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Noise-induced enhancement of fluctuation and spurious synchronization in uncoupled type-I
intermittent chaotic systems
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We study the dynamics of a pair of twouncoupledidentical type-I intermittent chaotic systems driven by
commonrandom forcing. We first observe that the degree of the fluctuation of the local expansion rate of orbits
to perturbations of a single system as a function of the noise intensity shows a convex curve and takes its
maximum value at a certain noise intensity, whereas the Liapunov exponent itself monotonically increases in
this range. Furthermore, it is numerically demonstrated that this nontrivial enhancement of fluctuation causes
that two orbits with different initial conditions may synchronize each other after a finite interval of time. As
pointed out by Pikovsky@Phys. Lett. A165, 33 ~1992!#, since the Liapunov exponent of the present system is
positive, the synchronization that we observed is a numerical artifact due to the finite precision of calculations.
The spurious noise-induced synchronization in an ensemble of uncoupled type-I intermittent chaotic systems
are numerically characterized and the relations between these features and the fluctuation properties of the local
expansion rate are also discussed.
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I. INTRODUCTION

It is well known that the sensitivity to the perturbations
the initial condition is one of the most generic features
chaotic dynamical systems. In chaotic dynamical syste
two orbits with slightly different initial conditions in the stat
space separate exponentially with time and become unco
lated with each other. So, uncoupled identical chaotic s
tems never synchronize each other unless each system h
identical initial condition. Of course, in the presence of co
plings among elements, the synchronization of elements
arise under some suitable conditions and the issues of
chronization in coupled chaotic systems have been attrac
considerable attention of many researchers. However, se
researchers recently reported counterintuitive examples
an ensemble of uncoupled identical chaotic systems dr
by common external noise can also synchronize each o
that is, the distance between orbits of systems driven by
same noise collapse to a single noisy orbit with time evo
tion @1–6#. This noise-induced synchronization phenomen
is an illustrative example that the interplay between inter
nonlinear deterministic evolution law and external rand
fluctuation can introduce more ‘‘order’’ in the dynamics.

The Liapunov exponents which quantitatively charact
ize the sensitive dependence on the initial condition in
deterministic case may also be suitably defined, and its
gives a criterion whether the synchronization in an ensem
of uncoupled identical systems driven by common noise
pears or not@2#. If the largest Liapunov exponent of th
single system is negative, then two orbits with slightly d
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ferent initial conditions will eventually synchronize eac
other @2#. The dependence of the largest Liapunov expon
on external noise in chaotic dynamical systems was first
ported by Matsumoto and Tsuda on a discrete o
dimensional dynamical system which is associated with
Belousov-Zhabotinsky chemical reaction~the BZ map! @7#.
They studied the effects of noise on the BZ map and
served that with a small amount of noise a chaotic or
changes into a periodic one smeared with noise, which
indicated by the negativity of the largest Liapunov expone
This ordering effect of noise in chaotic dynamical systems
called ‘‘noise-induced order’’~NIO! @7#. Since the BZ map,
which is a one-dimensional map, consists of very steep
flat regions and has a strong nonuniformity and the weakn
to external perturbations in the dynamics, Matsumoto a
Tsuda claimed that NIO is attributed to this strong nonu
formity of the BZ map, and thus NIO is not observed in t
logistic map which has weak nonuniformity@8#. However, if
the parameter of the logistic map is located near a perio
window which exists densely everywhere in the parame
space, then there is a possibility that some kind of order
effects caused by noise appear even in the case of the log
map. In our previous paper@9#, we investigated the effect o
noise on the logistic map and the Ro¨ssler oscillator near a
periodic window exhibiting type-I intermittency and numer
cally observed that the degree of temporal regularity of
time series increases with the increase of the noise inten
and attains its maximum at a certain noise intensity. S
resonant phenomenon is called ‘‘coherence resonance’’~CR!
@10#. It was also shown in Ref.@9# that the Liapunov expo-
nent as a function of noise intensity shows a concave cu
and takes a minimum value at the same noise intensity wh
generates the maximal temporal regularity of the time ser
In this sense, CR in type-I intermittency reported by us
also a kind of NIO.

The aim of the present paper is to characterize the eff

y,
a
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FIG. 1. Liapunov exponentl
for the noisy logistic map~1! as a
function of s; ~b! shows an en-
largement of~a! for small s.
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of external noise on chaotic dynamical systems which
hibit type-I intermittent chaos from the view point of syn
chronization. In particular, we focus on the dependence
both the average value and the degree of fluctuation of
local expansion rate, and consider how the correlation
tween orbits of a pair of uncoupled identical type-I interm
tent chaotic systems driven by common random forcing
pends on the noise. We numerically demonstrate that
degree of the fluctuation of the local expansion rate of or
as a function of the noise intensity shows a convex curve
takes its maximum at a noise intensity which is differe
from that where the average value of the local expans
rate, i.e., the Liapunov exponent, achieves the minimu
Moreover, we show that the noise-induced synchroniza
also occurs in the range of the noise intensity that coinci
with that where an anomalous enhancement of the fluc
tion of the local expansion rate is observed. According
Pikovsky’s criterion @2#, since the Liapunov exponent i
positive, this noise-induced synchronization is aspurious
one due to a numerical round off in the calculations of orb

The present paper is organized as follows. In Sec. II,
introduce the logistic map driven by random noise and ch
acteristics of the stability of the system to perturbation t
play important roles in noise-induced synchronization.
Sec. III, we observe the time evolution of the distance
tween two orbits started with different initial conditions an
driven by common random forcing, and observe that the s
chronization of orbits appears for a certain range of the no
intensity. It is also numerically demonstrated that the aver
relaxation time needed for the achievement of synchron
tion grows exponentially with the numerical precision lev
which implies the observed synchronization is spurio
Moreover, we investigate how the relaxation process
pends on the noise intensity and discuss its relation with
fluctuation of the local expansion rate. A summary and c
cluding remarks are given in Sec. IV.

II. ENHANCEMENT OF FLUCTUATIONS OF THE LOCAL
EXPANSION RATE FOR THE SINGLE NOISY

LOGISTIC MAP

As an appropriate illustration, let us consider the follo
ing logistic map subjected to additive noise

xt11512mxt
21sj t , ~1!
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wherem is the bifurcation parameter,j t is an independen
random variable uniformly distributed over an interva
@20.5,0.5#, and s is the noise intensity. Throughout thi
paper, all numerical calculations were carried out in dou
precision. In the case of the noise-free logistic maps
50), the largest periodic window of period three appears
mc51.75 by a saddle-node bifurcation. At a value ofm
slightly below mc , the time series of the logistic map con
sists of almost period three cycles intermittently interrup
by short term irregular bursts, i.e., type-I intermittency@11#
is observed. In the following, we takee[mc2m51024.

First, we introduce the Liapunov exponent which me
sures theaveragelocal expansion rate of orbits for gener
one-dimensional noisy maps. Although there are vario
definitions of the Liapunov exponents for noisy dynamic
systems@2,12,13#, here we use the following one

l5 lim
T→`

~1/T! (
t50

T21

lnuF8~xt!u, ~2!

whereF8 denotes the slope of the deterministic part of t
one-dimensional noisy map. This definition is formally sam
as the case of the noise-free deterministic one-dimensi
maps, but a sequence$xt% is now an orbit driven by externa
noise. The value calculated from Eq.~2! does not depend on
the initial conditionx0 and a specific realization$j t% of noise

FIG. 2. (T/2)G(T) vs the coarse graining time scaleT for three
different values of the noise intensitys; (T/2)G(T) for large T
gives the diffusion constantD in Eq. ~7!.
9-2
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process if the system is ergodic. In the case of noisy dyna
cal systems, the meaning of the sign ofl in Eq. ~2! is not
always clear as far as considering only the dynamics of e
individual orbit. However, when we consider behavior of
ensembleof identical systems driven by common noise,l in
Eq. ~2! plays a prominent role in synchronization problem
pointed out by Pikovsky@2#. Let us consider the following
pair of one-dimensional maps subjected to the same noi

xt115F~xt!1j t ,

yt115F~yt!1j t . ~3!

It is easily found thatxt5yt[ut is an invariant subspace o
Eqs.~3!. In order to characterize the stability of the synchr
nized statex5y, by linearizing the dynamics with respect
the distancev t5uxt2ytu between two orbits at timet around
v50, we have

v t115uF8~ut!uv t . ~4!

FIG. 3. The diffusion constatntD as a funciton of the noise
intensitys.

FIG. 4. The probability density functionP(l̃;T) of the finite-

time Liapunov exponentl̃ with T5200 for three different values o

the noise intensitys. A negative tail ofP(l̃;T) is observed at the
intermediate noise intensity~ii !.
01621
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Thus, the deviationv t from the synchronized statev50 is
exponentially expanded or contracted asv t5exp(lt)v0.
Thus, the sign ofl in Eq. ~2! determines whether synchro
nization between twonearbyorbits driven by common noise
occurs or not. Here it should be noted that since the sign ol
in Eq. ~2! only gives the local stability of the synchronize
state v50, the negativity of the Liapunov exponent is
necessarycondition for the appearance of synchronization
uncoupled dynamical systems driven by common noise.
also note that the Liapunov exponent for noisy dynami
systems defined in Eq.~2! measures the sensitivity to pertu
bations of the initial condition but not that to the realizatio
of noise process. Paladinet al. proposed a measure whic
quantifies the rate of divergence of two nearby orbits evo
ing under twodifferent noise realizations as the ‘‘complex
ity’’ of noisy dynamical systems and claimed its importan
in physics literature@13#.

Now let us investigate the dependence of the Liapun
exponentl of the noisy logistic map~1! on the noise inten-
sity s. Figures 1 show the Liapunov exponentl as a func-
tion of the noise intensitys. At each noise intensitys, l is
numerically calculated by averaging over a time series w
length 109. One finds from Fig. 1~a! thatl increases mono-
tonically for relatively larges @12#. However, for smalls,
l(s) shows a concave curve which has its minimum va
lmin at sl as shown in Fig. 1~b!. This decrease ofl with the
increase ofs implies that the portion of time spent in th
contracting region$x: uF8(x)u,1% of an orbit increases a
s is increased. In our previous study@9#, we observed that a
coherence measureb which characterizes the temporal reg
larity of orbits of the noisy logistic map~1! shows a resonan
phenomenon against the noise intensitys, which is called
the coherence resonance, in the same range of the nois
tensity as that wherel(s) shows a concave structure in Fig
1~b!.

It would not be sufficient to characterize the whole natu
of the stability of the system only by the average valuel. In
particular, refined measures characterizing thefluctuationof
the local expansion rate of orbits are needed for syste
which exhibit strong non-Gaussian temporal evolution su

FIG. 5. Typical realizations of time series of the local expans
rate of the noisy logistic map with~i! s50, ~ii ! s5531023, and
~iii ! s5231022.
9-3
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FIG. 6. The probability density functions o
the noisy logistic map aroundx50 with ~i! s
50, ~ii ! s5531023, and~iii ! s5231022. In-
set figure is those of the full interval@21,1#
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as intermittent fluctuation. Thethermodynamic formalism
@14# that is based on the large deviation theory@15# in math-
ematics literature is very useful to capture the characteris
of scaling properties exhibited in the local singular structu
of strange attractors or fluctuations of the local expans
rate of chaotic orbits and has been developed in the con
of the theory of deterministic chaotic dynamical syste
@16#. It would be natural to introduce formally the notions
the thermodynamic formalism also for noisy dynamical s
tems. As mentioned above, although the value ofl in Eq. ~2!
does not depend on the choice of an initial condition an
specific realization of noise process, thefinite-timeLiapunov
exponent

l̃T5~1/T! (
t50

T21

lnuF8~xt!u, ~5!

which is a measure of exponential expansion or contrac
rate averaged over finiteT steps, may take various value
depending on them. Let us divide a time series with len
MT into M segments of equal lengthT and denotel̃m(T)
5(1/T)( t50

T21lnuF8(xmT1t)u. Although it is possible to observ
any higher moment of the finite-time Liapunov exponent
would be natural to observe the variance

G~T!5 lim
M→`

~1/M ! (
m50

M21

@ l̃m~T!2l#2, ~6!

as a simple characteristic of the fluctuation of the local
pansion rate of orbits overT steps. By the law of large num
bers, G(T) converges to zero in the limitT→` and it is
naturally expected that the ‘‘diffusion constant’’

D[ lim
T→`

~T/2!G~T! ~7!

exists, which gives an effective asymptotic feature of
fluctuation of the local expansion rate of two nearby orbits
the diffusion process@17#.

Figure 2 shows the dependence of (T/2)G(T) on T of the
noisy logistic map~1! for three different values ofs. Here,
01621
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we have takenM5106 for the numerical calculation of Eq
~6! for eachT. It is clearly found from Fig. 2 that (T/2)G(T)
converges to a constant with the increase ofT, which con-
firms the assumption of the existence of the asymptotic va
D in Eq. ~7!. Furthermore, it is also found that the limitin
value of (T/2)G(T) is maximized at an intermediate nois
intensitys5531023. The dependence of the diffusion con
stantD on the noise intensitys is shown in Fig. 3, whereD
is estimated asD5(1000/2)G(1000) withM5106 for each
noise intensitys. It is clearly found from Fig. 3 that externa
noise with a suitable intensity enhances the fluctuation
local expansion rate of orbits more than that of the noise-f
case and the diffusion constantD is a convex function of the
noise intensitys taking its maximum valueDmax at sD . A
large value ofD suggesting the ‘‘nonuniformity’’@7,8,17# of
the dynamics implies the possibility of emergence of a noi
induced order. It should be noted that the value ofsD is
almost ten times larger than that ofsl in Fig. 1~b!, which
implies that the possible ordering effect caused by the
hancement of fluctuation of the local expansion rate of orb

FIG. 7. The fluctuation spectrac(l̃) of the local expansion rate
of the noisy logistic map for three different values of the no

intensity s. The fluctuation spectrumc(l̃) for l̃<0 plays an es-
sential role in the noise-induced synchronization.
9-4
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NOISE-INDUCED ENHANCEMENT OF FLUCTUATION . . . PHYSICAL REVIEW E69, 016219 ~2004!
is different from that in the case of CR in type-I interm
tency @9#.

Because the diffusion constantD only gives an informa-
tion of the ‘‘small’’ fluctuation around the average valuel, it
would be needed to introduce a measure in order to cha
terize the ‘‘large’’ fluctuation that is a deviation far froml.
The large deviation principle which is an asymptotic theo
in probability theory is concerned with this problem. Th
large deviation property is characterized by

P~ l̃;T!;exp@2Tc~l̃!#, ~8!

whereP(l̃;T) denotes the probability density function of th
finite-time Liapunov exponent defined as

P~ l̃;T![ lim
M→`

~1/M ! (
m50

M21

d„l̃2l̃m~T!…, ~9!

FIG. 8. Typical time series of the distancev t5uxt(1)2xt(2)u
between two orbits of two uncoupled noisy logistic maps~11! with
~a! s51025, ~b! s5531023, and ~c! s5231022. The noise-
induced synchronization is observed in~b!.
01621
c-

and the scaling functionc(l̃) is called thefluctuation spec-

trum @16#. Note thatc(l̃) is a concave function taking its
minimum value zero atl̃5l and can be approximated by
quadratic function aroundl as

c~l̃!5~1/2D !~ l̃2l!2, ~10!

if the central limit theorem holds.
The distribution functionP(l̃;T) of Eq. ~1! for T5200

and several different values ofs are shown in Fig. 4. For
eachs, M5108 values ofl̃T with T5200 are taken for the
histogram approximation ofP(l̃;T) with 103 bins of l̃
P@20.4,0.6#. T5200 is large enough such that the avera
value l is located at the peak ofP(l̃;T) and we can see
from Fig. 4 that the location of the peak shifts right mon
tonically ass is increased as shown in Fig. 1~a!. A pro-
nounced tail of the probability distribution taking negativ
values of l̃ appears at an intermediate noise intensitys
5531023. This negative tail means that the difference b
tween two nearby orbits decreases by a factor ofe200l̃,1 in
200 successive iterations. Let us mention briefly why
fluctuations of local expansion rate of orbits in type-I inte
mittency can be enhanced by a certain amount of exte
noise. Figure 5 shows typical realizations of time series
the local expansion rate lnuF8(x3t)F8(x3t11)F8(x3t12)u of an or-
bit which starts withx050.001 that is located near the pos
tion of the maximum of the logistic mapx50, where
lnuF8(0)u52`, for three different noise intensities. Note th
in order to see the dynamics around the channel clea
lnuF8(x3t)F8(x3t11)F8(x3t12)u is considered instead of lnuF8(xt)u
for the present channel of period three. When the dynam
of the logistic map exhibits type-I intermittency, one of th
channels of the map corresponding to the laminar mot
starts around the maximum of the map, so if noise is abs
or small enough, the orbit starting with an initial conditio
nearx50 spends long time at the channel and therefore
value of the finite-time Liapunov exponentl̃ that is averaged
over this time interval becomes negative as shown by
curves~i! and ~ii ! in Fig. 5. Figure 6 shows the stationar
probability densityP(x) for three different noise intensities
When noise is absent, a typical orbit is seldom to visi
neighborhood ofx50 as shown by the curve~i! in Fig. 6, so
the probability thatl̃ takes a negative value is very small.
noise is introduced, the dynamics of orbits which pass n
the singular pointx50 changes depending on its intensitie
In the case where the noise intensity is sufficiently small,
influence of noise can be neglected and the result is sim
to the noiseless case. On the other hand, in the case of
ficiently large noise intensity, although the probability de
sity P(x) spreads and the probability takes values arounx
50 becomes large in comparison with the noiseless case
large noise destroys the coherence of laminar motion
shown by the curve~iii ! in Fig. 5, which implies that the
orbit does not have negative finite-time Liapunov expone
However, for the intermediate intensity of noise, the pro
ability densityP(x) is modified to have a large value aroun
x50 by the introduction of noise, and the laminar motion
9-5



h
ity
e
th
in

d
n

y

a

an

sin

un
be

o

os
h
ve

s
oise
e-
e

tep
e-

on
e
-

is
ion

is-
r
the

ni-

at

a-
f
u-

al

al

ys
ced
act
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still undestroyed. Thus the orbits starting aroundx50 that
have negative finite-time Liapunov exponents appear wit
certain amount of probability. In summary, the probabil
taking negative values ofl̃ increases for an intermediat
noise intensity and therefore the nonmonotonic change of
fluctuation of the local expansion rate against the noise
tensity can be observed as shown in Fig. 4.

The fluctuation spectrumc(l̃) represents more detaile
information on the asymptotic fluctuation of the local expa
sion rate of orbits thanD. Figure 7 shows the numericall
obtained fluctuation spectrac(l̃) corresponding toP(l̃;T)
in Fig. 4 for three different values ofs. Here, eachc(l̃) in
Fig. 7 is obtained fromP(l̃;T) with T5500 andM5108 as
c(l̃)52(1/T)ln@P(l̃;T)/Pmax#, where Pmax5maxl̃ P(l̃;T).
In the case of a small noise intensitys51025 @Fig. 7~i!#, one
finds that although the curvec(l̃) can be approximated by
quadratic function~10! aroundl, there exists a linearlike
slope on the right-hand side ofc(l̃), which quantitatively
characterize the transition between the laminar motions
the turbulent bursts of type-I intermittency@18#. On the other
hand, in the cases ofs5531023 and 231022 @Fig. 7~ii !
and 7~iii !#, noise intensities are large enough so that the
gularity as shown in Fig. 7~i! is not observed inc(l̃). How-
ever, at an intermediate noise intensitys5531023, c(l̃)
spreads towards the negative values ofl̃, which yields non-
trivial noise-induced ordering effects in an ensemble of
coupled identical type-I intermittent elements as it will
discussed in the following section.

III. NOISE-INDUCED SPURIOUS SYNCHRONIZATION
IN UNCOUPLED LOGISTIC MAPS AND ITS

STATISTICAL PROPERTIES

In this section, we consider the following pair of tw
uncoupled identical logistic maps~1! driven by common ran-
dom forcing

xt11~ j !512mxt
2~ j !1sj t , j 51,2. ~11!

Here, we takem5mc21024 so that each orbit of Eqs.~11!
exhibits type-I intermittency. In the noise-free case, alm
all pairs of two orbits of Eqs.~11! never synchronize eac
other because of the positive Liapunov exponent. Howe
01621
a

e
-

-

d
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-

t
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there is a possibility that the sensitivity on initial condition
of chaotic systems is suppressed by an introduction of n
and this suppression may yield nontrivial correlation b
tween two orbits with different initial conditions. Thus, w
begin by observing temporal evolution of the distancev t

5uxt(1)2xt(2)u between two orbits of Eqs.~11! and its de-
pendence on the noise intensitys. Figures 8 show typical
realizations ofv t of Eqs.~11! for three different values ofs.
Here, v t is plotted for every 100th step oft. One can find
from Figs. 8 that the variablev t continues to fluctuate with
time for both small and large values ofs @Figs. 8~a! and
8~c!#, while, for an intermediate noise intensity@Fig. 8~b!#,
the variablev t suddenly collapses to zero after a certain s
of time indicating the noise-induced synchronization b
tween two orbits of Eqs.~11!. The detailed plot ofv t for s
5531023 around the onset time of the synchronizati
@ t/100;130 in Fig. 8~b!# is shown in Figs. 9. One can se
from Fig. 9~a! that the variablev t takes small values inter
mittently and finally approaches to zero.

Since the Liapunov exponent of the noisy logistic map
always positive as shown in Fig. 1, the synchronizat
which we observed in Fig. 8~b! and Figs. 9 is an outcome
due to the finite precision in numerical calculations as d
cussed in Refs.@4–6#. Since all numerical calculations in ou
present study are carried out with double precision, if
differencev becomes less than the accuracy 10216 at a cer-
tain time t5t* , then we havev t[0 for all t.t* and this
may yield a misleading conclusion that complete synchro
zation is achieved. The dynamics of the variable lnvt shows
an anomalous diffusive motion with an absorbing wall
ln10216;236.84 as shown in Fig. 9~b!.

In the literature of noise-induced synchronization, the p
per by Maritan and Banavar~MB! @3# has aroused a lot o
controversy. They studied the logistic map under the infl
ence of noise:xt1154xt(12xt)1j t , where j t denotes a
random number uniformly distributed in an interv
@2W,W#. They claimed that if the value ofW is large
enough, then two orbits which started with different initi
conditions driven by a common random sequence$j t% even-
tually converge to the same orbit@3#. However, this claim
was heavily criticized by Pikovsky@4#, and he pointed out
that the Liapinov exponent of the model of MB is alwa
positive and thus led a conclusion that the noise-indu
synchronization that MB discovered was a numerical artif
FIG. 9. A detailed plot of Fig. 8~b! around the onset of the noise-induced synchronization.~b! shows lnvt instead ofv t in ~a!.
9-6
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NOISE-INDUCED ENHANCEMENT OF FLUCTUATION . . . PHYSICAL REVIEW E69, 016219 ~2004!
due to lack of precision of calculations. Following Pi
ovsky’s suggestion, Longaet al. @5# performed a systemati
analysis and obtained quantitative features of relaxation t
until which two orbits become numerically identical, co
firming the suggestion of Pikovsky. In Ref.@3#, a random
numberj t at time t is adjusted such that the variablext is
confined within a unit interval@0,1#, and the resulting se
quence$j t% becomes state dependent and effectively bia
noise which does not have zero mean. Herzel and Freund@6#
showed that the introduction of biased noise with nonz
mean gives a possibility that the finite-time Liapunov exp
nent which is averaged over a time series with finite len
can become negative, which leads to spurious synchron
tion. Although we also investigate the noisy logistic map
the present paper, there are several points of difference f
the study of MB: First, we take the parameter value of
logistic map near a periodic window such that the dynam
exhibits type-I intermittency, whereas MB take the parame
value at which the dynamics exhibits the fully develop
chaos in the noise-free case. Second, in the study of
random numbers used as external noise are state depe
whereas in the case of our present study state indepen
random numbers are used, and noise-induced synchro
tion in the model of MB is achieved with the considerab
large noise intensity compared with our model. Third, t
noise-induced enhancement of fluctuation of the local exp
sion rate plays an essential role in the occurrence of sync
nization in our model.

In order to detect how the degree of synchronization
Eqs. ~11! depends on the noise intensity, we evaluate
synchronization ratior5N/M for a long time intervalTmax
of observation, whereN is the number of pairs of initia
conditions of Eqs.~11! with which the numerical synchro
nized state is reached withinTmax iterations andM is the total
number of trials of numerical simulations. We takeM5103

andTmax5106 and, in order to control the precision level o
numerical synchronization explicitly, we provide a thresho
D5102L and the onset timet* of the synchronization is
determined such that the distancev t between two orbits gets
smaller thanD for the first time att* . That is, the timet* is
regarded as thefirst passage timeneeded for the diffusive
motion of the variable lnvt to pass through lnD52L ln10.
Figure 10 shows the ratior as a function of the noise inten
sity s for three different threshold values. The spurious s
chronization with positivel is observed in the regions
51023;1022, which is nearly same as that where the flu
tuation of the local expansion rate is amplified~Fig. 3!.

Furthermore, we evaluate the average relaxation timt
needed for the spurious synchronization to occur and inv
tigate how this relaxation time depends on the noise inten
s and the numerical precision levelL. Figure 11 shows the
average relaxation timet of Eqs. ~11! as a function of the
numerical precision levelL for three different values ofs.
For each levelL, the value oft is numerically determined by
averaging over the first passage timet* of 104 randomly
chosen pairs of initial conditions of Eqs.~11!. It is found
from Fig. 11 that the average relaxation timet increases
exponentially with the increase of the levelL as
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t;exp~aL !, ~12!

where the exponenta can be considered to be a promine
characteristic of the noise-induced spurious synchroniza
of Eqs.~11!. One can also see from Fig. 11 that the value
a depends ons. For an intermediate noise intensitys
5531023 @Fig. 11~ii !#, the exponent is smaller than that fo
both large and small noise intensities~Figs. 11~i! and 11~iii !!,
which implies that there is a certain suitable range ofs
where the noise-induced synchronization is apt to occur.
exponenta estimated by a linear least square fitting in F
11 for each value ofs is shown in Fig. 12. The functiona of
s, as shown in Fig. 12, clearly plots a concave curve tak
its minimum ats;531023.

Now, let us investigate the noise-induced synchronizat
in Eqs.~11! in connection with the fluctuation property of th
local expansion rate of orbits of Eq.~1!. The occurrence of
the noise-induced synchronization in Eqs.~11! has its origin
in the increase of the probability that the finite-time L

FIG. 10. Synchronization ratior as a function of the noise
intensity s for three different values of the numerical precisio
level L.

FIG. 11. Average relaxation timet for the onset of the noise
induced synchronization as a function of the numerical precis
level L for three different values of the noise intensitys.
9-7
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apunov exponentl̃ takes negative values with a certa
range of noise intensity as shown in Fig. 4, and this f
enables us to conclude that the characteristic exponenta in
Eq. ~12! can be quantitatively expressed by the fluctuat
spectrumc(l̃) as follows@19#. Let us assume that the initia
value v05ux0(1)2x0(2)u is sufficiently small but larger
than the thresholdD andv t satisfies

v t,av0 , 1<t<t* , ~13!

with a constanta of order one. Then,v t is approximated by
the linearization

v t5expS (
n50

t21

lnuF8~un!u D v05etl̃v0 ~14!

for 1<t<t* , whereun5@xn(1)1xn(2)#/2. Let Pt
*

be the
probability of appearance of such a path satisfying

v t
*
,D and v t

*
21 ,v t

*
22 , . . . ,v1.D. ~15!

If D is sufficiently small andt* is sufficiently large, then the
probability that the conditionv t

*
21 ,v t

*
21 , . . . ,v1,av0 is

not satisfied under the condition thatv t
*
,D is considered to

not exponentially depend ont* . Thus,Pt
*

is approximated
as

Pt
*
;Prob$v t

*
,D%5Prob$l̃,t

*
21ln~D/v0!%

5E
lmin

t
*
21ln(D/v0)

P~ l̃;t* !dl̃, ~16!

where lmin denotes the minimum value ofl̃ and t*
.lmin

21 ln(D/v0) is assumed, otherwisePt
*
50. Sincec(l̃) is

a concave function with a minimum atl.0, under the con-
dition thatD/v0 is sufficiently small andt* is large enough,
the integral in Eq.~16! is evaluated as

FIG. 12. Characteristic exponenta in Eq. ~12! of the noise-
induced synchronization as a function of the noise intensitys.
01621
t

n

E
lmin

t
*
21ln(D/v0)

P~ l̃;t* !dl̃;exp@2c„t
*
21ln~D/v0!…t* #.

~17!

That is,

Pt
*
;exp@2c„t

*
21ln~D/v0!…t* #. ~18!

As a function of t* , for small D/v0 , Pt
*

takes a sharp

maximum at a valuet̃ of t* , where

c„t
*
21ln~D/v0!…t* ~19!

achieves its minimum. For an ensemble of orbits with fix
v0, a Pt̃;( t

*
`Pt

*
portion of orbits satisfyingv t,av0 ex-

periencev t,D for the first time att. t̃ , while most of the
rest portion of orbits experiencev t.av0 at some timet

, t̃ . For the latter portion of the ensemble of orbits, by t
nonlinearity of the dynamics,v t gets as small asv0 again
after some steps of time, wherev0 is a characteristic scale o
the system under which the nonlinearity of the system can
neglected. Thus, the average relaxation timet is estimated as

t;(
k51

`

k t̃~Pt̃ !
k; t̃ /Pt̃

;exp@ min
t
*

. ln(D/v0)/lmin

c„t
*
21ln~D/v0!…t* #

5exp@2 log~D/v0! min
lmin,l̃,0

c~l̃!/ul̃u#

;D2n, ~20!

where

n5 min
lmin,l̃,0

c~l̃!

ul̃u
. ~21!

Therefore, we obtain the following relation betweenn anda
as

n5
a

ln 10
. ~22!

The dependence of the exponentn on the noise intensity
s is shown in Fig. 13. Here, for eachs, the value ofn is
estimated by evaluating the fluctuation spectrumc(l̃) from
the histogram approximation ofP(l̃;T) with T5100 ~plus!
andT5200 ~cross!. In Fig. 13,a/ ln 10 as a function ofs is
also plotted. One can find from Fig. 13 that there is a qu
good agreement betweenn(s) estimated withT5100 and
a(s) in the right-hand side of their minimum values locat
at s;0.005, whereas the deviation between two curves
n(s) and a(s) is considerably large fors,0.005. As
shown in Fig. 7, the fluctuation spectrumc(l̃) forms a non-
Gaussian one and a large coarse graining time scaleT is
needed for a good approximation ofc(l̃) by
9-8
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(21/T)ln@P(l̃;T)/Pmax# in Eq. ~8!. Thus, the coarse grainin
time scalesT5100 and 200 are not large enough and the f
that the curven(s) estimated withT5200 is a better esti-
mate of a(s) than that withT5100 for s,0.005 can be
explained by the difference of the degree of convergenc
(21/T)ln@P(l̃;T)/Pmax# to c(l̃). On the contrary, the shap
of c(l̃) approaches to a quadratic function with the incre
of s as shown in Fig. 7 and the convergence o
(21/T)ln@P(l̃;T)/Pmax# to c(l̃) becomes fast. However, a
also shown in Fig. 7, the fluctuation spectrumc(l̃) shifts
right ass increases and the location ofl̃ which gives the
minimum value ofc(l̃)/ul̃u for l̃,0 is far deviated from
the average valuel. For a large coarse graining time scaleT,
the realization ofl̃(T) with a value largely deviated from th
average valuel becomes a very rare event and in numeri
calculations a lot of trials are needed in order to estimate
value of c„l̃(T)…. So, the results ofn(s) obtained withT
5200 is worse than that obtained withT5100 for larges,
which explains the difference betweenn(s) obtained with
T5200 anda(s) for s.0.005 in Fig. 7.

FIG. 13. Characteristic exponentn in Eq. ~21! as a funciton of
the noise intensitys. Each point ofn is estimated by evaluating th

fluctuation spectrumc(l̃) from the probability density function

P(l̃;T) with T5100(1) andT5200(3). The curvea/ ln 10 vss
is also shown.
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IV. SUMMARY AND CONCLUDING REMARKS

In summary, we have numerically demonstrated that i
chaotic system which exhibits type-I intermittency, extern
noise with an appropriate intensity can affect the fluctuat
of the local expansion rate of orbits significantly. Enhanc
ment of the fluctuation has been confirmed as the chang
asymptotic quantities such as the diffusion constantD and
more generally by the fluctuation spectrumc(l̃). A negative
tail of the probability distribution of the finite-time Liapuno
exponent is generated as a result of this enhancement o
fluctuation, which yields considerable correlation and t
spurious synchronization between two orbits of a pair of u
coupled type-I intermittent chaotic systems. Although the
sue of the effect of external noise on chaotic systems wh
exhibit type-I intermittency has been investigated by seve
researchers in the past decades@20#, to our knowledge, our
findings in the present paper have not been reported yet

In Ref. @9#, we observed that the phenomenon of CR c
naturally appear in type-I intermittency. The region of t
noise intensity where the spurious synchronization occur
separated from that where CR occurs, thus we have c
cluded that our findings in this paper are practically differe
kinds of noise-induced ordering effects in type-I interm
tency. Moreover, we have introduced an exponenta which is
associated with the average relaxation time of the spuri
synchronization and investigated its dependence on the n
intensity. We have also discussed the relation between
exponenta and the fluctuation spectrumc(l̃) and con-
firmed its validity by a numerical simulation.

The nontrivial effect of noise as mentioned above is d
to the fact that the location of the singular point such as
maximum of the map is close to one of the channels t
appear slightly before the saddle-node bifurcation. Suc
structure is observed ubiquitously in dynamical systems
exhibit type-I intermittency, so it is naturally expected th
our finding in the present study is universally observed
other dynamical systems that exhibit type-I intermittency.
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