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Similarity solution of temperature structure functions in decaying
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An equilibrium similarity analysis is applied to the transport equation for^(du)2&, the second-order tem-
perature structure function, for decaying homogeneous isotropic turbulence. A possible solution is that the
temperature variancêu2& decays asxn, and that the characteristic length scale, identifiable with the Taylor
microscalel, or equivalently the Corrsin microscalelu , varies asx1/2. The turbulent Reynolds and Pe´clet
numbers decay asx(m11)/2 when m,21, wherem is the exponent which characterizes the decay of the
turbulent energŷ q2&, viz., ^q2&;xm. Measurements downstream of a grid-heated mandoline combination
show that, likê (dq)2&, ^(du)2& satisfies similarity approximately over a significant range of scalesr, whenl,
lu , ^q2&, and^u2& are used as the normalizing scales. This approximate similarity is exploited to calculate the
third-order structure functions. Satisfactory agreement is found between measured and calculated distributions
of ^du(dq)2& and ^du(du)2&, wheredu is the longitudinal velocity increment.
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I. INTRODUCTION

Since the earlier seminal work of Corrsin@1#, much effort
has been devoted to studying the decay of temperature
tuations in isotropic turbulence. In particular, there have b
numerous experimental attempts to investigate the deca
temperature fluctuations introduced in grid-generated tur
lence. Perhaps a major outcome of these studies is the o
vation that the decay rate of the scalar~as well as the shap
of the scalar spectrum! is more significantly affected by ini
tial conditions than the corresponding velocity characteris
~e.g., Warhaft and Lumley@2#, Sreenivasanet al. @3#!.

An analytical description of the decay of velocity an
scalar fluctuations in isotropic turbulence was considera
facilitated by the hypothesis of self-preservation or simil
ity, initially applied to the equation for two-point velocit
correlations~Karman and Howarth@4#! ~see Antoniaet al.
@5#, hereafter referred to as I, for a brief review of previo
results pertaining to the similarity of the velocity field! and
later extended to two-point temperature correlations@1#. Al-
though the consequences of similarity have been investig
widely, grid turbulence data have not provided a fully sat
factory verification of the hypothesis~e.g., Monin and Ya-
glom @6#!. The analyses of George@7# and Speziale and Ber
nard@8# both dealt with the velocity field but the approach
differed in significant ways. George@7# analyzed the spectra
energy equation

]E~k!

]t
5T~k!22nk2E~k!, ~1!

whereE(k) is the three-dimensional~3D! energy spectrum,k
is the magnitude of the wave numberk̃, and T(k) is the
non-linear spectral transfer function. It was found that E
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~1! admitted equilibrium similarity, irrespective of the mag
nitude of the Reynolds number. The energy^q2& decayed
according to a power law, viz.̂q2&;tm (m,21), the ex-
ponentm depending on initial conditions.

Speziale and Bernard@8# carried out a fixed point analysi
on an equation which combines the transport equation
two-point velocity correlations^u(x)u(x1r )& with the
transport equation for̂e&, the mean energy dissipation rat
Two possible similarity solutions were found, one wi
^q2&;t21 ~at very high Reynolds numbers! and the other
with ^q2&;tm (m.21) achieved in the limit of vanishing
turbulence Reynolds number. These authors assumed in
sence that the velocity derivative skewnessS[
2^(]u/]x)3&/^(]u/]x)2&3/2 remained constant during deca
and inferred thatRl should be constant. This follows imme
diately from George@7#, who says only that the productSRl

is constant with no further assumption about eitherS or Rl .
For both George@7# and Speziale and Bernard, the releva
velocity scale waŝq2&1/2 and, the relevant length scale wa
l, the Taylor microscale.

George@9# examined the conditions under which the sc
lar spectral equation

]

]t
Eu~k!5Tu~k!22kk2Eu~k! ~2!

satisfies similarity~this will be defined more precisely in
Sec. II!. In Eq.~2!, Eu(k) is the 3D scalar spectrum,Tu(k) is
the spectral scalar transfer function,k is the thermal diffu-
sivity of the fluid. George@9# found that a complete similar
ity solution was possible when the temperature variance

^u2&5E
0

`

Eu~k!dk ~3!
©2004 The American Physical Society05-1
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varied according to a power-law behavior, viz.^u2&;tn, and
the length scale, which was readily identifiable with Cor
in’s microscalelu , increased ast1/2. The decay exponentn
and the spectral shape are determined by the initial co
tions. Gonzalez and Fall@10# extended the approach of Re
@8# to analyze the self-preserving decay of scalar fluctuati
in isotropic turbulence. They found that self-preservat
was possible for the same two asymptotic states which w
identified for the velocity field. In particular, for very larg
Reynolds and Pe´clet numbers, the power-law exponent
^u2& was found to depend on the velocity derivative ske
nessS, the mixed velocity-temperature derivative skewne
Su[2^(]u/]x)(]u/]x)2&/^(]u/]x)2&1/2^(]u/]x)2&, G
[^u2&^(]2u/]x2)2&/^(]u/]x)2&2, or destruction coefficien
of enstrophy andGu[^u2&^(]2u/]x2)2&/^(]u/]x)2&2 or de-
struction coefficient of scalar enstrophy. The dependence
t is replaced by a dependence onx, to facilitate comparison
with experimental results. The parametersS, Su , G, Gu re-
mained constant during decay. A consequence of George@7#
and George@9# is thatG, Gu as well as the productsSRl and
SuRl should remain constant during decay.

The velocity spectra measured by Comte-Bellot a
Corrsin @11# satisfied George@7# to a good approximation
Except at the lowest wave numbers, the temperature spe
of Warhaft and Lumley@2# also supported George@9# rea-
sonably well.

While direct numerical simulations~DNS! are useful for
assessing different similarity hypotheses and their con
quences@12#, it is equally important to use experiments f
testing proposals such as George@7# or George@9#. Certainly,
DNS and experiment complement each other~each approach
has advantages and shortcomings!. In particular, the structure
function approach, which is adopted here, lends itself be
to measurements@since Eu(k) and Tu(k) are not directly
measurable#. The focus in DNS is usually spectral.

In I, it was shown that, for decaying isotropic turbulenc
the transport equation for^(dq)2&[^(du)2&1^(dv)2&
1^(dw)2& @da[a(x1r )2a(x), a[u, v, w, the velocity
fluctuations in thex, y, z directions, respectively, andr is the
streamwise separation between the two points#, viz.,

2^~du!~dq!2&12n
d

dr
^~dq!2&2

U

r 2E0

r

s2
]

]x
^~dq!2&ds

5
4

3
^e&r ~4!

admitted a similarity solution, witĥq2&;xm andl;x1/2. U
is the mean streamwise velocity,^e& is the mean kinetic en
ergy dissipation rate, ands is a dummy separation variable
Note that Eq.~4! is the more general form of the equation f
^(du)3&:

2^~du!3&16n
d

dr
^~du!2&23

U

r 4E0

r

s4
]

]x
^~du!2&ds

5
4

5
^e&r , ~5!
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and corresponds fully to Eq.~1!.
In the present paper, we consider~Sec. II! the conditions

for which the transport equation for^(du)2& ~Danailaet al.
1999,@13#!, i.e.,

2^~du!~du!2&12k
d

dr
^~du!2&2

U

r 2E0

r

s2
]

]x
^~du!2&ds

5
4

3
^x&r , ~6!

conforms with similarity. In Eq.~6!, ^x& represents the mea
dissipation rate of̂u2&/2:

^x&52kE
0

`

k2Eu~k!dk. ~7!

A brief description of experimental conditions is given
Sec. III. The experimental data are assessed in Sec. IV in
context of the similarity requirements. An attraction of E
~6! is that, like the transport equation for^(dq)2& @Eq. ~4!#, it
is more amenable to experimental verification than Eqs.~1!
or ~2!.

II. EQUILIBRIUM SIMILARITY OF TEMPERATURE
STRUCTURE FUNCTION EQUATION

We consider the conditions under which Eq.~6! can sat-
isfy similarity. It is assumed that

^~du!2&5Vu f uS r

Lu
D ~8!

and

2^~du!~du!2&5HuguS r

Lu
D , ~9!

whereLu ~a characteristic length scale!, Vu ~with dimensions
of temperature squared!, and Hu ~with dimensions of the
product of velocity and temperature squared! fully character-
ize the streamwise decay of^(du)2& and2^(du)(du)2&. As
in George@9#, we avoid making thea priori assumption that
Hu is given byV1/2Vu , whereV has dimensions of velocity
squared. The characteristic scalesLu , Vu , andHu depend on
x only. The dimensionless functionsf u and gu depend not
only on r /Lu but also on the initial conditions of the flow
those at the mandoline where the scalar is introduced as
as those at the turbulence generating grid.

After substituting Eqs.~8! and~9! into Eq. ~6!, we obtain

Hugu12k
Vu

Lu
f u81UVu

dLu

dx
r̃ u

22Gu1
2ULu

dVu

dx
r̃ u

22Gu2

52
2

3
ULu

d^u2&
dx

r̃ u , ~10!

wherer̃ u[r /Lu ~a prime denotes differentiation with respe
to r̃ u), Gu1

5*0
r̃ us̃u

3f u8ds̃u , and Gu2
5*0

r̃ us̃u
2f uds̃u ; su is a
5-2
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dummy separation variable. In Eq.~10!, ^x& was replaced by
its corresponding value in decaying turbulence, viz.,

^x&52
U

2

d^u2&
dx

. ~11!

After multiplication byLu /kVu , Eq. ~10! becomes

FHuLu

kVu
Ggu1@2# f u81FULu

k

dLu

dx G r̃ u
22Gu1

2FUL u
2

kVu

dVu

dx G r̃ u
22Gu2

52
2

3 FUL u
2

kVu

d^u2&
dx G r̃ u .

~12!

For equilibrium similarity, all the terms within square brac
ets should evolve inx in exactly the same way. Since one
them, the coefficient off u8 , is constant, the others must als
be constant, viz.,

HuLu

kVu
5const, ~13!

ULu

k

dLu

dx
5au , ~14!

UL u
2

kVu

dVu

dx
5bu , ~15!

UL u
2

kVu

d^u2&
dx

5const. ~16!

Integrating Eq.~14! with respect tox immediately yields

L u
25

2k

U
au~x2x0!, ~17!

where Lu50 at x5x0. Comparison of Eqs.~15! and ~16!
suggests that the temperature variance can be taken a
appropriate characteristic scale for^(du)2&, viz., Vu;^u2&.
Integration of Eq.~15! or ~16! suggests that a possible sim
larity solution of Eq.~6! is given by

^u2&5Au~x2x0!n, ~18!

with n[bu/2au andAu is a constant which may depend o
initial conditions. A general definition of the Corrsin micro
calelu is given by

lu
253k

^u2&

^x&
. ~19!

This form of lu reduces to the more conventional definitio
lu

25^u2&/^(]u/]x)2& when isotropy is assumed, viz.^x&
53k^(]u/]x)2&. After substitutinĝ u2& in Eq. ~19!, and us-
ing Eq. ~11!, we have

lu
252

6k

n

~x2x0!

U
~20!
01630
the

which is analogous to

l252
10n

m

~x2x0!

U
. ~21!

Comparison of Eq.~20! with Eq. ~17! suggests thatLu[lu if
au5(23/n). With Vu[^u2& andLu[lu , Eq. ~13! implies
that Hu;k^u2&/lu or

Hu;
Pe21

31/2
^q2&1/2^u2&, ~22!

where Pe, the turbulent Pe´clet number, is defined by

Pe5
^q2&1/2lu

31/2k
, ~23!

and is related to the turbulent Reynolds numberRl by Pe
5(3/5)1/2RlPr1/2R1/2, where

Rl5
^q2&1/2

31/2

l

n
, ~24!

Pr ~[n/k! is the Prandtl number and

R5~^u2&/^x&!/~^q2&/^e&! ~25!

is the ratio between thermal and mechanical energy diss
tion time scales. After some manipulation, Eq.~10! can be
reduced to

gu54r̃ u1
3

n
r̃ u

22Gu1
26r̃ u

22Gu2
22 f u8 . ~26!

Equation~26! suggests that the normalized mixed third-ord
structure functiongu can be uniquely determined oncef u
andn are known. The dependence ofgu on initial conditions
occurs implicitly throughf u andn. In an experimental con-
text, the initial conditions include,inter alia, the geometries
of the grid and mandoline, the spacing between the grid
the mandoline, as well as the magnitude ofRM ([UM /n),
the Reynolds number at the grid (M is the grid mesh size!.

The scalar integral length scaleLu is defined by

Lu5
p

2^u2&
E

0

`Eu~k!

k
dk, ~27!

where Eu(k) is the 3D scalar spectrum. Normalization b
^u2& andlu yields

Lu

lu
5

p

2E0

`Ẽu~ k̃u!

k̃u

dk̃u,

where k̃u[klu and Ẽu( k̃u)5luEu(k)/^u2& ~in general, the
tilde will denote normalization byl or lu and^q2& or ^u2&).
Like f u( r̃ u), Ẽu( k̃u) cannot depend onx. It follows that
Lu /lu remains constant with respect tox.
5-3
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Another, more empirical measure of the scalar integ
length scale isLx , defined as

Lx5Cx

^u2&

^x&

^q2&1/2

31/2
. ~28!

The ratioLx /lu may be written as

Lx

lu
5

Cx

3
Pe. ~29!

If Cx is constant, constancy ofLx /lu requires that Pe doe
not vary withx.

When Pr<1 ~the case of interest here!, the smallest length
scale may be identified withhu[k3/4/^e&1/45hPr23/4 ~when
Pr.1, the smallest scale is the Batchelor length sc
hPr21/2) andhu /lu may be written as

hu

lu
5

h

l S 5

3D 1/2

Pr21/4R21/2. ~30!

Since h/l51521/4Rl
21/2, hu /lu is constant only ifRl is

constant. Note that the constancy ofR with x is guaranteed if
^q2& and^u2& have power-law behaviors. It follows from th
definition of Rl and ^q2&5A(x2x0)m (A is a constant
which may depend on initial conditions;x0 may differ from
that for ^u2&) that Rl and Pe are independent ofx only if m
is 21. For this case, which coulda priori be expected to be
attained at largeRl and Pe, Kolmogorov similarity would be
fully compatible with the present similarity solution.
should be underlined, however, that the latter does not
quire Rl and Pe to be large, nor does it require them
remain constant with respect tox. While similarity of the
velocity field is a necessary requisite for similarity of th
scalar field, it is not sufficient. The magnitude ofn is more
constrained than that ofm. These constraints can be iden
fied from the transport equations for^e& and ^x&, which are
the limiting forms of Eqs.~5! and ~6! when r→0. For sim-
plicity, only the isotropic forms of these equations are giv
below ~e.g., Batchelor and Townsend@14#, Zhou et al., @15#
hereafter II!:

G5
15

7 S m21

m D2
SRl

2
, ~31!

Gu

R
5

9

10S n21

m D2
9

10
SuRl . ~32!

While m depends onG, S, andRl , n also depends onGu and
Su as well as on the previous parameters~throughm).

It can be readily shown that similarity requiresG and
Gu to remain constant sinceG;*0

` k̃1
4f̃u( k̃)dk̃1 /

@*0
`k̃1

2f̃u( k̃1)dk̃1#2 and Gu;*0
`k̃1

4f̃u( k̃1)dk̃1 /

@*0
`k̃1

2f̃u( k̃1)dk̃1#. It follows that the productsSRl and
SuRl must also remain constant.

Expression~26! for gu is analogous to that obtained in
for the normalized third-order velocity structure functio
viz.,
01630
l

le

e-
o

n

g5
20

3
r̃ 1

5

m
r̃ 22G1210r̃ 22G222 f 8, ~33!

where g[231/2Rl^(dũ)(dq̃)2&, G15*0
r̃ s̃3f 8ds̃, G2

5*0
r̃ s̃2f ds̃, and f 5^(dq̃)2&.

III. EXPERIMENTAL CONDITIONS

The present data were obtained in the course of an ea
study ~Ref. @15# or II!. Although the basic decay characte
istics of the velocity and temperature fields were presente
II, no attempt was made to check whether the statistics ou
at differentx satisfied similarity. The time series obtained f
II have been used to generate the structure functions w
appear in Eqs.~4! and ~6!. Also, basic parameters whic
describe the decay of various quantities, e.g.,^q2&, ^u2&, ^e&,
^x& were recalculated using a procedure analogous to
followed in I.

Velocity and temperature measurements were carried
at a mean velocityU.6.4 m/s downstream of a biplane grid
heated mandoline combination~a configuration similar to
that of Warhaft and Lumley@2# and Sreenivasanet al. 1980
@3#!. The grid was located at the entrance of the worki
section ~350 mm3350 mm32.4 m long! and was con-
structed of square bars~4.76 mm34.76 mm!. The mesh size
M was 4.76 mm and the solidity was 0.35. The Reyno
number RM was 10 564. The mandoline~mesh sizeM u
5M ) was located at a distance of 1.5M downstream of the
grid and comprised 5-mm-diameter chromel-A wires. F
heating details, the reader should refer to II. The mean t
perature increase, relative to ambient, was sufficiently sm
~.2 °C! for temperature to be considered passive. The pr
~a sketch is shown in Fig. 1! consists of six wires, four~hot!
operating in a constant-temperature mode~overheat ratio
1.5! and two~cold! operating in a constant current~0.1 mA!
mode for measuringu at two spatial locations. The four ho
wires ~one X wire1parallel hot wires! are arranged in orde
to measure one~lateral! vorticity component. When the X
wire is in the (x,y) plane,u,v, andvz were obtained. Rota-
tion through 90° yieldsu,w and vy (vy , and vz are the
vorticity fluctuations on they andz directions, respectively!.
The spatial resolution of this probe was discussed in Zh
and Antonia@16#.

All wires were etched from Wollaston~Pt-10% Rh! to an
active length of about 200dw for the hot wires (dw
52.5 mm) and 1000dw for the cold wires (dw50.63mm).
The output signals from the constant temperature and c
stant current circuits were digitized~12-bit analog-to-digital
converter! at a sampling frequency close to 2f K ~where f K
[U/2ph is the Kolmogorov frequency! after the low-pass
filter cutoff frequency was set to be approximately equal
f K . The digital records had a duration of about 55 s. Tim
series ofa ([u, v, w, u) were used to construct the tem
poral incrementda[a(t1t)2a(t). Taylor’s hypothesis
was then invoked to interpretda as a spatial increment
Present estimates of^e& and ^x& were inferred from

^e&52
U

2

d^q2&
dx

~34!
5-4
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and Eq.~11!, and were close~610%! to those estimated~II !
from the isotropic values of̂e& and ^x&. The divergence~or
longitudinal turbulent diffusion! terms, which were ignored
in Eqs.~34! and~11!, were two to three orders of magnitud
smaller than the streamwise decay terms.

IV. COMPARISON BETWEEN EXPERIMENTAL RESULTS
AND SIMILARITY REQUIREMENTS

In II, isotropic definitions forl, Rl , lu , and Pe were
used, based on isotropic values of^e& and^x&. Here, we have
preferred to use estimates of^e& and ^x& inferred from Eqs.
~34! and~11!, and nonisotropic definitions ofl, lu , Rl , and
Pe, as given in Sec. II.

In II, the effective origins and the exponentsm andn were
estimated using a trial and error method adopted by Com
Bellot and Corrsin@17#. Different values ofx0 were selected
and least-squares linear regressions were applied to ln^q2& ~or
ln^u2&) vs ln(x2x0). The optimum value forx0 ~estimated to
be betweenM and 2M ) yielded the minimum deviation inm
~or n). Here, we follow the procedure used in I, which f
cused on the behavior ofl2. Accordingly, different choices
of x0 were applied and the ratiosl2/(x2x0) and lu

2/(x
2x0) were plotted~Fig. 2!.

The optimumx0 was that which produced the widest pl
teau. In both Figs. 2~a! and 2~b!, x050 appears to be the
optimum choice~within 60.5M ) over the range 30<(x
2x0)/M<80 and the values corresponding to the platea
when used in conjunction with Eqs.~21! and ~20!, yielded

FIG. 1. Schematic arrangement of probe.a and b are inclined
hot wires ~X formation, separationDzxw.1.5 mm); c and d are
parallel hot wires~separationDyh.1.5 mm); the parallel cold
wires 1 and 2 are located about 0.3 mm upstream ofc andd. Etched
and unetched portions of the wires are shown by light and he
lines, respectively.b.50°.
01630
e-

s,

m521.33 andn521.37. These latter values agree almo
exactly with those reported in II. This is perhaps not surpr
ing since l2 and lu

2 represent the ratioŝq2&/^e& and
^u2&/^x& and ^e& and ^x& are intimately related tôq2& and
^u2& via Eqs.~11! and~34!. The agreement reflects the inte
nal consistency of the present data, and the~better than 10%)
agreement between direct estimates of^e& and ^x& from the
probe and those inferred from Eqs.~34! and ~11!. The ad-
equacy of the present estimates ofm and n is further con-
firmed in Figs. 3 and 4. Over the range 30<x/M<80,
^q2&1/m and^u2&1/n increase linearly withx ~Fig. 3! to a close
approximation~the straight lines through the origin are leas
squares linear regressions to the data!. Similarly, good linear
variations are exhibited in Fig. 4 bŷ e&1/(m21) and
^x&1/(n21).

It follows from Eqs.~20! and ~21! that

y

FIG. 2. Ratio of eitherl2 or lu
2 with (x2x0)/M for different

choices of x0 /M . ~a! (l/M )2/(x2x0)/M ; ~b! (lu /M )2/(x
2x0)/M . The horizontal line in~a! yieldsm521.33; the horizon-
tal line in ~b! yields n521.37. s, x0 /M54; h, 2; ,, 0; d, 22;
j, 24.

FIG. 3. Variations of^q2&1/m ~right vertical axis! and ^u2&1/n

~left vertical axis! with x/M using the values ofm andn estimated
from Fig. 2.s, ^u2&1/n (n521.37); h, ^q2&1/m (m521.33). The
straight lines through the origin are least-squares regressions t
data.
5-5



a

n

ci

o

t
di
th
re

t
l-

t
,

s

ANTONIA et al. PHYSICAL REVIEW E 69, 016305 ~2004!
lu
2

l2
5

3k

5n

m

n
5

3

5
Pr21R. ~35!

This ratio remains constant withx ~Fig. 5! sinceR ([m/n)
is constant. Sincem,21, Rl and Pe must decay with
power-law exponent given by (m11)/2, in this case20.16.

Distributions of f @[^(dq̃)2&[^(dq)2&/^q2&# and
f u @[^(dũ)2&5^(du)2&/^u2&# are shown in Fig. 6. In each
case, the collapse is good over practically the complete ra
of r̃ or r̃ u . Note thatf and f u have significantly different
shapes, despite having the same limiting values asr̃→0 and
r̃→`. The quality of collapse forf [^(dq̃)2& in Fig. 6 is
comparable to that observed for a grid constructed from
cular rods (M and the solidity being the same!. To avoid
crowding, distributions at only one value ofx/M are shown
in Fig. 7. The overshoot exhibited byf at r̃ .20 for the cir-
cular rod grid is absent in the flow generated by a grid
square bars; here, the asymptotic value of 2 forf is ap-
proached monotonically. The overshoot implies some sor
large-scale organization; indeed, flow visualizations in
cated that, for the grid constructed from circular rods,
initial strong periodicity associated with vortex shedding

FIG. 4. Streamwise variation of̂e&1/(m21) ~right vertical axis!
and ^x&1/(n21) ~left vertical axis! using the values ofm andn esti-
mated from Fig. 2.s, ^x&1/(n21) (n521.37); h, ^e&1/(m21) (m
521.33). ^e& is in m2/s3 and ^x& is in °C2/s. The straight lines
through the origin are least-squares regressions to the data.

FIG. 5. Ratiolu /l between the Corrsin and Taylor microscale
The streamwise variations ofRl and Pe are also shown.s,
lu /l;—, lu /l from Eq.~35!, with R50.978.h, R; d, Rl ; j, Pe.
The broken lines are least-squares regressions to theRl and Pe data,
each with a slope of20.16 or (m11)/2.
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mained evident up to relatively large values ofx/M . In the
present flow, the initial periodicity is rapidly obliterated.

Use of the Kolmogorov2Obukhov2Corrsin scalesUK
[(n^e&)1/4, uK[(^x&h/UK)1/2, and h for normalizing
^(dq)2&, ^(du)2&, and r results in a good collapse only a
small r * ~Fig. 8!. In general, the asterisk will denote norma
ization by UK, uK , and/orh. As x/M increases, the distri-
butions peel off at smallerr * and the plateaux occur a
smaller^(dq* )2&or ^(du* )2&. This trend is expected since
in the limit r * →`,

^~dq* !2&5
6

151/2
Rl

.

FIG. 6. Distributions of ~a! f [^(dq̃)2&5^(dq)2&/^q2& vs

r̃ 5r /l and ~b! f u[^(dũ)2&5^(du)2&/^u2& vs r̃ u5r /lu . – –,
x/M530; - - -, 40; — - —, 50; — - - —, 60; - - -222,70;222
222,80.

FIG. 7. Distributions of^(dq̃)2&for two different grids. The
mesh sizeM is the same for both grids.22, present grid~square
bars,x/M580); — – —,grid used in I~circular rods,x/M580).
5-6
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and

^~du* !2&5
6

151/2
Rl .

The trend at larger * in Fig. 8 reflects the decrease of the
two quantities asx/M increases~i.e., asRl decreases!.

It was already noted that structure functions are more s
sitive than spectra for testing departures from similarity
cause of the different nature~local vs integral! of the con-
straints that each need to satisfy. For example, whe
^(dq* )2&→2^q* 2&as r * →` @Fig. 8~a!#, it is the integral of
the Kolmogorov-normalized spectrumfq* which is equal to
^q* 2&. Spectra ofq and u are shown in Figs. 9 and 10
respectively, for the two types of normalization used in Fi
6 and 8. Note that*0

`f̃q( k̃1)dk̃151 and *0
`f̃u( k̃1)dk̃151

whereas*0
`fq* (k1* )dk1* 5^q* 2&and *0

`fu* (k1* )dk1* 5^u* 2&.
The productk1fa(k1) is plotted against lnk1 so that the
areas under the distributions comply with the previous in
gral values. Although the spectral differences between
present similarity and a scaling based on Kolmogorov v
ables are more ambiguous than those inferred by compa
structure functions~Fig. 6 vs Fig. 8!, the low wave number
collapse based onl2lu @Figs. 9~a! and 10~a!# represents a
small improvement relative to that when the normalization
on UK , uK, andh @Figs. 9~b! and 10~b!#.

The different shapes of theq and u spectra reflect the
previously noted differences betweenf and f u . The normal-
ized distributions in Fig. 10 peak at a significantly smal
value ofk1 than the corresponding distributions in Fig. 9.
qualitatively similar difference betweenfq(k1) and fu(k1)
has been observed in direct numerical simulations of dec
ing homogeneous isotropic turbulence in a periodic b

FIG. 8. Distributions of̂ (dq)2&and ^(du)2& normalized using
UK, uK, andh. ~a! ^(dq* )2&; ~b! ^(du* )2&. Line types as in Fig. 6.
The curved arrows are in the direction of increasingx/M .
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~@27#! for which nominally identical spectral shapes we
assumed for the velocity and scalar fields att50. Another
difference betweenfq andfu is the appearance of a powe
law scaling range infu , despite the small value ofRl . No
scaling range can be observed infq . Figure 11 compares a
smoothed distribution off̃u( k̃1) @to avoid the ambiguity due
to the noise spikes of Fig. 10, a high-order polynomial w

FIG. 9. Turbulent energy spectra multiplied byk1 and plotted
against lnk1 . In ~a!, the normalization is byl and^q2&. In ~b!, the
normalization is byUK andh. – –,x/M 5 30; - - -, 40; — - —, 50;
— - - —, 60; - - - - - -, 70; — —, 80.

FIG. 10. Temperature spectra multiplied byk1 and plotted
against lnk1. In ~a! the normalization is bylu and^u2&. In ~b!, the
normalization is byUK , uK , andh. Symbols are as in Fig. 9.
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first fitted to lnfu(k1)] with an unsmoothed distribution o
f̃q( k̃1) on a log-log plot. Ak̃1

21.56 power-law behavior can

be observed over a surprisingly large range ofk̃1. This ob-
servation is consistent with that reported and discusse
detail by Jayeshet al. @18#. These authors found a scalin
range, with an average exponent of21.58, both when the
temperature is introduced at~or near! the grid without a gra-
dient and when a mean temperature gradient is introdu
upstream of the grid. They also noted that the range dilate
the Reynolds number increases. Sreenivasan@19# com-
mented that this anomalous behavior of the scalar spec
in grid turbulence allowed an estimation of the Obukho
Corrsin constant, even at modest Reynolds numbers. He
discussed the different behavior of the scalar spectrum
shear flows. Indeed, the present dissimilarity betweenf̃u( k̃1)
and f̃q( k̃1) contrasts strongly with the close similarity th
exists in shear flows~Chap. 7 of Chassainget al. @20# re-
views evidence for the spectral analogy betweenq andu).

We did not try to calculate the integral length scalesL and
Lu from the 3D spectraE(k) andEu(k) since inferring these
from the 1D spectra requires isotropy to be valid at all wa
numbers. This is an inadequate assumption for the pre
flow at small wave numbers. Here, we have inferred the
tegral scales from the structure functions since (a[q or u)

^ã~x!ã~x1r !&512
^~dã !2&

2
. ~36!

For a[q, the normalized correlation̂q̃(x)q̃(x1r )& is iden-
tified with the sum ^ũ(x)ũ(x1r )&1^ṽ(x) ṽ(x1r )&
1^w̃(x)w̃(x1r )&. The ratiosLq /l and Lu /lu , whereLa

5*0
r a^ã(x)ã(x1r )&dr (r a corresponds to the first zer

crossing of the correlation!, are shown in Fig. 12. Although
there is some scatter in the data, the overall trend indic
that both ratios decrease slowly withx ~by about 10% in the
case ofLu /lu for 30<x/M<80), which is consistent with
what was reported in I and the slower thanx1/2 growth rate
for La . As discussed in I, it is possible that this result refle
the presence of the boundaries in the experiment. It is
axiomatic that the collapse off and f u in Fig. 6 cannot be
perfect since only a perfect collapse would be consist w

FIG. 11. Comparison between spectra ofq andu at x/M550.

The normalization useŝq2&, ^u2&, l, andlu . —, f̃q( k̃1); — - —,

f̃u( k̃1). The dashed line has a slope of21.56.
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L̃a5 constant. The estimation ofLx , Eq. ~28!, requiresCx

to be known. IfLx is identified withLu , Cx can be obtained
indirectly from Eq.~28!. Its variation withx/M is included
in Fig. 12. The average value appears to be constant~.0.5!,
suggesting that the variation ofL̃u with x/M reflects that of
the Péclet number, Eq.~28!.

The normalized third-order structure functionsg and gu
are shown in Figs. 13 and 14, respectively. The collapse
g ~Fig. 13! is an improvement over that exhibited by Fi
10~a! in I. This, together with the distributions off @Fig. 6~a!#

or f̃q( k̃1) @Fig. 9~a!#, reinforces the claim that the velocit
field satisfies similarity to a good approximation. The calc
lation of g ~Fig. 13!, based on the measured distribution of
at x/M540, approximately follows the measured distrib
tion of g at x/M540 up to r̃ .5. The trend in Fig. 14 sug
gests that similarity of the temperature field may only
achieved at much larger values ofx/M than for the velocity
field. The distributions ofgu at x/M570 andx/M580 are in
excellent agreement with each other. The calculation ofgu ,
based on the measured distribution off u at x/M570, fol-
lows the measured distribution ofgu ~also atx/M570) quite
closely up tor̃ u.12. It is not clear why this latter limit is
greater than that in Fig. 13, but one would expect that
assumption of isotropy becomes more tenuous asr̃ ~or r̃ u)
increases. The level of agreement between measuremen

FIG. 12. Dependence ofLq /l andLu /lu onx/M . The variation
of the coefficientCx is also shown.Lq and Lu were obtained by

integrating the autocorrelations inferred from Eq.~36!. h, L̃q ; s,

L̃u ; ,, Cx , see Eq.~28!.

FIG. 13. Distributions ofg[231/2Rl^(dũ)(dq̃)2& vs r̃[r /l.
Line types as in Fig. 6. The heavy solid line is a calculation ba
on Eq.~33! and the distribution off at x/M540.
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calculation in Figs. 13 and 14 represents a significant
provement over that reported by Millset al. @21# for triple
velocity and velocity-temperature correlations. Details of
calculation were not given by these authors, but it is reas
able to assume that they were also based on al2lu simi-
larity of the correlation functions.

Finally, it is pertinent to comment on the expectatio
which follows from Eqs.~31! and~32!, that the productsSRl

and SuRl should remain constant~Sec. II! for fixed initial
conditions. These equations automatically satisfy simila
if the equations from which they are derived, i.e., the eq
tions for ^(du)2& or ^(du)2&, satisfy similarity. From an ex-
perimental viewpoint, accurate testing of Eqs.~31! and~32!,
which weight small-scale structures, is delicate due mainl
spatiotemporal resolution and noise limitations of the m
surements. For the present experiment, we have found thS
andSu , as estimated from the limiting values of^(du)3& and
^(du)(du)2& as r→0, are approximately constant with re
spect tox. The average value ofS is about 0.49 whereas tha
of Su is about 0.38. SinceRl decreases withx, G and Gu
must therefore also decrease withx according to Eqs.~31!
and~32!. Our best estimates forG andGu were obtained by
extrapolating the spectra ofu andu ~Fig. 15! to largek1 after
ignoring the noise-contaminated portion of the spectrum. T
values ofG and Gu ~Fig. 16! decrease withx at approxi-
mately the same rate asRl or as the products~also included

FIG. 14. Distributions ofgu[231/2 Pe ^(dũ)(dũ)2& vs r̃ u

[r /lu . Line types are as in Fig. 6. The heavy solid line is
calculation based on Eq.~26! and the measured distribution off u at
x/M570.

FIG. 15. Measured and smoothed extrapolated distribution
k1*

4fu* (k1* ) andk1*
4fu* (k1* ) at x/M550. Solid curves, measured

dashed curves, smoothed and extrapolated.
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in the figure! SRl andSuRl . Although the uncertainty~Fig.
15! in extrapolating the spectra is sufficiently large to pr
hibit any conclusion regarding the precise streamwise va
tions of G andGu , the trend withx/M in Fig. 16 is consis-
tent with Eqs.~31! and ~32!. Calculations ofG and Gu ,
based on Eqs.~31! and ~32! and measured values ofS, Su ,
Rl , are also shown in Fig.~16!. The calculation underesti
matesGmeas by about 10% andGumeas

by about 27%. The
discrepancy is most likely due to the systematic error in
trapolatingG and more especiallyGu ~Fig. 15!. It can be
claimed, nonetheless, that the streamwise decay ofG andGu
is consistent with our earlier observation that the collapse
f, f u , f̃q( k̃1), andf̃u( k̃1) is not perfect. The nonbalance o
Eqs.~31! and~32!, which are a very refined test of the sma
scale behavior of Eqs.~5! and ~6!, simply emphasizes the
fact that equilibrium similarity, as it was defined in Sec. II,
not respected for the very small scales.

The decay withx of the presentSRl data contrasts with
the apparent constancy for this product, as obtained in ea
grid turbulence experiments~see Fig. 10 of George@7#! but
is consistent with the trend of the DNS results@22#. Recent
DNS data~Antonia and Orlandi,@23#! for decaying homoge-
neous isotropic turbulence indicate thatSandSu ~it is under-
stood here that temporal definitions apply for these t
quantities! are approximately constant over a period of tim
for which ^q2& and^u2& exhibit approximate power-law be
haviors. The temporal decay of the productsSRl andSuRl is
consistent with the streamwise decay observed in the pre
experiment.

V. CONCLUDING DISCUSSION

All the terms in the transport equation of^(du)2& for
decaying homogeneous isotropic turbulence remain in r
tive balance throughout the decay when the character
scale^u2& for the scalar decays asxn and the characteristic
length scale grows asx1/2. The microscalesl andlu satisfy
this latter requirement provided̂q2&;xm and ^u2&;xn. As
in the spectral analysis of Ref.@9#, the present similarity
solution should be valid regardless of the magnitude of
turbulent Reynolds and Pe´clet numbers. Both numbers ca
vary with x according tox(m11)/2, whenm,21. In the spe-

of

FIG. 16. Streamwise variations ofG and Gu . Also shown are
the productsSRl and SuRl . s, Gmeas, measuredG; — - - —,
Gcal , G calculated using Eq.~31!; h, Gumeas

, measuredGu ; — -
—,Gucal

, Gu calculated using Eq.~32!; ,, SRl ; n, SuRl .
5-9



t
th

ire

bu
ow
n
-

t
e

en

re
s
m

th
is

th

o
-
e
o
n
h

tio
th

e
the
h a

ity
t. In
ectra

-
of
c-
I in

g
e
rge

of
ex-

re
be
a
te-

n

e-
.K.

ANTONIA et al. PHYSICAL REVIEW E 69, 016305 ~2004!
cial case, whenm is equal to21, Rl and Pe remain constan
and the present solution becomes consistent with
asymptotic result obtained in Ref.@10# which extended the
analysis of Ref.@8#. The dissipation time scale ratioR must
be constant withx irrespective of the values ofm andn. The
magnitude of this ratio will, likem and n, depend on the
initial conditions.

Measurements, at smallRM ~and thereforeRl), down-
stream of a grid-mandoline combination satisfy the requ
ments of our analysis and those of Ref.@9# reasonably well.
Although the assumption of homogeneous isotropic tur
lence is approximated poorly by the large scales of the fl
the measured distributions off, f u , collapse reasonably whe
plotted againstr /l or r /lu . The collapse for the appropri
ately normalized third-order velocity structure functiong
is adequate as is the calculation ofg based on the presen
similarity solution. The departure between measurem
and calculation occurs at larger /l and is reconcilable with
the expected departure of the large scales from homog
ity and isotropy. Measurements ofgu , the normalized
mixed velocity-temperature structure function, exhibit poo
collapse than forg, possibly implying that larger value
of x/M may be necessary for the scalar field to attain si
larity.

Several further comments can be made with regard to
quality of similarity achieved in the experiment. First, it
clear that the collapse off and f u , or indeed that of the
corresponding spectra, is not perfect. If it were, then
integral length scales would be exactly proportional tol or
lu . This is not the case since the integral scales grow m
slowly thanx1/2, most likely reflecting the effect of the lat
eral boundaries of the working section of the wind tunn
Second, our measurements indicate that different initial c
ditions lead to different similarity solutions. The distributio
of f u is also expected to depend on initial conditions. T
observed strong dissimilarity between the shapes off and f u
or between those of the energy and temperature spectra
pears to be a peculiarity of decaying turbulence. The addi
of a mean temperature gradient does not seem to affect
,

. A

a-

01630
e

-

-
,

nt

e-

r

i-

e

e

re

l.
n-

e

ap-
n
is

dissimilarity since the ‘‘anomalous’’ power-law scaling rang
that is observed in the temperature spectrum, but not in
energy spectrum, is also found when the grid interacts wit
mean temperature gradient~Jayeshet al. @18#!. The dissimi-
larity disappears when a relatively strong mean veloc
gradient and a mean temperature gradient are presen
such a case, the shapes of the energy and temperature sp
are quite similar~e.g., Fulachier and Antonia@24#!. Thirdly,
the present calculations ofg and gu represent an improve
ment over earlier attempts at reconciling calculations
third-order velocity or velocity-temperature correlation fun
tions with measurements. In particular, as was noted in
the context ofg, calculations based on the Kolmogorov@25#
or Yaglom @26# equations which ignoreG1 , G2 , Gu1

, and

Gu2
would only be adequate at very large values ofRl and

Pe.
The results presented here are consistent with those@for

Eu(k) andTu(k)] obtained using DNS in Ref.@12#; in par-
ticular, George@9# provides a good means for calculatin
^du(du)2& or Tu(k), but Kolmogorov/Corrsin scales ar
more appropriate in terms of collapsing the spectra at la
wave numbers than George’s variables.

While it is desirable to test similarity at higher values
RM than in the present experiment, we expect that the
perimental difficulties will only increase asRM is increased.
Also, the percentage streamwise variation ofRl is expected
to diminish asRM is increased. As a suggestion for futu
work, a more fruitful way to proceed experimentally may
to improve the isotropy of the flow, for example by using
secondary contraction downstream of the grid as in Com
Bellot and Corrsin~1966! @17#, while making every effort to
minimize the influence from the tunnel working sectio
walls.
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