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First steps in the spreading of a liquid droplet

Anne-Laure Biance, Christophe Clanet,* and David Que´ré
Laboratoire de Physique de la Matie`re Condense´e, UMR 7125 du CNRS, Colle`ge de France, 75231 Paris Cedex 05, France

~Received 14 March 2003; published 14 January 2004!

We describe the first steps of spreading of a liquid droplet brought in contact with a solid that it wets
completely. Usually, it is assumed that the dynamics of the droplet results from a balance between the spread-
ing forces and viscosity. But before this classical stage, inertia resists to the motion, which leads to a very
different dynamic law. We study experimentally the nature of this law, compare our results with recent theo-
retical predictions, and determine the duration of this inertial regime.
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The dynamics of a droplet spreading on a solid in a s
ation of complete wetting has been studied quite extensiv
for the past 20 years@1–7#. The main findings can be sum
marized as follows: a microscopic precursor film propaga
ahead of the macroscopic drop, which spreads on a s
wetted by this precursor@5,6#. The drop is first drawn by the
gradient of curvature~and thus of Laplace pressure! between
its periphery and its center; later, when it becomes centi
tric in size, gravity becomes the dominant spreading for
Both the driving forces are quite weak, and become wea
as time goes on, which leads to a strong reduction of the d
velocity as a function of timet. Balancing these forces with
the viscous friction successively yields an increase of
drop radius ast1/10 ~in the first capillary stage! @3–7#, and as
t1/8 ~in the next gravitational regime! @1,2#. In the first steps
of the spreading, these laws predict a divergence of the
locity, in contradiction with the assumption of a viscous flo
and should not be valid any longer. Here, we investigate h
a drop behaves just after being brought in contact wit
substrate that it wets totally.

The key point is to achieve a device allowing us to ma
a spherical droplet approach a solid surface with a neglig
speed: releasing a drop out of a pipette from a height as
as 2 mm makes it impact the solid at 20 cm s21 a velocity
for which the inertia of the moving drop dominates the fi
steps of spreading.~In addition, such a drop vibrates jus
after it detached, which also complicates the analysis.!

In our experiment, we first deposit a drop~mostly pure
water, of viscosityh51 mPa s) on a superhydrophobic su
strate. On such a material, the contact angle is of the orde
160° –170°, and the adhesion is highly reduced@8#. For
drops smaller than the capillary lengtha[Ag/(rg) ~denot-
ing the surface tension and density of the liquid asg andr),
that is, millimetric or less, the drop is quasispherical sin
surface forces then dominate gravity. Practically, the radiuR
of the drops was between 0.5 mm and 3 mm.

Then, a solid which is totally wet by water is brought
contact with the drop, from above~Fig. 1!. Glass plates were
chosen for this purpose, and exposed to a flame before
experiment. This treatment clears them of their conta
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nants, and makes them wettable for at least 5 min, tha
much longer than the duration of each experiment. The p
is slowly lowered, thanks to a micrometric screw~at a veloc-
ity that we checked using a camera to be smaller th
0.5 mm s21), till it contacts the drop. Side or top views o
the spreading were performed using an ultrafast cam
(9000 frames per sec.!.

We display in Fig. 2 a sequence of snapshots correspo
ing to the early stage of the spreading of a water drop
volume 5m l (R51 mm). Time increases from left to righ
with intervals of 1.1 ms between each image.

The propagation of the solid/liquid contact~of radiusr ) is
observed to be extremely fast: the drop immediately loo
its spherical shape. A region of high curvature appears c
to the contact, and a capillary wave propagates from the
to the bottom of the drop. The end of the spreading is
shown here: the bottom of the drop detaches from the su
rhydrophobic substrate, and the spreading continues on
glass plate, till gravity balances capillary forces~which im-
plies a centimetric contact with the solid, much larger th
the size of each snapshot in Fig. 2!.

Figure 3 shows examples of the temporal evolution of t
contact, corresponding to three different drop sizes. The d
are presented in a log-log plot, and our main result is a co
mon behavior for the different experiments: in each case,
contact radius is observed to increase as the square ro
time, before slowing down. The timet, which defines the
duration of this first regime of spreading, increases with
size of the drop. The second regime of spreading (t.t) can

FIG. 1. Side view of our experimental setup: a drop, which
deposited on a superhydrophobic solid, is slowly approached
contacted by a very clean plate of glass, both smooth and wetta
©2004 The American Physical Society01-1
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also be characterized by an exponent (r;ta), anda is found
to be of the order of 0.1, the classical value resulting from
balance between viscosity and capillarity@5–7#.

A scaling law was recently proposed by Eggers, Lis
and Stone to describe the first stage of coalescence of
liquid drops of small viscosity, taking into account the dom
nant role of inertia in this regime@9#. This model was re-
cently confirmed in numerical simulations by Duchem
et al., in the same limit of inviscid liquids@10#. Here we
propose to adapt these arguments to the case of a
spreading on a solid. At short time, the curvaturek of the
interface which drives the liquid is related to the lengthr
andR by the geometrical relation:

k;
R

r 2
.

The gradient of this curvature induces a gradient of Lapl
pressuref, which can be written dimensionallyf ;gR/r 3,
and which is the driving force of the spreading. The masm
of liquid which is entrained by this force scales asrr 2/k
;rr 4/R, which gives a total forceF;gr ~logically propor-
tional to the surface tension and to the perimeter of the m
ing contact!. Neglecting the role of viscosity, the equation
the motion reduces todmv/dt5F ~denotingv5dr/dt as the
velocity!, and thus can be written

FIG. 2. Water droplet of volume 5m l spreading on a surface o
glass~we denote the water/glass contact asr ). The time interval
between two successive images is 1.11 ms and the bar in the
picture indicates 2 mm.

FIG. 3. Radiusr of the solid/liquid contact for a water dro
brought in contact with a glass plate that it wets totally.r is plotted
as a function of time in a log-log representation, for three differ
drop radii: R51.2 mm(s), R50.7 mm(h), and R50.27 mm
(n). For each curve, the slopes 1/2 and 1/10 are successivel
dicated@as suggested by Eqs.~1! and ~3!#. The durationt of the
first regime is observed to increase with the drop size.
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In this equation, both the mass of liquid and the force va
with time a feature which is different from similar problem
such as the inertial capillary rise, or the onset of menisci,
which the geometry fixes a constant value for the drivi
force @11,12#. Hence, the solution which comes out is diffe
ent. One finds

r 2~ t !;Dt ~1!

with

D5AgR

r
. ~2!

This coefficientD appears as a very natural quantity, it c
be expressed asR2/T, where T;ArR3/g is the inertial/
capillary time scale, a drop of massM;rR3 can be seen as
a spring of stiffnessg, and T is thus the natural respons
time of this spring~it is for example, the time scale of vibra
tion of a free drop in air! @13#.

The size of the solid/liquid contact was indeed observ
in Fig. 3 to obey a square-root growth in the first regime,
expected from Eq.~1!. But this alone is not enough: a dro
impacting on a solid at a speedV should also generate suc
a law at short time, for geometric reasons. The depth
which the drop is deformed can be writtend5Vt, and the
sizer of the contact andd are related by the geometric rela
tion ~for r !R) r 2;Rd, which eventually yieldsr 2;RVt.
In our case,V is less than 0.5 mm s21, which implies an
impact coefficientRV less than 531023 cm2s21, much
smaller than the one predicted by Eq.~2! (D of the order of
2 cm2 s21). In order to go beyond this simple qualitativ
fact, we studied the structure of the coefficientD. Its value
was measured using plots such as the one displayed in Fi
and it is reported in Fig. 4 as a function of the size of t
drop, in a log-log plot.

The data are found to obey a scaling law, providing as
exponent 0.5260.05, in good agreement with Eq.~2!. The
dimensional numerical prefactor deduced from the exp

ast

t

in-

FIG. 4. Dynamic coefficient@defined in Eq.~2!# for the size of
the solid/liquid contact in the inertial regime of spreading, as
function of the drop radius. The full line is the best fit, and provid
a slope of 0.52.
1-2



e
y-
it
li

’s
l-
s

c

a
b

iu

ita

ive
t

e
.6

a
y
o
f
de

n of

is-
e

ous

u-

nt,
nce
via-
hort
er-

We
by
av-

e
rt,
xten-

ny
for-

g
la-

sur-
er

the
all

rge
l

ion.

.

-
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ments is 1731023, of the same order of magnitude asAg/r
which is about 831023 for water.

We finally investigated the duration of the inertial regim
Once the liquid is moving, the factor which limits the d
namics of the spreading is not inertia anymore, but viscos
Then, the drop is close to a spherical cap joining the so
with a dynamic angleu, whose value is given by Tanner
law, u3;hV/g @3#. Together with the conservation of vo
ume (r 3u;R3), this yields the classical law of viscou
spreading of a small drop@5#:

r ~ t !;RS gt

hRD 1/10

. ~3!

Therefore, at short time, inertia is indeed the limiting fa
tor of the spreading: the radiusr given by Eq.~1! is then
necessarily smaller than the one given by Eq.~3!. But if we
wait long enough, the two curves must cross each other,
we fall in the viscous regime. The crossover is given
equating the radii given by Eqs.~1! and~3!, which yields as
a characteristic timet of duration of the inertial regime,

t;S rgR

h2 D 1/8

ArR3

g
, ~4!

where we chose to isolate the timeT;ArR3/g defined
above as the inertial/capillary time scale of a drop of rad
R. For a millimetric water drop, the typical durationt which
can be evaluated from Eq.~4! is of the order of 1 ms, in good
agreement with our experiments in Fig. 3. More quant
tively, we could extract from this plot~and other similar
ones! the timet: the transition between the two success
regimes is well-cut, providing an accurate measuremen
this time. We report in Fig. 5 the value oft as a function of
the drop radius, in a log-log plot.

There again, we note that the data are fairly well d
scribed by a scaling law. The exponent is found to be 1
60.05, in very good agreement with Eq.~4!, which predicts
13/8 for this exponent.

The timet depends very weakly on the parameters ch
acterizing the liquid (h, g andr) and appears to be mainl
fixed by the drop size. Using mixtures of water and glycer
we checked experimentally the dependence in viscosity ot.
The results are reported in Fig. 6, showing over three

FIG. 5. Duration of the inertial regime@described by Eqs.~1!
and ~2!, and observed in Fig. 3#, as a function of the drop radius
The full line indicates the slope 1.62.
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cades of liquid viscosity a slope close to21/4 ~continuous
line!, in fair agreement with Eq.~4!. This weak dependency
has an interesting consequence: introducing the duratio
the inertial regime in the dynamic law@Eq. ~1!#, we find that
the spatial extension of this regime scales asR(grR/h2)1/16.
This expression is remarkably unsensitive to the liquid v
cosity, showing that the extension of the inertial regim
should be of the order of the drop size, even for quite visc
liquids.

Let us finally conclude by emphasizing different pec
liarities of this dynamic system.

~1! At the small scale where surface forces are domina
the dynamics of interfaces is often dictated by a bala
between these forces and viscosity. However, strong de
tions towards these classical laws can be observed at s
time. This can generally be interpreted by considering in
tia, as shown for example in capillary rise@11,12#. We re-
ported here such an inertial regime for a spreading drop.
found that the first steps of the wetting are well described
a square-root growth, instead of the usual very slow beh
iors, which set at longer times~mainly fixed by the size of
the drop!. The duration of this regime is typically of th
order of 1 ms for a millimetric water drop which looks sho
yet because of a high speed corresponds to quite large e
sions~typically about the drop size! of the solid/liquid con-
tact. This inertial regime should thus be relevant in ma
practical situations, such as soldering, detergency, bridge
mation ~such as observed using SFA or AFM!, or coales-
cence of liquids of low viscosity.

~2! We can deduce from Eq.~1! the velocityV with which
the center of mass of the drop approaches the plate. Notind
as the lowering of this point, and using the geometrical re
tion d;r 2/R, we find that V is constant and equal to
Ag/(rR). The latter expression expresses a transfer of
face energy in kinetic energy, which is also found in oth
inertial motions of interfaces, such as capillary rise@12# or
coalescence@10#. It also fixes the impact velocity below
which the inertial spreading described here will dominate
forced spreading induced by the impact velocity. For sm
drops (R'100 mm), this velocity is high~about 1 m s21).

~3! The spreading is all the quicker since the drop is la
@Figs. 1 and 2, Eq.~2!#, a very unusual feature in an inertia
process where it is the mass which resists to the mot

FIG. 6. Duration of the inertial regime@described by Eqs.~1!
and~2!, and observed in Fig. 3#, as a function of the liquid viscos
ity. The full line indicates the slope21/4.
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However, the local character of the motion allows us to u
derstand this fact. The mass of moving liquid scales asrr 2d,
and thus~for a given r ) decreases with the drop radiusR,
while the rest of the drop~i.e., most of the mass! remains
immobile in these first steps of spreading.

~4! The spreading law in this regime@Eq. ~1!# does not
depend on the so-called spreading parameter, that is, on
nature of the substrate. We checked this point by making
substrate liquid instead of solid. We prewetted a glass p
with a water film of thickness 200mm, and studied the
spreading of a water drop (R51.4 mm) on this film, using
the setup sketched in Fig. 1. The law for the liquid/liqu
contact was found to obey Eq.~1!, giving D57.5
31024 m2 s21, in good agreement with the value expect
from Fig. 4 for a drop of this size. The fact that a liqu
spreads similarly on a wet and on a dry solid first arises fr
the presence of a microscopic precursor film in the la
case, which makes the driving force proportional to the s
liquid surface tension@6#. It also stresses the inertial natu
of the spreading: a viscocapillary motion would have be
much quicker on a prewetted substrate, because of the lu
cating effect of this layer.

~5! The inertial stage of the spreading was found to ob
the laws predicted by Eggerset al. for the coalescence of two
inviscid liquid drops@9,10#. This can be understood by th
nature of the driving force~as stressed above!, which is just
fixed by the gradient of curvature of the liquid/vapor inte
face, but also by a geometry argument: for two coalesc
ce

im

ch
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drops the flow is forced by symmetry in the direction pe
pendicular to the contact, a common feature with a spread
drop. The experiments reported here thus appear as a
step for understanding quantitatively the dynamics of coa
cence between liquids of low viscosity. More generally, thr
main factors are likely to slow down the motion in bo
cases: viscous effects in the region of high curvature,
inertia of the droplet, and the viscosity in the whole dropl
~In our particular device~see Fig. 1!, we could add gravity,
but it can be neglected in the first steps of the spreadin!
Each of these factors generate an original spreading law,
we reported here two of them. Eggerset al.predicted that the
regime dominated by viscous effects in the cusp region o
concerns very small lengths, that is, extremely short time@9#,
which are not investigated here. In order to compare
effects of inertia and viscosity, we can build the ratio b
tween an inertial velocity and a viscous one. The former c
be defined asR/T, and the latter asg/h, which finally gives
for their ratio: Oh[h/AgrR. This dimensionless number i
often referred to as the Ohnesorge number, and discrimin
in most cases inertial regimes from viscous ones@9,10,14#.
The inverse fourth root of Oh appears to be the coefficien
Eq. ~4!: the smaller the Oh, the longer the inertial regim
More precisely, this regime can be observed if the iner
velocity is smaller than the viscous one, i.e., for Oh,1
which implies for a millimetric drop a viscosity typically
smaller than 100 mPa s. Water obviously belongs to this
egory, but also many oils, most solvents and liquid meta
rint
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