K) =Ty k) —2kk®E (k) 2
differed in significant ways. Geord&] analyzed the spectral

energy equation satisfies similarity(this will be defined more precisely in

Sec. I). In Eq.(2), E4(K) is the 3D scalar spectruniy(k) is

IE(K) =T(Kk)— 2vk2E(K) 1) the spectral scalar transfer function,is the thermal diffu-
ot ' sivity of the fluid. Georgd9] found that a complete similar-
ity solution was possible when the temperature variance

whereE (k) is the three-dimension&BD) energy spectrunk

is the magnitude of the wave numbkr and T(k) is the (67)= fxE(,(k)dk 3
non-linear spectral transfer function. It was found that Eqg. 0
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varied according to a power-law behavior, \#?)~t", and  and corresponds fully to Eq1).

the length scale, which was readily identifiable with Corrs- In the present paper, we consid&ec. ) the conditions
in’s microscale\ 4, increased as"2. The decay exponemt  for which the transport equation fgf §6)2) (Danailaet al.
and the spectral shape are determined by the initial condit999,[13)), i.e.,

tions. Gonzalez and F4llL0O] extended the approach of Ref.

[8] to analyze the self-preserving decay of scalar fluctuations ) d o YU (r,9d )

in isotropic turbulence. They found that self-preservation —{(8U)(80)%)+2x +-((50) >_r_2f05 Zx(90)%)ds
was possible for the same two asymptotic states which were

identified for the velocity field. In particular, for very large 4

Reynolds and Reet numbers, the power-law exponent of =30 (6)
(6% was found to depend on the velocity derivative skew-

Sy=—{(aul 9x) (961 Ix)*)I{ (dul 9x) )% (361 9x)?), G (dissipation rate of 62)/2:

=(u?)((8%ul 9x?)?)1{(aul9x)?)?, or destruction coefficient

of enstrophy ands ,=( 62)( (%61 9x?)?)1{(961 x)?)? or de- =

struction coefficient of scalar enstrophy. The dependence on <X>:2Kfo k°Eq(k)dk. )
t is replaced by a dependence xyrto facilitate comparison

with experimental results. The paramet&sS,, G, Gy re- A prief description of experimental conditions is given in
mained constant during decay. A consequence of Gaflge gec. |11, The experimental data are assessed in Sec. IV in the
and Georg¢9] is thatG, G, as well as the producBR, and  ¢ontext of the similarity requirements. An attraction of Eq.
S¢R). should remain constant during decay. (6) is that, like the transport equation f6¢5q)2) [Eq. (4)], it

The velocity spectra measured by Comte-Bellot ands more amenable to experimental verification than Ejs.
Corrsin[11] satisfied Georg¢7] to a good approximation. o (2).

Except at the lowest wave numbers, the temperature spectra
of Warhaft and Lumley[2] also supported Geord@] rea-
sonably well.

While direct numerical simulationdDNS) are useful for
assessing different similarity hypotheses and their conse- We consider the conditions under which E6) can sat-
quenced12], it is equally important to use experiments for isfy similarity. It is assumed that
testing proposals such as Geofggor Georgg9]. Certainly,

DNS and experiment complement each otfezrch approach oy r

has advantages and shortcomings particular, the structure ((80)7)=V,fy 5_0 ®)
function approach, which is adopted here, lends itself better

to measurementbsince E4(k) and Ty4(k) are not directly and

measurable The focus in DNS is usually spectral.

In I, it was shown that, for decaying isotropic turbulence, o r
the transport equation for((89)2)={((6u)?)+{(6v)?) —{(8u)(86)7) = H"g"(ﬁ_ﬁ)’ ©)
+{(6W)?) [ Sa=a(x+T1)—a(X), a=u, v, W, the velocity
fluctuations in the, y, z directions, respectively, andis the ~ whereL, (a characteristic length scaJ&/, (with dimensions
streamwise separation between the two pgjntiz., of temperature squargdand H, (with dimensions of the

product of velocity and temperature squarkdly character-
d Uf(lr.a ize the streamwise decay ¢(f86)2) and —((Su)(56)?). As

—((5u)(5q)2)+2vd—((5q)2)— —Zf SZ&—<(5q)2>dS in George[9], we avoid making the priori assumption that

' reJoox H, is given byVY?/,, whereV has dimensions of velocity
4 squared. The characteristic scalgs V,, andH, depend on
=§<e>r (4)  x only. The dimensionless func_h_orf@ an(.j.g@ depend not
only onr/L, but also on the initial conditions of the flow,
those at the mandoline where the scalar is introduced as well
as those at the turbulence generating grid.
After substituting Egs(8) and(9) into Eq.(6), we obtain

II. EQUILIBRIUM SIMILARITY OF TEMPERATURE
STRUCTURE FUNCTION EQUATION

admitted a similarity solution, witkig?)~x™ and\ ~x2. U

is the mean streamwise velocity) is the mean kinetic en-
ergy dissipation rate, anglis a dummy separation variable.
Note that Eq(4) is the more general form of the equation for

Vg, dl, dV, _
<(5U)3>Z H9g0+2K£—6f9+Uveargzr(,l—U£0Wr92F92
d upr, o 2 A6
_ 3 _ 2\ _ 4 2 - _ _ rd
((bu) )+6vdr<(6u) ) 3r4fos &X((b‘u) yds 3U£¢9 ax e (10
_‘_1< Y ®) wheret ,=r/L, (a prime denotes differentiation with respect
BCANAR t0 Ty), Ty =/y55f3d3,, and I'y = [{782f,d3,; s, is a
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dummy separation variable. In EQ.0), { x) was replaced by
its corresponding value in decaying turbulence, viz.,

U d{6?)
2 dx

(11)

x)

After multiplication by £,/«V,, Eq.(10) becomes

oLy , |ULydLy|
[ v, get+[2]fy+ T dx et
~ uc%,%T_z _ 2 Uﬁicm(a?)T
KV@ dX 4 02 3 KVH dX 0

(12

For equilibrium similarity, all the terms within square brack-
ets should evolve ix in exactly the same way. Since one of
them, the coefficient of ;, is constant, the others must also
be constant, viz.,

)

N, =const, (13
UTEH % =ay, (14
L:_\E/f % =Dy, (195

LIJ(\E/E d<db;(2> =const. (16)

Integrating Eq.(14) with respect tax immediately yields

2k
Lo=—

U a@(x_ XO)!

17

where L,=0 at x=X,. Comparison of Egs(15) and (16)

suggests that the temperature variance can be taken as thg

appropriate characteristic scale @36)?), viz., Vy~(6?).
Integration of Eq(15) or (16) suggests that a possible simi-
larity solution of Eq.(6) is given by

(07)=As(x—x%)", (18
with n=b,/2a, andA, is a constant which may depend on
initial conditions. A general definition of the Corrsin micros-
cale\, is given by

(6%)

N2=3k-~—".
o (x)

(19

This form of A, reduces to the more conventional definition

N2=(6%)/{(9615x)?) when isotropy is assumed, viZy)
=3k((360/9x)?). After substituting #%) in Eq. (19), and us-
ing Eq. (11), we have

~ 6k (X—Xgp)

2___
n U

o (20
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which is analogous to

10v (X—Xg)

2_
N=— o

(21)

Comparison of Eq20) with Eq.(17) suggests thaf ;=\ if
a,=(—3/n). With V,=(6?) and L,=\,, Eq. (13) implies
that H g~ «( #%)/\ 4 or

pe !
Hy~ sz)m( 6%), (22)
where Pe, the turbulent Blet number, is defined by
(@),
Pe= 37, (23

and is related to the turbulent Reynolds numBgrby Pe
=(3/5)Y?°R, Pr?RY2, where

2\1/2 N
RA=<11>,2 =, 24
Pr (=v/k) is the Prandtl number and
R=((6*)/{(x)I({(a®)/{e)) (25

is the ratio between thermal and mechanical energy dissipa-
tion time scales. After some manipulation, E40) can be
reduced to

3 _ - '
90=4Tg+ ﬁTﬁzrgl_G‘r‘gzrgz_Zf()- (26)

Equation(26) suggests that the normalized mixed third-order
structure functiong, can be uniquely determined ondg
andn are known. The dependencegy on initial conditions
occurs implicitly throughf , andn. In an experimental con-
t, the initial conditions includenter alia, the geometries
of the grid and mandoline, the spacing between the grid and
the mandoline, as well as the magnitudeRyf (=UM/v),
the Reynolds number at the grit¥i(is the grid mesh size

The scalar integral length scadlg, is defined by

where E4(k) is the 3D scalar spectrum. Normalization by
(6%) and\ , yields

Ly 7 (*Epky) -~
—":—f Elko) i,
No 2Jo Kk,

B 2(6?)

K, (27)

Ly

wherek,=k\, and E ,(k,) =\ (E4(k)/(6%) (in general, the
tilde will denote normalization by or A , and(g?) or ( 62)).
Like f,(F,), E,(k,) cannot depend om. It follows that
L,/\, remains constant with respect xo
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Another, more empirical measure of the scalar integral

length scale id., , defined as

< 02> <q2>1/2

LG (x) 3v2’ 28
The ratioL , /\ , may be written as
L, C
X _ X
N, 3 Pe. (29

If C, is constant, constancy &f /A, requires that Pe does
not vary withx.

When Pk1 (the case of interest herghe smallest length
scale may be identified withy,= «%4/( €)= 5Pr %4 (when

PHYSICAL REVIEW E 69, 016305 (2004

20 5_, 5 ,
g=§r+mr r\—1or<r,—2f’, (33
where g=—3Y2R((8U)(6G)%), T,=/58%'ds, T,

= [[8%fd%, andf=((&G)?).

IIl. EXPERIMENTAL CONDITIONS

The present data were obtained in the course of an earlier
study (Ref. [15] or II). Although the basic decay character-
istics of the velocity and temperature fields were presented in
II, no attempt was made to check whether the statisticg of
at differentx satisfied similarity. The time series obtained for
Il have been used to generate the structure functions which
appear in Egs(4) and (6). Also, basic parameters which

Pr>1, the smallest scale is the Batchelor length scalelescribe the decay of various quantities, €a?), (6°), (e),

7Pr Y2 and ,/\ , may be written as

5

3
Since p/A=15 YR Y2, 7,/\, is constant only ifR, is
constant. Note that the constancyRWwith x is guaranteed if
(g?) and{#?) have power-law behaviors. It follows from the
definition of R, and (g%)=A(x—xo)™ (A is a constant
which may depend on initial conditiongy may differ from

that for(6?)) thatR, and Pe are independentxbnly if m
is —1. For this case, which could priori be expected to be

1/2
ﬂ = 2 Pr 1/4R* 1/2.

~ (30

(x) were recalculated using a procedure analogous to that
followed in I.

Velocity and temperature measurements were carried out
at a mean velocity) =6.4 m/s downstream of a biplane grid-
heated mandoline combinatiof@ configuration similar to
that of Warhaft and Lumley2] and Sreenivasaet al. 1980
[3]). The grid was located at the entrance of the working
section (350 mmx350 mmx2.4 m long and was con-
structed of square bafd.76 mmx4.76 mm). The mesh size
M was 4.76 mm and the solidity was 0.35. The Reynolds
number Ry, was 10564. The mandolinémesh sizeM,
=M) was located at a distance of M5downstream of the

attained at larg®, and Pe, Kolmogorov similarity would be grid and comprised 5-mm-diameter chromel-A wires. For
fully compatible with the present similarity solution. It heating details, the reader should refer to Il. The mean tem-
should be underlined, however, that the latter does not rePerature increase, relative to ambient, was sufficiently small
quire R, and Pe to be large, nor does it require them to(=2 °C) for temperature to be considered passive. The probe

remain constant with respect to While similarity of the

(a sketch is shown in Fig.) onsists of six wires, fouthot)

velocity field is a necessary requisite for similarity of the operating in a constant-temperature moa@eerheat ratio

scalar field, it is not sufficient. The magnitude rois more
constrained than that of. These constraints can be identi-
fied from the transport equations f&¢) and(y), which are
the limiting forms of Egs(5) and (6) whenr—0. For sim-

1.5 and two(cold) operating in a constant curref@t.1 mA)

mode for measuring at two spatial locations. The four hot
wires (one X wiretparallel hot wire are arranged in order
to measure onélatera) vorticity component. When the X

plicity, only the isotropic forms of these equations are givenwire is in the ,y) plane,u,v, andw, were obtained. Rota-

below (e.g., Batchelor and Townseni4], Zhouet al, [15]
hereafter I):

G_15 m—1) SR ap
AR (3D
G, 9(n-1 9SR -
R 10 m | 105" (32)

While mdepends o1, S andR, , n also depends 06, and
S, as well as on the previous parametétgoughm).

It can be readily shown that similarity requir€s and
G, to remain constant sinceG~[5 ki, (k)dk,/
[Sokidu(ky)dky]? and Gy~ JoKido(ky)dky /
[[5k2dh,(ky)dK,]. It follows that the productsSR, and
SyR), must also remain constant.

Expression(26) for g, is analogous to that obtained in |
for the normalized third-order velocity structure function,
viz.,

tion through 90° yieldsu,w and w, (»,, and w, are the
vorticity fluctuations on the andz directions, respectively
The spatial resolution of this probe was discussed in Zhou
and Antonia[16].

All wires were etched from Wollasto(Pt-10% Rh to an
active length of about 2@), for the hot wires d,,
=2.5um) and 1004,, for the cold wires ¢,=0.63 um).

The output signals from the constant temperature and con-
stant current circuits were digitizgd 2-bit analog-to-digital
convertey at a sampling frequency close td 2 (where fy
=U/27w 7 is the Kolmogorov frequengyafter the low-pass
filter cutoff frequency was set to be approximately equal to
fx . The digital records had a duration of about 55 s. Time
series ofa (=u, v, w, #) were used to construct the tem-
poral incrementda=«a(t+ 7)— a(t). Taylor's hypothesis
was then invoked to interprefa as a spatial increment.
Present estimates ¢ and(y) were inferred from

U d(a?
2 dx

()=~ (39
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A2 / M(x-xg)
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[§)
T
|

cold 2

Side View
y )
cold 1 ;,
=
[V
d y <
c Ay
0.0000 . : ' :
30 40 50 60 70 80
a b cold 2 (x-Xg)/M
FIG. 2. Ratio of eithei? or )\f, with (x—xg)/M for different
(“Zhw choices of xo/M. (& (MM)2/(x—xg)/M: (b) (\,/M)2/(x
Front View —Xg)/M. The horizontal line ina) yields m= —1.33; the horizon-
tal line in (b) yieldsn=—-1.37.0, xo/M=4,; 0, 2; V, 0; ®, —2;
FIG. 1. Schematic arrangement of prolaeand b are inclined _a by 0

hot wires (X formation, separatiom\z,,,~1.5 mm); c andd are

parallel hot wires(separationAy,=1.5 mm); the parallel cold
wires 1 and 2 are located about 0.3 mm upstreamanfdd. Etched m=—1.33 andn=—1.37. These latter values agree almost

and unetched portions of the wires are shown by light and hea\,?xactl_y with those rezported in 1l. This is p_erhaps not surpris-
lines, respectivelyB=50°. ing since A? and )\ represent the ratiogg®)/(e) and

(6%)1{x) and(e) and(x) are intimately related t¢q®) and
and Eq.(11), and were closé+10%) to those estimate€ll) (6%) via !Eqs.(ll) and(34). The agreement reflects the inter-
from the isotropic values ofe) and(x). The divergencéor nal consistency of the present glata, and(tretter than 10%)
longitudinal turbulent diffusionterms, which were ignored agreement between direct estimates@fand(y) from the

in Egs.(34) and(11), were two to three orders of magnitude Probe and those inferred from Eq®4) and (11). The ad-
smaller than the streamwise decay terms. equacy of the present estimatesmfandn is further con-

firmed in Figs. 3 and 4. Over the range SR/M =80,
(g%)¥M and( 6?)" increase linearly witkx (Fig. 3) to a close
IV. COMPARISON BETWEEN EXPERIMENTAL RESULTS approximation(the straight lines through the origin are least-
AND SIMILARITY REQUIREMENTS squares linear regressions to the glafamilarly, good linear

In 1I, isotropic definitions forh, R,, A4, and Pe were V;;ﬁt,:grf)s are exhibited in Fig. 4 bye) and

used, based on isotropic values(ef and(x). Here, we have
preferred to use estimates @& and(y) inferred from Egs. It follows from Egs.(20) and(21) that
(34) and(11), and nonisotropic definitions of, A 4, R, , and

Pe, as given in Sec. Il. 120 ' ' 20
In 11, the effective origins and the exponembisandn were C

estimated using a trial and error method adopted by Comte- Ty 90 115

Bellot and Corrsir{17]. Different values ofk, were selected ®

and least-squares linear regressions were appliedd®) ior 60| =10

In(6?)) vs Inx—Xo). The optimum value fok, (estimated to §A

be betweerM and 2V) yielded the minimum deviation im G a3l ds

(or n). Here, we follow the procedure used in I, which fo- Y

cused on the behavior of?. Accordingly, different choices | | 0

of xo were applied and the ratios?/(x—x,) and A%/(x o 20 40 60 80
—Xo) were plotted(Fig. 2). x/M

The optimumx, was that which produced the widest pla-  fiG. 3. variations of(g2)™ (right vertical axi$ and (62)"
teau. In both Figs. @) and 2b), Xo=0 appears to be the (jeft vertical axi$ with x/M using the values ofn andn estimated
optimum choice(within =0.5M) over the range 38(x from Fig. 2.0, (6% (n=-1.37); 0, (g®)¥™ (m=—1.33). The
—Xp)/M =80 and the values corresponding to the plateausstraight lines through the origin are least-squares regressions to the
when used in conjunction with Eq&21) and (20), yielded data.
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12

<7P1/n-1

b1/m<1

<

20

40
x/M

60

0
80

FIG. 4. Streamwise variation dfe)*(™" 1) (right vertical axi$
and (x)¥"~1) (left vertical axi$ using the values ofn andn esti-
mated from Fig. 20, ()Y~ Y (n=-1.37); O, (&)¥™ D (m
=-1.33).(e) is in m?/s® and(x) is in °C%s. The straight lines
through the origin are least-squares regressions to the data.

(39

This ratio remains constant with(Fig. 5 sinceR (=m/n)

is constant. Sincen<—1, R, and Pe must decay with a
power-law exponent given byr(+1)/2, in this case-0.16.

Distributions  of f [=((56)%)=((59)?)/(9?)]

and
fo [=((660)%)=((86))/(6?)] are shown in Fig. 6. In each

———,80.

case, the collapse is good over practically the complete range

of T orTy. Note thatf and f, have significantly different
shapes, despite having the same limiting valués-a$® and
T—o. The quality of collapse fof={((59)?) in Fig. 6 is

25

2.0

1.5

1.0

<(&0)2>

0.5

0.0

101

2.5

2.0

1.5

<(89)2>

1.0

0.5

0.0
101
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T T T
@

100

101
r=t/a

102

103

(b)

100

10’
FEI’/?\g

102

103

FIG. 6. Distributions of (8 f=((6G)%)=((59)?)/(g?) vs
T=r/x and (b) f,=((660)2)=((660)2)/(6%) vs F,=tIN,. — —,
x/IM=30; - --,40; —-—, 50; — - - —, 60; - - ——— ,70;———

mained evident up to relatively large valuesx@M. In the
present flow, the initial periodicity is rapidly obliterated.
Use of the Kolmogorov Obukhov-Corrsin scalesUy

comparable to that observed for a grid constructed from cir=((€)'%, 6=((x)n/UK)'?, and 5 for normalizing

cular rods M and the solidity being the samelo avoid
crowding, distributions at only one value »fM are shown
in Fig. 7. The overshoot exhibited WyatT=20 for the cir-

((69)?), ((86)?), andr results in a good collapse only at
smallr* (Fig. 8). In general, the asterisk will denote normal-
ization by Uy, 6x, and/orn. As x/M increases, the distri-

cular rod grid is absent in the flow generated by a grid ofoutions peel off at smaller* and the plateaux occur at

square bars; here, the asymptotic value of 2 ffas ap-

proached monotonically. The overshoot implies some sort ofn the limit r* — oo,
large-scale organization; indeed, flow visualizations indi-
cated that, for the grid constructed from circular rods, the
initial strong periodicity associated with vortex shedding re-

smaller((8q*)2)or {(86*)?). This trend is expected since,

6
<(5Q*)2>=@Rx

SO g L T — y S B
Rx 38“— ------------------ o W Ral e | 2.5 T T T T T —
20 ]
Pe 10 a 20 /?/} e T T e s ]
e
o 1.5 J 4
R 1.04 m] o o 4 Zg //
0.8 i ’ V10| / _
2,0.8 a
2d //
0.5 4
0.6 L L I 1 Y
30 40 50 60 70 80 s
x/M 0.0 Lol Lol Lol
0.1 1.0 10.0 100.0

FIG. 5. Ratio\ ,/\ between the Corrsin and Taylor microscales.
The streamwise variations dR, and Pe are also showr®,

Ng/N;—, Ny/\ from Eq.(35), with R=0.978.0, R; ®, R, ; H, Pe.
The broken lines are least-squares regressions ®,tlaad Pe data,
each with a slope of-0.16 or (n+1)/2.

r

FIG. 7. Distributions of((5§)2)for two different grids. The
mesh sizeM is the same for both grids- —, present gridsquare

bars,x/M=80); — — —, grid used in I(circular rods x/M =80).
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80 T T TTTII T T TIIT T T TTTT T T 1T

i (a)

I
TR
==

O 1 IIHH| 1 \\IIHI' L II\HHl L1 LIl
100 107 102 103 104
80 T T TTTTIT T T TTTTI T T TTTTTIT T T TTTTT
(b)

0
100 101 102 103 104
o

FIG. 8. Distributions of((5q)2)and ((86)2) normalized using
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*

* %

Ky0q(ky)
o]
T
|

-8 6 -4 2 0
Ink,

FIG. 9. Turbulent energy spectra multiplied ky and plotted

Uk, Bk, and7. (@) ((8q*)2); (b) ((86*)?). Line types as in Fig. 6. against Irk; . In (a), the normalization is by and(g?). In (b), the
The curved arrows are in the direction of increasinlyl. normalization is byJx andz. — —,x/M = 30; - - -, 40, — - —, 50;
—— B0 - - , 70; — —, 80.

and

([27]) for which nominally identical spectral shapes were
assumed for the velocity and scalar fieldst&at0. Another

((66%)2)= 1512
The trend at large* in Fig. 8 reflects the decrease of these
two quantities ax/M increasedi.e., asR, decreases

It was already noted that structure functions are more se
sitive than spectra for testing departures from similarity be-
cause of the different naturdocal vs integral of the con-
straints that each need to satisfy. For example, whereas
((89*)?)—2(q*?)asr* —= [Fig. 8a)], it is the integral of
the Kolmogorov-normalized spectruwﬁ which is equal to
(g*?). Spectra ofg and ¢ are shown in Figs. 9 and 10,
respectively, for the two types of normalization used in Figs.
6 and 8. Note thay§ dq(k,)dk;=1 and [§de(ky)dk =1
whereasf g ¢5 (k7)dKi =(q*?)and [5 ¢ (k) dki =(6*2).
The productk,¢,(k1) is plotted against |k; so that the
areas under the distributions comply with the previous inte-
gral values. Although the spectral differences between the
present similarity and a scaling based on Kolmogorov vari-
ables are more ambiguous than those inferred by comparing
structure functiongFig. 6 vs Fig. 8, the low wave number
collapse based on—\ , [Figs. 9a) and 1@a)] represents a
small improvement relative to that when the normalization is
onUyg, 6k, andy [Figs. 9b) and 1@b)].

The different shapes of thg and 6 spectra reflect the
previously noted differences betwetandf,. The normal-
ized distributions in Fig. 10 peak at a significantly smaller
value ofk, than the corresponding distributions in Fig. 9. A
qualitatively similar difference betweeg,(k;) and ¢4(k;)

difference betweewb, and ¢, is the appearance of a power-
law scaling range inp,, despite the small value &, . No
scaling range can be observeddy. Figure 11 compares a

smoothed distribution o ,(k,) [to avoid the ambiguity due
o the noise spikes of Fig. 10, a high-order polynomial was

0.5 T T T

Ink,

FIG. 10. Temperature spectra multiplied iy and plotted

has been observed in direct numerical simulations of decayagainst Irk;. In (a) the normalization is by , and({6?). In (b), the
ing homogeneous isotropic turbulence in a periodic boxhormalization is byUx, ¢, and . Symbols are as in Fig. 9.
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FIG. 11. Comparison between spectragoéind 6 at x/M = 50. FIG. 12. Dependence &f,/\ andL 4/\, onx/M. The variation
The normalization usel&?) <02> \, andh,. — <~f> (~k1)- o of the coefficientC, is also shownL, andL, were obtained by
,4(k,). The dashed line has a slope 61..56. K integrating the autocorrelations inferred from Eg86). [J, Iq; O,

L, V,C,, see Eq(28).
first fitted to Ingy(k;)] with an unsmoothed distribution of T ant. Th timation of., Eq. (28) resC
~ % ) 7156 g : «= constant. The estimation &f , Eq. , requiresC,
¢q(k1) on a log-log plot, Akl power IawPehav!or “@" 16 be known. IfL, is identified withL,, C, can be obtained
be observed over a surprisingly large rangekpf This ob-  jnirectly from Eq.(28). Its variation withx/M is included
servation is consistent with that reported and discussed i, Fig. 12. The average value appears to be congta@ts)
detail by Jayesfetal. [18]. These authors found a scaling suggesting that the variation &f, with x/M reflects that of
range, with an average exponent 6f..58, both when the theg%elet?]umber Eq(28) 0
temperature is introduced @ir neaj the grid without a gra- The normalizeé tr?ird-o.rder structure functionsand
dient and when a mean temperature gradient is introduced e shown in Figs. 13 and 14, respectively Thg colla%ge for
upstream of the grid. They also noted that the range dilates § (Fig. 13 is an improvement over that exhibited by Fig.

the Reynolds number increases. SreenivafB9] com- . ) ) o .
mented that this anomalous behavior of the scalar spectru&‘no(a) in I. This, together with the distributions 6{Fig. 6a)]

in grid turbulence allowed an estimation of the Obukhov-Of ¢q(k1) [Fig. %@, reinforces the claim that the velocity
Corrsin constant, even at modest Reynolds numbers. He aldt§!d satisfies similarity to a good approximation. The calcu-
discussed the different behavior of the scalar spectrum it@tion of g (Fig. 13, based on the measured distributiorf of

shear flows. Indeed, the present dissimilarity betwigg(k,) at x/M =40, approximately follows the measured distribu-

d%.(k v with the cl imilarity th tion of g at x/M =40 up toT=5. The trend in Fig. 14 sug-
an ¢q.( 1)hcont;|asts strzongy Wf't rt_] € close S||m| arity that gests that similarity of the temperature field may only be
exists in shear flow¢Chap. 7 of Chassaingt al. [20] re-  cpieved at much larger valuesxM than for the velocity

views evidence for the spectral analogy betwegeand 6). field. The distributions 0§, atx/M =70 andx/M =80 are in

We did not try to calculate the integral length scdlesnd excellent a . .
. . . greement with each other. The calculatiog of
L o from the 3D spectr&(k) andE,(k) since inferring these based on the measured distributionfgfat x/M =70, foﬁ-

from the 1D spectra r_equires isotropy to b? valid at all WaV8ows the measured distribution o}, (also atx/M =70) quite
numbers. This is an inadequate assumption for the presefoe)y o g7~ 12 It is not clear why this latter limit is

flow at small wave numbers. Here, we havg niSredine In'greater than that in Fig. 13, but one would expect that the
tegral scales from the structure functions sinae=( or 6)

assumption of isotropy becomes more tenuous &sr T )
increases. The level of agreement between measurement and

2
((5a)%) (36)

(@) =1 == S —

For a=q, the normalized correlatiof§(x)G(x+r)) is iden-
tified with the sum (TX)TUX+r))+{T(X)T(X+T1)) al
+(W(X)W(x+r)). The ratiosLy/N andL,/\,, wherel,,

=f[)“<’5z(x)a(x+r)>dr (r, corresponds to the first zero o

crossing of the correlationare shown in Fig. 12. Although 2

there is some scatter in the data, the overall trend indicates A
that both ratios decrease slowly withby about 10% in the A Vb A
case ofL,/\, for 30<x/M=<80), which is consistent with 0 AT L AP

101 109 101
r

what was reported in | and the slower thel¥ growth rate
for L, . As discussed in |, it is possible that this result reflects
the presence of the boundaries in the experiment. It is also F|G. 13. Distributions ofg= —3Y2R,((8U)(5G)%) vsF=r/\.
axiomatic that the collapse dfand f, in Fig. 6 cannot be Line types as in Fig. 6. The heavy solid line is a calculation based
perfect since only a perfect collapse would be consist withon Eq.(33) and the distribution of at x/M =40.
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FIG. 16. Streamwise variations & and G,. Also shown are
FIG. 14. Distributions ofg,=—3%? Pe ((6U)(56)?) vs T,  the productsSR and S;R,. O, Gyeas, Measureds; — - - —,
=r/\,. Line types are as in Fig. 6. The heavy solid line is a G.a, G calculated using E(31); [J, G, , measureds,; — -
calculation based on E6) and the measured distribution bf at —Gy,,» Gy calculated using Eq32); V, SR,; A, SyR, .
x/IM=70.
in the figure SR, andSyR, . Although the uncertaintyFig.
calculation in Figs. 13 and 14 represents a significant im15) in extrapolating the spectra is sufficiently large to pro-
provement over that reported by Milkst al. [21] for triple  hibit any conclusion regarding the precise streamwise varia-
velocity and velocity-temperature correlations. Details of thetions of G andG,, the trend withx/M in Fig. 16 is consis-
calculation were not given by these authors, but it is reasorfent with Egs.(31) and (32). Calculations ofG and Gy,
able to assume that they were also based an-a , simi-  based on Eqs31) and(32) and measured values &f S,
larity of the correlation functions. R, , are also shown in Fig16). The calculation underesti-
Finally, it is pertinent to comment on the expectation, MatesGneasby about 10% ands, by about 27%. The
which follows from Eqs(31) and(32), that the productSR,  discrepancy is most likely due to the systematic error in ex-
and SyR, should remain constar{Sec. 1) for fixed initial  trapolatingG and more especiall, (Fig. 15. It can be
conditions. These equations automatically satisfy similarityclaimed, nonetheless, that the streamwise dec&y afdG,
if the equations from which they are derived, i.e., the equais consistent with our earlier observation that the collapse of
tions for ((8u)?) or ((86)?), satisfy similarity. From an ex- ¢ f, % (k,), andd,(k,) is not perfect. The nonbalance of
perimental viewpoint, accurate testing of E31) and(32),  Eqs.(31) and(32), which are a very refined test of the small-
which weight small-scale structures, is delicate due mainly tqcale behavior of Eqg5) and (6), simply emphasizes the
spatiotemporal resolution and noise limitations of the measact that equilibrium similarity, as it was defined in Sec. II, is
surements. For the present experiment, we have foundthatyot respected for the very small scales.
ands,, as estimated from the limiting values (fu)°) and The decay withx of the presenSR, data contrasts with
((6u)(66)?) asr—0, are approximately constant with re- the apparent constancy for this product, as obtained in earlier
spect tox. The average value @is about 0.49 whereas that grig turbulence experimentsee Fig. 10 of Georgg?]) but
of Sy is about 0.38. Sinc&®, decreases witl, G andG, s consistent with the trend of the DNS resu22]. Recent
must therefore also decrease withaccording to Eqs(31)  pDNS data(Antonia and Orlandi[23]) for decaying homoge-
and(32). Our best estimates f& andG, were obtained by  neous isotropic turbulence indicate tigandS, (it is under-
extrapolating the spectra afand 6 (Fig. 15 to largek; after  stood here that temporal definitions apply for these two
ignoring the noise-contaminated portion of the spectrum. Theyuantities are approximately constant over a period of time
values ofG and G, (Fig. 16 decrease with at approxi-  for which (q2) and(¢?) exhibit approximate power-law be-
mately the same rate & or as the productéalso included  haviors. The temporal decay of the produB®, andS,R, is
consistent with the streamwise decay observed in the present
0.6 | . 0.015 experiment.

V. CONCLUDING DISCUSSION

10.010 ~

.=

I All the terms in the transport equation ¢¢56)2) for
_0_0053_{ decaying homogeneous isotropic turbulence remain in rela-

tive balance throughout the decay when the characteristic
scale( #%) for the scalar decays a& and the characteristic
0.000 length scale grows as“2. The microscales and\ , satisfy
° this latter requirement provide@?)~x™ and(#%)~x". As
in the spectral analysis of Ref9], the present similarity

FIG. 15. Measured and smoothed extrapolated distributions osolution should be valid regardless of the magnitude of the
Ki 4ok (k%) andk}*¢% (kT) atx/M=50. Solid curves, measured; turbulent Reynolds and Eet numbers. Both numbers can
dashed curves, smoothed and extrapolated. vary with x according tax(M* Y2 whenm< —1. In the spe-
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cial case, whemis equal to— 1, R, and Pe remain constant dissimilarity since the “anomalous” power-law scaling range
and the present solution becomes consistent with théhat is observed in the temperature spectrum, but not in the
asymptotic result obtained in R€fL0] which extended the energy spectrum, is also found when the grid interacts with a
analysis of Ref[8]. The dissipation time scale ratRmust = mean temperature gradiefdiayeshet al. [18]). The dissimi-
be constant withx irrespective of the values afiandn. The  larity disappears when a relatively strong mean velocity
magnitude of this ratio will, likem and n, depend on the gradient and a mean temperature gradient are present. In
initial conditions. such a case, the shapes of the energy and temperature spectra
Measurements, at smalR,, (and thereforeR,), down- are quite similare.g., Fulachier and Antonig24]). Thirdly,
stream of a grid-mandoline combination satisfy the requirethe present calculations @f and g, represent an improve-
ments of our analysis and those of Rf] reasonably well. ment over earlier attempts at reconciling calculations of
Although the assumption of homogeneous isotropic turbuthird-order velocity or velocity-temperature correlation func-
lence is approximated poorly by the large scales of the flowtions with measurements. In particular, as was noted in | in
the measured distributions §ff ,, collapse reasonably when the context ofg, calculations based on the Kolmogor®6]
plotted against/\ or r/\,. The collapse for the appropri- or Yaglom [26] equations which ignoré™;, T',, I'y,, and

ately normalized third-order velocity structure function T, would only be adequate at very large valuesRpfand
is adequate as is the calculation gpbased on the present Pe2

similarity solution. The departure between measurement :I'he results presented here are consistent with tfiose

and calculation occurs at largé\ and is reconcilable with E,(k) and T ,(k)] obtained using DNS in Ref12]: in par-
the expected departure of the large scales from homogenrﬁéular, George[9] provides a good means for ,calculating

ity and isotropy. Measurements @y, t_he norma}hzed (8u(86)?) or T,(k), but Kolmogorov/Corrsin scales are
mixed velocny-temperatur_e structure function, exhibit poorer. o e appropriate in terms of collapsing the spectra at large
collapse than forg, possibly implying that larger values

£ x/M b for th lar field Z=2 wave numbers than George’s variables.
of X/M may be necessary for the scalar field to attain simi-  \yhjje it is desirable to test similarity at higher values of

larity. ; ;
. Ry than in the present experiment, we expect that the ex-

ngeral f_uthe_r comments can be made_ with regard _to_thﬁerimental difficulties will only increase d8,, is increased.
quality of similarity achieved in the ex_perlment. First, it is Also, the percentage streamwise variatiorRgfis expected
clear thatdthe collagse df anq[ fo, fortlnﬁeftad that ?; theth to diminish asRy, is increased. As a suggestion for future
corresponding sSpectra, 1S not pertect. [ 1t were, then ‘?Nork, a more fruitful way to proceed experimentally may be
mtegra_l Ie_ngth scales wogld be ex_actly proportionahtor to improve the isotropy of the flow, for example by using a
Ay This is not the case since the integral scales grow mor'§econdary contraction downstream of the grid as in Comte-

112 i i
slm;vlg tha;x_ ’ m}?fﬁ Ilkelykr_eflectlng the fe]lfhect of (tjhf lat- | Bellot and Corrsin1966 [17], while making every effort to
eral boundaries ot the working section of the wind tunnel. ,,;yimize the influence from the tunnel working section

Second, our measurements indicate that different initial cony,

- ; L . N alls.
ditions lead to different similarity solutions. The distribution

of f, is also expected to depend on initial conditions. The
observed strong dissimilarity between the shapefsaoid f ,

or between those of the energy and temperature spectra ap- R.A.A. acknowledges the support of the Australian Re-
pears to be a peculiarity of decaying turbulence. The additiosearch Council and many useful discussions with W.K.
of a mean temperature gradient does not seem to affect thGeorge.
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