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We study the dynamics of a pair of twecoupledidentical type-I intermittent chaotic systems driven by
commorrandom forcing. We first observe that the degree of the fluctuation of the local expansion rate of orbits
to perturbations of a single system as a function of the noise intensity shows a convex curve and takes its
maximum value at a certain noise intensity, whereas the Liapunov exponent itself monotonically increases in
this range. Furthermore, it is numerically demonstrated that this nontrivial enhancement of fluctuation causes
that two orbits with different initial conditions may synchronize each other after a finite interval of time. As
pointed out by PikovskyPhys. Lett. A165 33(1992], since the Liapunov exponent of the present system is
positive, the synchronization that we observed is a numerical artifact due to the finite precision of calculations.
The spurious noise-induced synchronization in an ensemble of uncoupled type-I intermittent chaotic systems
are numerically characterized and the relations between these features and the fluctuation properties of the local
expansion rate are also discussed.
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I. INTRODUCTION ferent initial conditions will eventually synchronize each

other[2]. The dependence of the largest Liapunov exponent

It is well known that the sensitivity to the perturbations of on external noise in chaotic dynamical systems was first re-

the initial condition is one of the most generic features ofported by Matsumoto and Tsuda on a discrete one-

chaotic dynamical systems. In chaotic dynamical systemglimensional dynamical system which is associated with the
two orbits with slightly different initial conditions in the state Belousov-Zhabotinsky chemical reacti¢ihe BZ map [7].

space separate exponentially with time and become uncorrdney studied the effects of noise on the BZ map and ob-

lated with each other. So, uncoupled identical chaotic sysS€rved that with a small amount of noise a chaotic orbit

tems never synchronize each other unless each system has&@lnges into a periodic one smeared with noise, which is

identical initial condition. Of course, in the presence of cou-indicated by the negativity of the largest Liapunov exponent.

plings among elements, the synchronization of elements ca-ﬁhl'lS gr“dnerilng i?]f(fject %f n:’O'IS?KKI‘Ig;a[C;t]ICsdi)r/]nan:rzcalBsZysntqems is
arise under some suitable conditions and the issues of sy alled ‘noise-inaucea orde - >ince the ap,
which is a one-dimensional map, consists of very steep and

chror_nzatlon in coupled chaotic systems have been attractln%t regions and has a strong nonuniformity and the weakness
considerable attention of many researgher§: However, sever, external perturbations in the dynamics, Matsumoto and
researchers recently reportqd co_untenntmt_lve examples_th%uda claimed that NIO is attributed to this strong nonuni-
an ensemble of uncoupled identical chaotic systems d”Veﬂ)rmity of the BZ map, and thus NIO is not observed in the
by common external noise can also synchronize each othgggistic map which has weak nonuniformitg]. However, if
that is, the distance between orbits of systems driven by thghe parameter of the logistic map is located near a periodic
same noise collapse to a single noisy orbit with time evoluyindow which exists densely everywhere in the parameter
tion [1-6]. This noise-induced synchronization phenomenorspace, then there is a possibility that some kind of ordering
is an illustrative example that the interplay between internakffects caused by noise appear even in the case of the logistic
nonlinear deterministic evolution law and external randommap. In our previous pap¢®], we investigated the effect of
fluctuation can introduce more “order” in the dynamics. noise on the logistic map and the &ter oscillator near a
The Liapunov exponents which quantitatively character-periodic window exhibiting type-1 intermittency and numeri-
ize the sensitive dependence on the initial condition in thesally observed that the degree of temporal regularity of the
deterministic case may also be suitably defined, and its sigtime series increases with the increase of the noise intensity
gives a criterion whether the synchronization in an ensembland attains its maximum at a certain noise intensity. Such
of uncoupled identical systems driven by common noise apresonant phenomenon is called “coherence resona(cey
pears or noff2]. If the largest Liapunov exponent of the [10]. It was also shown in Ref9] that the Liapunov expo-
single system is negative, then two orbits with slightly dif- nent as a function of noise intensity shows a concave curve
and takes a minimum value at the same noise intensity which
generates the maximal temporal regularity of the time series.
*Present address: Local Spatio-Temporal Function Laboratoryn this sense, CR in type-l intermittency reported by us is
Frontier Research System, RIKEN, 2-1 Hirosawa, Wako, Saitamalso a kind of NIO.
351-0198, Japan. Email address: suetani@riken.jp The aim of the present paper is to characterize the effects
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of external noise on chaotic dynamical systems which exwhere x is the bifurcation parameteg; is an independent
hibit type-I intermittent chaos from the view point of syn- random variable uniformly distributed over an interval
chronization. In particular, we focus on the dependence of—0.5,0.5, and o is the noise intensity. Throughout this
both the average value and the degree of fluctuation of thpaper, all numerical calculations were carried out in double
local expansion rate, and consider how the correlation beprecision. In the case of the noise-free logistic map (
tween orbits of a pair of uncoupled identical type-I intermit- =0), the largest periodic window of period three appears at
tent chaotic systems driven by common random forcing deu,=1.75 by a saddle-node bifurcation. At a value jof
pends on the noise. We numerically demonstrate that thglightly below u., the time series of the logistic map con-
degree of the fluctuation of the local expansion rate of orbitssists of almost period three cycles intermittently interrupted
as a function of the noise intensity shows a convex curve andy short term irregular bursts, i.e., type-I intermitterid]
takes its maximum at a noise intensity which is differentis observed. In the following, we tal@zﬂc—ﬂzlo*“.

from that where the average value of the local expansion First, we introduce the Liapunov exponent which mea-
rate, i.e., the Liapunov exponent, achieves the minimumsures theaveragelocal expansion rate of orbits for general
Moreover, we show that the noise-induced synchronizatiomne-dimensional noisy maps. Although there are various
also occurs in the range of the noise intensity that coincidedefinitions of the Liapunov exponents for noisy dynamical
with that where an anomalous enhancement of the fluctuasystemg2,12,13, here we use the following one

tion of the local expansion rate is observed. According to

Pikovsky’s criterion[2], since the Liapunov exponent is T-1
positive, this noise-induced synchronization isspurious A= 1lim (1) X, In[F’(x,)], (2
one due to a numerical round off in the calculations of orbits. T—oe t=0

The present paper is organized as follows. In Sec. I, we
introduce the logistic map driven by random noise and charwhereF’ denotes the slope of the deterministic part of the
acteristics of the stability of the system to perturbation tha©one-dimensional noisy map. This definition is formally same
p|ay important roles in noise-induced Synchronization_ Inas the case of the noise-free deterministic one-dimensional
Sec. Ill, we observe the time evolution of the distance bemaps, but a sequen¢g,} is now an orbit driven by external
tween two orbits started with different initial conditions and noise. The value calculated from E®) does not depend on
driven by common random forcing, and observe that the synthe initial conditionx, and a specific realizatiof¥;} of noise
chronization of orbits appears for a certain range of the noise
intensity. It is also numerically demonstrated that the average 1.6 - ' ' ' '

relaxation time needed for the achievement of synchroniza- R NIRRT AN
tion grows exponentially with the numerical precision level, 1471 xxx****"** 105 1
which implies the observed synchronization is spurious. 12 L ,/‘X 5;5)(10_3 ,,,,, N ]
Moreover, we investigate how the relaxation process de- ) Vs 0 =2x 1072 oxe

pends on the noise intensity and discuss its relation with the&s
fluctuation of the local expansion rate. A summary and con-Z
cluding remarks are given in Sec. IV. &

Il. ENHANCEMENT OF FLUCTUATIONS OF THE LOCAL
EXPANSION RATE FOR THE SINGLE NOISY
LOGISTIC MAP 0.2 . . . : .
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As an appropriate illustration, let us consider the follow-
ing logistic map subjected to additive noise

FIG. 2. (T/2)I'(T) vs the coarse graining time scdldor three
5 different values of the noise intensity; (T/2)['(T) for large T
Xtr1=1—puxg+oé, 1 gives the diffusion constari? in Eq. (7).
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FIG. 3. The diffusion constatnb as a funciton of the noise FIG. 5. Typical realizations of time series of the local expansion
intensity o. rate of the noisy logistic map witti) o=0, (i) e=5x10"3, and
(i) o=2%10"2,

process if the system is ergodic. In the case of noisy dynami-
cal systems, the meaning of the signhoin Eg. (2) is not
always clear as far as considering only the dynamics of ea
individual orbit. However, when we consider behavior of an
ensemblef identical systems driven by common noigein

Thus, the deviation, from the synchronized state=0 is
xponentially expanded or contracted as=exp@At)vg.
hus, the sign ok in Eq. (2) determines whether synchro-
nization between twoearbyorbits driven by common noise

Eq. (2) plays a prominent role in synchronization problem qoceurs or not. Here it should be noted that since the sign of
g.(c)playsap Y P in Eqg. (2) only gives the local stability of the synchronized

pointed out by Pikovsky2]. Let us consider the following statey=0, the negativity of the Liapunov exponent is a

pair of one-dimensional maps subjected to the same nOIse:necessarycondition for the appearance of synchronization in

uncoupled dynamical systems driven by common noise. We
also note that the Liapunov exponent for noisy dynamical
Vi =F(y)+&. 3) Eys_tems define_d_ i_n E¢2) measures the sensitivity to pertur-
ations of the initial condition but not that to the realization
It is easily found thak,=y,=u, is an invariant subspace of Of noise process. Paladet al. proposed a measure which
Egs.(3). In order to characterize the stability of the synchro-guantifies the rate of divergence of two nearby orbits evolv-
nized statex=y, by linearizing the dynamics with respect to iNg under twodifferentnoise realizations as the “complex-
the distance, = |x,— Y| between two orbits at timearound  ity” of noisy dynamical systems and claimed its importance
v=0, we have in physics literaturg13].
Now let us investigate the dependence of the Liapunov
vie1=|F'(up]ovy. (4)  exponent\ of the noisy logistic magl) on the noise inten-
sity o. Figures 1 show the Liapunov exponentas a func-

7 . - - - tion of the noise intensityr. At each noise intensity, \ is
numerically calculated by averaging over a time series with
) i B length 16. One finds from Fig. 1a) that\ increases mono-
sl (53 g;;ox 10-% ® | tonically for relatively larges [12]. However, for smallo,

(iii)o = 2 x 1072 i N(o) shows a concave curve which has its minimum value
at { ] Amin @t oy, as shown in Fig. (). This decrease of with the
increase ofo implies that the portion of time spent in the
3t 1 contracting regior{x: |F’(x)|<1} of an orbit increases as
! o is increased. In our previous stufl§], we observed that a
27 1 coherence measuggwhich characterizes the temporal regu-
.l (i i larity of orbits of the noisy logistic mafil) shows a resonant
\ phenomenon against the noise intensity which is called
0 N e LN . the coherence resonance, in the same range of the noise in-
-0.4 -0.2 0 0.2 0.4 0.6 tensity as that wherg(o) shows a concave structure in Fig.
h) 1(b).
- It would not be sufficient to characterize the whole nature
FIG. 4. The probability density functioR(X;T) of the finite-  of the stability of the system only by the average valuén
time Liapunov exponerX with T= 200 for three different values of ~particular, refined measures characterizing fthetuation of
the noise intensityr. A negative tail ofP(X;T) is observed at the the local expansion rate of orbits are needed for systems
intermediate noise intensiti). which exhibit strong non-Gaussian temporal evolution such

Xey1=F (X)) + &,

6| 7 (i) ]

016219-3



SUETANI, HORITA, AND MIZUTANI PHYSICAL REVIEW E 69, 016219 (2004

100

T T T
100 1 " +
?il; 0”}05 198 () o=0
7= (i) o =5 x 1073
(ili)o = 2 x 102

10 ¢

o1

om
1 08 06 04 02 0 02 04 06 08 1

FIG. 6. The probability density functions of
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as intermittent fluctuation. Théhermodynamic formalism we have takeM = 10° for the numerical calculation of Eq.
[14] that is based on the large deviation thefit§] in math-  (6) for eachT. It is clearly found from Fig. 2 thatT/2)I'(T)
ematics literature is very useful to capture the characteristicsonverges to a constant with the increaselpfvhich con-

of scaling properties exhibited in the local singular structuresirms the assumption of the existence of the asymptotic value
of strange attractors or fluctuations of the local expansioD in Eqg. (7). Furthermore, it is also found that the limiting
rate of chaotic orbits and has been developed in the contexilue of (T/2)I'(T) is maximized at an intermediate noise
of the theory of deterministic chaotic dynamical systemsintensityo=5x 10" 3. The dependence of the diffusion con-
[16]. It would be natural to introduce formally the notions of stantD on the noise intensity- is shown in Fig. 3, wher®

the thermodynamic formalism also for noisy dynamical sys+s estimated a® = (1000/2)"(1000) with M =10° for each
tems. As mentioned above, although the valug @f Eq.(2)  noise intensity. It is clearly found from Fig. 3 that external
does not depend on the choice of an initial condition and &oise with a suitable intensity enhances the fluctuation of
specific realization of noise process, firgte-timeLiapunov  |ocal expansion rate of orbits more than that of the noise-free
exponent case and the diffusion constébtis a convex function of the
noise intensityo taking its maximum valu® ., at op. A
large value oD suggesting the “nonuniformity{7,8,17 of

the dynamics implies the possibility of emergence of a noise-
induced order. It should be noted that the valueogf is
which is a measure of exponential expansion or contractiomlmost ten times larger than that of, in Fig. 1(b), which

rate averaged over finit€ steps, may take various values implies that the possible ordering effect caused by the en-
depending on them. Let us divide a time series with lengtthancement of fluctuation of the local expansion rate of orbits

MT into M segments of equal lengffi and denotex ,(T)

T-1

XT=<1N>§O In[F’ (x))], (5)

= (UT)2{ZIn|F’ (Xyr+0)|- Although it is possible to observe 0.03 : —
any higher moment of the finite-time Liapunov exponent, it §
would be natural to observe the variance
M-1 K
I(T)= lim (IM) X, [Xn(T) =\ (6) 02
M — o0 m=0 \\
23 R
as a simple characteristic of the fluctuation of the local ex- =
pansion rate of orbits ovér steps. By the law of large num- 0.01
bers,I'(T) converges to zero in the limif—o and it is
naturally expected that the “diffusion constant” (i) 0 =107
(11) g=5x 10:;3
D= lim (T/2)I'(T) (7) o Lo =2 x 10
Too 0.4 0.2 0.4 0.6

exists, which gives an effective asymptotic feature of the

fluctuation of the local expansion rate of two nearby orbits as FIG. 7. The fluctuation spectrg(X) of the local expansion rate

the diffusion procesgl7]. of the noisy logistic map for three different values of the noise
Figure 2 shows the dependence ®fZ)I'(T) on T of the  intensity o. The fluctuation spectruny(x) for x<0 plays an es-

noisy logistic map(1) for three different values of. Here,  sential role in the noise-induced synchronization.
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FIG. 8. Typical time series of the distanog=|x;(1)—x,(2)|
between two orbits of two uncoupled noisy logistic m#&p¥) with
(@ =103, (b) o=5%10"2, and(c) 0=2x10"2. The noise-
induced synchronization is observed(h).

is different from that in the case of CR in type-| intermit-
tency[9].

Because the diffusion constabtonly gives an informa-
tion of the “small” fluctuation around the average valugit

PHYSICAL REVIEW B9, 016219 (2004

and the scaling functiog/(X) is called thefluctuation spec-
trum [16]. Note thaty(X) is a concave function taking its

minimum value zero ak =\ and can be approximated by a
quadratic function aroundl as

J(N)=(12D)(N—\)?, (10)

if the central limit theorem holds.

The distribution functionP(X;T) of Eq. (1) for T=200
and several different values of are shown in Fig. 4. For

eacho, M =10° values of\ with T=200 are taken for the

histogram approximation oP(X;T) with 10° bins of X
e[—0.4,0.4. T=200 is large enough such that the average

value \ is located at the peak d?(X;T) and we can see
from Fig. 4 that the location of the peak shifts right mono-
tonically aso is increased as shown in Fig(al A pro-
nounced tail of the probability distribution taking negative

values of X appears at an intermediate noise intensity
=5x10"3, This negative tail means that the difference be-

tween two nearby orbits decreases by a factae®8® <1 in

200 successive iterations. Let us mention briefly why the
fluctuations of local expansion rate of orbits in type-I inter-
mittency can be enhanced by a certain amount of external
noise. Figure 5 shows typical realizations of time series of
the local expansion rate|F (Xz)F' (X 1)F' (X34 2)| of an or-

bit which starts withxy=0.001 that is located near the posi-
tion of the maximum of the logistic max=0, where
In|F’(0)|=—¢°, for three different noise intensities. Note that
in order to see the dynamics around the channel clearly,
IN|F’ (Xa)F' (Xat+1)F' (Xat4 2)| is considered instead of | (x))]

for the present channel of period three. When the dynamics
of the logistic map exhibits type-I intermittency, one of the
channels of the map corresponding to the laminar motion
starts around the maximum of the map, so if noise is absent
or small enough, the orbit starting with an initial condition
nearx=0 spends long time at the channel and therefore the

value of the finite-time Liapunov exponextthat is averaged
over this time interval becomes negative as shown by the
curves(i) and (ii) in Fig. 5. Figure 6 shows the stationary
probability densityP(x) for three different noise intensities.
When noise is absent, a typical orbit is seldom to visit a
neighborhood ok=0 as shown by the curvg) in Fig. 6, so

the probability thak takes a negative value is very small. If

would be needed to introduce a measure in order to charagwise is introduced, the dynamics of orbits which pass near

terize the “large” fluctuation that is a deviation far from

the singular poink=0 changes depending on its intensities.

The large deviation principle which is an asymptotic theoryin the case where the noise intensity is sufficiently small, the
in probability theory is concerned with this problem. The influence of noise can be neglected and the result is similar

large deviation property is characterized by
POGT)~exd —Ty(V)], ®)
whereP(X;T) denotes the probability density function of the

finite-time Liapunov exponent defined as

M-1
P(X;T)= lim (1/M) Z_O SN—=Xm(T)), 9)

M — o

to the noiseless case. On the other hand, in the case of suf-
ficiently large noise intensity, although the probability den-
sity P(x) spreads and the probability takes values aroxind
=0 becomes large in comparison with the noiseless case, the
large noise destroys the coherence of laminar motion as
shown by the curvdiii) in Fig. 5, which implies that the
orbit does not have negative finite-time Liapunov exponent.
However, for the intermediate intensity of noise, the prob-
ability densityP(x) is modified to have a large value around
x=0 by the introduction of noise, and the laminar motion is
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still undestroyed. Thus the orbits starting around0 that there is a possibility that the sensitivity on initial conditions
have negative finite-time Liapunov exponents appear with @f chaotic systems is suppressed by an introduction of noise
certain amount of probability. In summary, the probability and this suppression may yield nontrivial correlation be-
taking negative values of increases for an intermediate tween two orbits with different initial conditions. Thus, we
noise intensity and therefore the nonmonotonic change of theegin by observing temporal evolution of the distange
fluctuation of the local expansion rate against the noise in=|x,(1)—x;(2)| between two orbits of Eq$11) and its de-
tensity can be observed as shown in Fig. 4. pendence on the noise intensity Figures 8 show typical
The fluctuation spectrung(\) represents more detailed realizations ob, of Egs.(11) for three different values of.
information on the asymptotic fluctuation of the local expan-Here, v, is plotted for every 100th step df One can find
sion rate of orbits thaD. Figure 7 shows the numerically from Figs. 8 that the variable, continues to fluctuate with
obtained fluctuation spectra(X) corresponding t®®(X;T)  time for both small and large values of [Figs. §a) and
in Fig. 4 for three different values af. Here, eachy(X) in ~ 8(c)], while, for an intermediate noise intensitiig. 8b)],
Fig, 7iscbtained TonP(X:T) with T=500 =100 a5 1 Jaible suenly colapses o zero afer  cerian st
Iﬁ(i\h)e cas(i/;rf)rg;(gi??ggg%ﬁtgg?t;e: fonlag([;?gég(gg?‘é?é tween two orbits of Eqs(11). The detailed plot ob, for o

) ~ ) =5x10"2 around the onset time of the synchronization
finds that although the curug(\) can be approximated by a [t/100~ 130 in Fig. 8b)] is shown in Figs. 9. One can see

quadratic func.tion(10) around\, there exists a linearlike oy Fig. ga) that the variable, takes small values inter-
slope on the right-hand side @f(\), which quantitatively  mittently and finally approaches to zero.

characterize the transition between the laminar motions and Since the Liapunov exponent of the noisy logistic map is
the turbulent bursts of type-I intermittenty8]. On the other  always positive as shown in Fig. 1, the synchronization
hand, in the cases af=5Xx 1073 and 2x 10 2 [Fig. 7(i) ~ which we observed in Fig.(B) and Figs. 9 is an outcome
and Tiii)], noise intensities are large enough so that the sindue to the finite precision in numerical calculations as dis-
gularity as shown in Fig. (7) is not observed W(X)- How- cussed in Ref§4—6]. Since all numerical calculations in our
ever, at an intermediate noise intensity=5x 103, %(X) present study are carried out with double precision, if the

spreads towards the negative values pfvhich yields non- differencev becomes less than the accuracy ¥at a cer-

trivial noise-induced ordering effects in an ensemble of un-taln timet=t, , then we have);=0 for all t>t, and this

coupled identical type-I intermittent elements as it will be may yu_eld a r_msleadlng COI‘]C|US_IOI”I that complete synchroni-
discussed in the following section. zation is achieved. The dynamics of the variable khows

an anomalous diffusive motion with an absorbing wall at
In10™ 6~ —36.84 as shown in Fig.(B).

In the literature of noise-induced synchronization, the pa-
per by Maritan and BanavaMB) [3] has aroused a lot of
controversy. They studied the logistic map under the influ-

In this section, we consider the following pair of two ence of noiseX.;=4x,(1—x;)+¢&, where ¢ denotes a
uncoupled identical logistic may$) driven by common ran- fandom number uniformly distributed in an interval

IIl. NOISE-INDUCED SPURIOUS SYNCHRONIZATION
IN UNCOUPLED LOGISTIC MAPS AND ITS
STATISTICAL PROPERTIES

dom forcing [—W,W]. They claimed that if the value oWV is large
enough, then two orbits which started with different initial
Xix1(j) = 1—,uxt2(j)+ o&, j=1.2. (12) conditions driven by a common random sequef&é even-

tually converge to the same orljiB]. However, this claim
Here, we takeu=u.— 10 * so that each orbit of Eq$11)  was heavily criticized by Pikovskj4], and he pointed out
exhibits type-l intermittency. In the noise-free case, almosthat the Liapinov exponent of the model of MB is always
all pairs of two orbits of Eqs(11) never synchronize each positive and thus led a conclusion that the noise-induced
other because of the positive Liapunov exponent. Howeveisynchronization that MB discovered was a numerical artifact

(a)

Ut

|
0 " -40 L L n
13000 13200 13400 13600 13000 13200 13400 13600 13800

FIG. 9. A detailed plot of Fig. &) around the onset of the noise-induced synchronizatimnshows Inv, instead ofv, in (a).
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due to lack of precision of calculations. Following Pik- ' i =10 ——
ovsky’s suggestion, Longet al. [5] performed a systematic 1 P ol TLETZ R
analysis and obtained quantitative features of relaxation time P H 14 o
until which two orbits become numerically identical, con- 0.8 1
firming the suggestion of Pikovsky. In R€f3], a random

number¢, at timet is adjusted such that the variabtg is 0.6 - 1

confined within a unit interval 0,1], and the resulting se- <
quence{&;} becomes state dependent and effectively biasec 0.4
noise which does not have zero mean. Herzel and Frgaind

showed that the introduction of biased noise with nonzero

mean gives a possibility that the finite-time Liapunov expo- 0.2 1
nent which is averaged over a time series with finite length .
can become negative, which leads to spurious synchroniza 010_4 10-1

tion. Although we also investigate the noisy logistic map in
the present paper, there are several points of difference from
the study of MB: First, we take the parameter value of the FIG. 10. Synchronization ratip as a function of the noise
logistic map near a periodic window such that the dynamicsntensity o for three different values of the numerical precision
exhibits type-I intermittency, whereas MB take the parametefevel L.
value at which the dynamics exhibits the fully developed
chaos in the noise-free case. Second, in the study of MB r~explal), (12
random numbers used as external noise are state dependent
whereas in the case of our present study state independefhere the exponent can be considered to be a prominent
random numbers are used, and noise-induced synchronizeharacteristic of the noise-induced spurious synchronization
tion in the model of MB is achieved with the considerably of Egs.(11). One can also see from Fig. 11 that the value of
large noise intensity compared with our model. Third, thea depends ono. For an intermediate noise intensity
noise-induced enhancement of fluctuation of the local expan=5x 102 [Fig. 11(ii)], the exponent is smaller than that for
sion rate plays an essential role in the occurrence of synchrdyoth large and small noise intensiti@sgs. 11i) and 1%iii)),
nization in our model. which implies that there is a certain suitable rangeoof
In order to detect how the degree of synchronization inwhere the noise-induced synchronization is apt to occur. The
Egs. (11) depends on the noise intensity, we evaluate thexponenta estimated by a linear least square fitting in Fig.
synchronization ratip=N/M for a long time intervall .., 11 for each value of is shown in Fig. 12. The functioa of
of observation, whereN is the number of pairs of initial ¢, as shown in Fig. 12, clearly plots a concave curve taking
conditions of Eqs(11) with which the numerical synchro- ijts minimum ato~5Xx 10 3.
nized state is reached withif,,iterations andv is the total Now, let us investigate the noise-induced synchronization
number of trials of numerical simulations. We talke=10°  in Egs.(11) in connection with the fluctuation property of the
and T .,=10° and, in order to control the precision level of |ocal expansion rate of orbits of E(L). The occurrence of
numerical synchronization explicitly, we provide a thresholdthe noise-induced synchronization in E¢kl) has its origin
A=10"" and the onset time, of the synchronization is in the increase of the probability that the finite-time Li-
determined such that the distangebetween two orbits gets
smaller thamA for the first time at, . That is, the timd, is
regarded as théirst passage timeeeded for the diffusive
motion of the variable lo, to pass through IA=—LIn10.
Figure 10 shows the ratip as a function of the noise inten-
sity o for three different threshold values. The spurious syn-
chronization with positivex is observed in the regiowr
=10 3~10"2, which is nearly same as that where the fluc-
tuation of the local expansion rate is amplifigig. 3). -~ e )
Furthermore, we evaluate the average relaxation time P

108 ;
(i) o = 0.002 —_—
(i) o =0.005 - e

(iiiy e = 0.01 - S

108

4

needed for the spurious synchronization to occur and inves- 10
tigate how this relaxation time depends on the noise intensity e
o and the numerical precision level Figure 11 shows the e
average relaxation time of Egs.(11) as a function of the 3
numerical precision level for three different values of 10 : ' '

. . . ' 6 8 10 12 14
For each level, the value ofr is numerically determined by L
averaging over the first passage time of 10 randomly
chosen pairs of initial conditions of Eqgll). It is found FIG. 11. Average relaxation time for the onset of the noise-
from Fig. 11 that the average relaxation timeincreases induced synchronization as a function of the numerical precision
exponentially with the increase of the levelas level L for three different values of the noise intensity
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0.8 T T T ~L1n(A/p ~ -

Jt* NERp Kot )oK ~exif — g(t; (Ao, 1.

Amin
0.7 | 1 (17
06 | | That is,

3 Py, —ex = g(t, "In(A/vo))t, ]. (18
05 t T
As a function oft, , for small A/vg, Py, takes a sharp
0.4 | 1  maximum at a valué of t, , where
03 . : Yt In(Avo))t, (19
0.001 0.0025 0.005 0.01

achieves its minimum. For an ensemble of orbits with fixed

g Vg, & P;~2t*°°Pt* portion of orbits satisfying)\<avg ex-

FIG. 12. Characteristic exponent in Eq. (12) of the noise-  Periencev,<A for the first time att=t, while most of the
induced synchronization as a function of the noise intensity rest portion of orbits experience,>av, at some timet
<1. For the latter portion of the ensemble of orbits, by the
apunov exponenh takes negative values with a certain nonlinearity of the dynamics;; gets as small as, again
range of noise intensity as shown in Fig. 4, and this facgfter some steps of time, whewg is a characteristic scale of
enables us to conclude that the characteristic expomant ~ the system under which the nonlinearity of the system can be
Eq. (12) can be quantitatively expressed by the fluctuationneglected. Thus, the average relaxation time estimated as

spectrumy(X) as follows[19]. Let us assume that the initial o
value vo=|Xo(1)—Xo(2)| is sufficiently small but larger 7~ > KU(PH)*~TIP;
than the threshold andv, satisfies k=1
. ; -1
vi<avg, 1<t<t,, (13) eXF[t*>In(T/|l)r;)Mmm¢(t* In(Alvo))t, ]

with a constant of order one. Theny, is approximated by =exfd —log(Alvg) min  (X)/|X]]
the linearization A< X <0

t-1 B ~A7Y, (20

vi=exp >, In|F’(un)|)v0=e“vo (14)

n=0 where

for 1<ts<t, , whereu,=[x,(1)+x,(2)]/2. LetP, be the d(N)
* y= min —— (21

probability of appearance of such a path satisfying - |X| )
Nmin<A<0

vi, <A and vy _3,0¢ -2, ... 01>A. (19 Therefore, we obtain the following relation betweeand «
as
If A is sufficiently small and, is sufficiently large, then the
probability that the conditiom; _1,vy _1, ... vi<avg is a 22
. . . * * . . V= —.
not satisfied under the condition thq£<A is considered to In10

not exponentially depend ap . Thus,Pt* is approximated The dependence of the exponenbn the noise intensity

as o is shown in Fig. 13. Here, for eadh, the value ofv is
estimated by evaluating the fluctuation spectryt(i) from

~ = N 71 ~
Py, ~Prolfuv, <A}=Prol{A<t, In(A/vo)} the histogram approximation & (\;T) with T=100 (plus)

Un(Alog)  ~ B andT=200 (cross. In Fig. 13a/In 10 as a function ofr is
f * p(X;t,)dh, (16)  also plotted. One can find from Fig. 13 that there is a quite
Mmin good agreement betweer(o) estimated withT=100 and

5 a(o) in the right-hand side of their minimum values located
where A\, denotes the minimum value ok and t, at 0~0.005, whereas the deviation between two curves of

>N min IN(A/o) is assumed, otherwis®, =0. Sincey(X) is  »(0) and (o) is considerably large forr<0.005. As

a concave function with a minimum at>0, under the con-  Shown in Fig. 7, the fluctuation spectrusgX) forms a non-
dition thatA/v, is sufficiently small and, is large enough, Gaussian one and a large coarse graining time stake
the integral in Eq(16) is evaluated as needed for a good approximation ofgy(\) by

016219-8
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0.35 r T T IV. SUMMARY AND CONCLUDING REMARKS
In summary, we have numerically demonstrated that in a
031 chaotic system which exhibits type-I intermittency, external
A noise with an appropriate intensity can affect the fluctuation
0.25 _ of the local expansion rate of orbits significantly. Enhance-
ment of the fluctuation has been confirmed as the change of
S asymptotic quantities such as the diffusion constarand
0.2 1 | more generally by the fluctuation spectryfi\). A negative
tail of the probability distribution of the finite-time Liapunov
0.15 1 1 exponent is generated as a result of this enhancement of the
fluctuation, which yields considerable correlation and the
0.1 s s . spurious synchronization between two orbits of a pair of un-
0.001 0.0025 0.005 0.01 coupled type-I intermittent chaotic systems. Although the is-
o sue of the effect of external noise on chaotic systems which

exhibit type-I intermittency has been investigated by several

FIG. 13. Characteristic exponentin Eq. (21) as a funciton of ~'€S€archers in the past decafi2g], to our knowledge, our
the noise intensity. Each point ofv is estimated by evaluating the findings in the present paper have not been reported yet.
fluctuation spectrumy(X) from the probability density function In Ref.[9], we observed that the phenomenon of CR can

~. L _ naturally appear in type-l intermittency. The region of the
iz(;’s? S\’;’]'(tjcvlfloo(ﬂ andT=200(x). The curvea/In 10 vso noise intensity where the spurious synchronization occurs is

separated from that where CR occurs, thus we have con-
- cluded that our findings in this paper are practically different
(=2/T)In[P(\;T)/Prayd in Eq. (8). Thus, the coarse graining kinds of noise-induced ordering effects in type-l intermit-
time scales =100 and 200 are not large enough and the factency. Moreover, we have introduced an exponremthich is
that the curver(o) estimated withT=200 is a better esti- associated with the average relaxation time of the spurious
mate of a(o) than that withT=100 for <0.005 can be synchronization and investigated its dependence on the noise
explained by the difference of the degree of convergence adhtensity. We have also discussed the relation between the

(=T In[P(\;T)/Pay to ¢(N). On the contrary, the shape exponenta and the fluctuation spectrun#(X\) and con-

of ¢(\) approaches to a quadratic function with the increasdirmed its validity by a numerical simulation.

of o as shown in Fig. 7 and the convergence of The nontrivial effect of noise as mentioned above is due
(— LT)IN[PQX;T)/Pyad to (X) becomes fast. However, as © the fact that the location of the singular point such as the

- . ~ . maximum of the map is close to one of the channels that
also shown in Fig. 7, the fluctuation spectrusi) shifts appear slightly before the saddle-node bifurcation. Such a

right aso increases and the location afwhich gives the  strycture is observed ubiquitously in dynamical systems that
minimum value ofy(\)/|\| for A<0 is far deviated from exhibit type-I intermittency, so it is naturally expected that
the average valug. For a large coarse graining time scd@le  our finding in the present study is universally observed in
the realization o (T) with a value largely deviated from the other dynamical systems that exhibit type-I intermittency.
average valua becomes a very rare event and in numerical

calculations a lot of trials are needed in order to estimate the ACKNOWLEDGMENTS

value of #(\(T)). So, the results of(c) obtained withT We wish to thank Professor H. Fujisaka, Professor H.
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