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First steps in the spreading of a liquid droplet
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We describe the first steps of spreading of a liquid droplet brought in contact with a solid that it wets
completely. Usually, it is assumed that the dynamics of the droplet results from a balance between the spread-
ing forces and viscosity. But before this classical stage, inertia resists to the motion, which leads to a very
different dynamic law. We study experimentally the nature of this law, compare our results with recent theo-
retical predictions, and determine the duration of this inertial regime.
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The dynamics of a droplet spreading on a solid in a situhants, and makes them wettable for at least 5 min, that is,
ation of complete wetting has been studied quite extensivelynuch longer than the duration of each experiment. The plate
for the past 20 yeargl-7]. The main findings can be sum- is slowly lowered, thanks to a micrometric scréat a veloc-
marized as follows: a microscopic precursor film propagatesty that we checked using a camera to be smaller than
ahead of the macroscopic drop, which spreads on a soli.5 mms?), till it contacts the drop. Side or top views of
wetted by this precursdb,6]. The drop is first drawn by the the spreading were performed using an ultrafast camera
gradient of curvaturg¢and thus of Laplace pressiiteetween (9000 frames per sec.
its periphery and its center; later, when it becomes centime- We display in Fig 2 a sequence of snapshots correspond-
tric in size, gravity becomes the dominant spreading forceing to the early stage of the spreading of a water drop of
Both the driving forces are quite weak, and become weakevolume 5ul (R=1 mm). Time increases from left to right
as time goes on, which leads to a strong reduction of the dropith intervals of 1.1 ms between each image.
velocity as a function of timé. Balancing these forces with The propagation of the solid/liquid contacf radiusr) is
the viscous friction successively yields an increase of thebserved to be extremely fast: the drop immediately looses
drop radius as¥/*° (in the first capillary stagg3—7], and as its spherical shape. A region of high curvature appears close
t¥8 (in the next gravitational regimé1,2]. In the first steps  to the contact, and a capillary wave propagates from the top
of the spreading, these laws predict a divergence of the vee the bottom of the drop. The end of the spreading is not
locity, in contradiction with the assumption of a viscous flow, shown here: the bottom of the drop detaches from the supe-
and should not be valid any longer. Here, we investigate howhydrophobic substrate, and the spreading continues on the
a drop behaves just after being brought in contact with ajlass plate, till gravity balances capillary forc@shich im-
substrate that it wets totally. plies a centimetric contact with the solid, much larger than

The key point is to achieve a device allowing us to makethe size of each snapshot in Fig. 2
a spherical droplet approach a solid surface with a negligible Figure 3 shows examples of the temporal evolution of this
speed: releasing a drop out of a pipette from a height as lowontact, corresponding to three different drop sizes. The data
as 2 mm makes it impact the solid at 20 citsa velocity — are presented in a log-log plot, and our main result is a com-
for which the inertia of the moving drop dominates the firstmon behavior for the different experiments: in each case, the
steps of spreadingln addition, such a drop vibrates just contact radius is observed to increase as the square root of
after it detached, which also complicates the analysis. time, before slowing down. The time, which defines the

In our experiment, we first deposit a drémostly pure duration of this first regime of spreading, increases with the
water, of viscosityp=1 mPas) on a superhydrophobic sub- size of the drop. The second regime of spreading#) can
strate. On such a material, the contact angle is of the order of

1600—1700, and the adhesion iS h|gh|y reduc{e@. For %&Micrometricscrew

drops smaller than the capillary lengils= ' y/(pg) (denot-
ing the surface tension and density of the liquidyaandp),

that is, millimetric or less, the drop is quasispherical since | Glass plate |
surface forces then dominate gravity. Practically, the raRius v v
of the drops was between 0.5 mm and 3 mm.
Then, a solid which is totally wet by water is brought in don

contact with the drop, from abo\€ig. 1). Glass plates were
chosen for this purpose, and exposed to a flame before each
experiment. This treatment clears them of their contami- | Super-hydrophobic surface

*Institut de Recherche sur les Ploenenes Hors Huilibre, FIG. 1. Side view of our experimental setup: a drop, which is
UMR 6594 du CNRS, Bde Postale 146, 13384 Marseille Cedex, deposited on a superhydrophobic solid, is slowly approached and
France. contacted by a very clean plate of glass, both smooth and wettable.
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FIG. 2. Water droplet of volume &l spreading on a surface of $
glass(we denote the water/glass contactras The time interval
between two successive images is 1.11 ms and the bar in the las 100

picture indicates 2 mm. 0.1 1 10
R (mm)

also be characterized by an eXponm(a)’ anda is_found FIG. 4. Dynamic coefficienfdefined in Eq.(2)] for the size of
to be of the order of 0.1, the classical value resulting from gne solig/liquid contact in the inertial regime of spreading, as a

balance between viscosity and capillarfi-7]. ~ function of the drop radius. The full line is the best fit, and provides
A scaling law was recently proposed by Eggers, Listerg sjope of 0.52.

and Stone to describe the first stage of coalescence of two

liquid drops of small viscosity, taking into account the domi- d ( ,dr) 9R

~—1".

nant role of inertia in this regimg9]. This model was re- g\
p

dt

cently confirmed in numerical simulations by Duchemin

et al, in the same limit of inviscid liquid410]. Here we

propose to adapt these arguments to the case of a dré@ this equation, both the mass of liquid and the force vary
spreading on a solid. At short time, the curvaturef the ith time a feature which is different from similar problems

interface which drives the liquid is related to the lengths suc_:h as the inertial capillary rise, or the onset of menisqi,_for
andR by the geometrical relation: which the geometry fixes a constant value for the driving

force[11,17. Hence, the solution which comes out is differ-
ent. One finds

| o

K~ r2(t)~Dt (1)

with
The gradient of this curvature induces a gradient of Laplace

pressuref, which can be written dimensionallf~ yR/r3, YR
and which is the driving force of the spreading. The mass D=+\/— (2)
of liquid which is entrained by this force scales ps?/ P

4 ; ; .
~pr®/R, which gives a total forc& ~ yr (logically propor- . - I
tional to the surface tension and to the perimeter of the mov--rhIS coefiicientD appears as a very natural quantity, it can

2 — . . .
ing contact. Neglecting the role of viscosity, the equation of be expressed aR/T, where T~pR"y is the inertial/

the motion reduces tdmv/dt=F (denotingu =dr/dt as the caplllgry time ;cale, a drop Of. mass~pR* can be seen as
velocity), and thus can be written a spring _of sﬂf_fne_sgy, andT is thus the_: natural response

time of this spring(it is for example, the time scale of vibra-
tion of a free drop in ajr[13].

The size of the solid/liquid contact was indeed observed
in Fig. 3 to obey a square-root growth in the first regime, as
expected from Eq(l). But this alone is not enough: a drop
impacting on a solid at a spe&tishould also generate such
a law at short time, for geometric reasons. The depth on
which the drop is deformed can be writté+ Vt, and the
sizer of the contact an@ are related by the geometric rela-
tion (for r<R) r?~R4, which eventually yieldg?~RVt
In our case)\V is less than 0.5 mm¢, which implies an
impact coefficientRV less than %10 % cnfs™!, much
smaller than the one predicted by Eg) (D of the order of
2 cn?s 1), In order to go beyond this simple qualitative
FIG. 3. Radiusr of the solid/liquid contact for a water drop fact, we studied the structure of the coefficiéntits value

brought in contact with a glass plate that it wets totallis plotted ~ WaS measured using plots such as the one displayed in Fig. 3,
as a function of time in a log-log representation, for three differentand it is reported in Fig. 4 as a function of the size of the
drop radii: R=1.2 mm(©), R=0.7 mm(), and R=0.27 mm  drop, in a log-log plot.

(A). For each curve, the slopes 1/2 and 1/10 are successively in- The data are found to obey a scaling law, providing as an
dicated[as suggested by Eqél) and (3)]. The durationr of the ~ exponent 0.520.05, in good agreement with E(). The

first regime is observed to increase with the drop size. dimensional numerical prefactor deduced from the experi-
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FIG. 5. Duration of the inertial regimfdescribed by Eqs(1) ! 10 100 1900 mpa ) 10000

and (2), and observed in Fig.]3as a function of the drop radius. FIG. 6. Duration of the inertial regimidescribed by Eqs(1)

The full line indicates the slope 1.62. and(2), and observed in Fig.]3as a function of the liquid viscos-

. . ity. The full line indicates the slope-1/4.
ments is 1K 10 3, of the same order of magnitude ds/p

which is about & 102 for water. cades of liquid viscosity a slope close to1/4 (continuous

We flna"y investigatEd the duration of the inertial regime. |ine), in fair agreement with Ec(4) This weak dependency
Once the liquid is moving, the factor which limits the dy- has an interesting consequence: introducing the duration of
namics of the spreading is not inertia anymore, but viscositythe inertial regime in the dynamic lajiq. (1)], we find that
Then, the drop is close to a spherical cap joining the solighe spatial extension of this regime scaleRagpR/ 7?) 18,
with a dynamic angley, whose value is given by Tanner’s This expression is remarkably unsensitive to the liquid vis-
law, 6°~ V/y [3]. Together with the conservation of vol- cosity, showing that the extension of the inertial regime
ume (>6~R?), this yields the classical law of viscous should be of the order of the drop size, even for quite viscous

spreading of a small drofb]: liquids.
110 Let us finally conclude by emphasizing different pecu-
r(t)~R<L) ) (3) liarities of this dynamic system.
7R (1) At the small scale where surface forces are dominant,

. o N the dynamics of interfaces is often dictated by a balance
Therefore, at short time, inertia is indeed the limiting fac-peyeen these forces and viscosity. However, strong devia-
tor of thg spreading: the rad|usg|\{en by Eq.(1) 'S.then tions towards these classical laws can be observed at short
ne(_:essarlly smaller than the one given by £3). But if we time. This can generally be interpreted by considering iner-
wait Iong enough, the two curves must cross eagh o_ther, angh as shown for example in capillary ri§&1,12. We re-
we fall in the viscous regime. The crossover is given by,qaq here such an inertial regime for a spreading drop. We
equating the radii given by Eqgl) and(3), which yields as  ¢,,n4 that the first steps of the wetting are well described by
a characteristic time of duration of the inertial regime, a square-root growth, instead of the usual very slow behav-
18 iors, which set at longer time@nainly fixed by the size of
\ /ﬁ (4) the drop. The duration of this regime is typically of the
Yy’ order of 1 ms for a millimetric water drop which looks short,
yet because of a high speed corresponds to quite large exten-
where we chose to isolate the time~pR%/y defined sions(typically about the drop sizeof the solid/liquid con-
above as the inertial/capillary time scale of a drop of radiugact. This inertial regime should thus be relevant in many
R. For a millimetric water drop, the typical duratianwhich  practical situations, such as soldering, detergency, bridge for-
can be evaluated from E@) is of the order of 1 ms, in good mation (such as observed using SFA or AFMbor coales-
agreement with our experiments in Fig. 3. More quantita-cence of liquids of low viscosity.
tively, we could extract from this plofand other similar (2) We can deduce from Eql) the velocityV with which
ones the time 7: the transition between the two successivethe center of mass of the drop approaches the plate. Néting
regimes is well-cut, providing an accurate measurement ods the lowering of this point, and using the geometrical rela-
this time. We report in Fig. 5 the value afas a function of tion 6~r?/R, we find thatV is constant and equal to
the drop radius, in a log-log plot. VYl (pR). The latter expression expresses a transfer of sur-
There again, we note that the data are fairly well de-face energy in kinetic energy, which is also found in other
scribed by a scaling law. The exponent is found to be 1.62nertial motions of interfaces, such as capillary rig2] or
+0.05, in very good agreement with Eg), which predicts coalescencd10]. It also fixes the impact velocity below
13/8 for this exponent. which the inertial spreading described here will dominate the
The timer depends very weakly on the parameters charforced spreading induced by the impact velocity. For small
acterizing the liquid ¢, y andp) and appears to be mainly drops R~100 xm), this velocity is hightabout 1 ms?).
fixed by the drop size. Using mixtures of water and glycerol, (3) The spreading is all the quicker since the drop is large
we checked experimentally the dependence in viscosity of [Figs. 1 and 2, Eq(2)], a very unusual feature in an inertial
The results are reported in Fig. 6, showing over three deprocess where it is the mass which resists to the motion.
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However, the local character of the motion allows us to un-drops the flow is forced by symmetry in the direction per-
derstand this fact. The mass of moving liquid scalepr&s, pendicular to the contact, a common feature with a spreading
and thus(for a givenr) decreases with the drop radi®&  drop. The experiments reported here thus appear as a first
while the rest of the drogi.e., most of the magsemains step for understanding quantitatively the dynamics of coales-
immobile in these first steps of spreading. cence between liquids of low viscosity. More generally, three
(4) The spreading law in this reginméeq. (1)] does not main factors are likely to slow down the motion in both
depend on the so-called spreading parameter, that is, on tlwases: viscous effects in the region of high curvature, the
nature of the substrate. We checked this point by making thaertia of the droplet, and the viscosity in the whole droplet.
substrate liquid instead of solid. We prewetted a glass platén our particular devicésee Fig. 1, we could add gravity,
with a water film of thickness 20@m, and studied the but it can be neglected in the first steps of the spreading.
spreading of a water drodRE 1.4 mm) on this film, using Each of these factors generate an original spreading law, and
the setup sketched in Fig. 1. The law for the liquid/liquid we reported here two of them. Eggeitsal. predicted that the
contact was found to obey Eq(1), giving D=7.5 regime dominated by viscous effects in the cusp region only
X104 m?s™%, in good agreement with the value expectedconcerns very small lengths, that is, extremely short fiéle
from Fig. 4 for a drop of this size. The fact that a liquid which are not investigated here. In order to compare the
spreads similarly on a wet and on a dry solid first arises froneffects of inertia and viscosity, we can build the ratio be-
the presence of a microscopic precursor film in the lattetween an inertial velocity and a viscous one. The former can
case, which makes the driving force proportional to the solée defined a&/T, and the latter ag/ », which finally gives
liquid surface tensiofi6]. It also stresses the inertial nature for their ratio: Ok= »/\/ypR. This dimensionless number is
of the spreading: a viscocapillary motion would have beeroften referred to as the Ohnesorge number, and discriminates
much quicker on a prewetted substrate, because of the lubiin most cases inertial regimes from viscous of@40,14.
cating effect of this layer. The inverse fourth root of Oh appears to be the coefficient in
(5) The inertial stage of the spreading was found to obeyEq. (4): the smaller the Oh, the longer the inertial regime.
the laws predicted by Eggees al.for the coalescence of two More precisely, this regime can be observed if the inertial
inviscid liquid drops[9,10]. This can be understood by the velocity is smaller than the viscous one, i.e., for <Oh
nature of the driving forcéas stressed abojeavhich is just ~ which implies for a millimetric drop a viscosity typically
fixed by the gradient of curvature of the liquid/vapor inter- smaller than 100 mPas. Water obviously belongs to this cat-
face, but also by a geometry argument: for two coalescinggory, but also many oils, most solvents and liquid metals.
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