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Pattern formation capacity of spatially extended systems
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We analyze a class of spatially extended systems which are capable of generating many complicated pat-
terns. These systems are given by the Ginzburg-Landau equation coupled with a system of two linear equations
and describe nonlinear media with localized defects. We find a connection between these systems and spin-
glass systems. We show that the system is capable to produce many patterns and describe patterning algo-
rithms.
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I. INTRODUCTION

In the last decade, great attention has been given to
problem of pattern formation and control. Complicated p
terns can be observed in chemistry~e.g., Refs.@1–3#!, phys-
ics ~liquid crystals, magnetic thin films, Langmuir monola
ers; see, e.g., Ref.@4# and references therein, Refs.@5,6#!,
biology ~Refs. @7–11# among many others!, or in polymers
~e.g., Refs.@12–15#!.

Since the general problem of pattern control is very di
cult, it makes sense first to focus attention on simple fun
mental models such as the Ginzburg-Landau and the c
plex Ginzburg-Landau equations, the Swift-Hohenb
equations, etc. Indeed, these equations are partial differe
equation analogs of the normal forms for dynamical syste
~Ref. @16#!. They have been successfully used to anal
different patterns. Based on this approach, the pattern co
theory has been developed in many papers~e.g., Refs.@17–
23# for continuous models, Ref.@24# for coupled lattices!.

The goal of this paper is to show that there is a connec
between pattern formation problem and spin-glass mod
During the last decades much attention was given to th
spin-glass systems which are of great importance in ne
networks and in other applications~Refs.@25–28#!.

The results of this work can have applications both
patterning and neural networks.

Namely, we show that the long-range part of the expr
sion for energy of some spatially extended systems coinc
with the expression for energy of appropriate spin glasses
such an extended system, we consider a model of Ginzb
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Landau type coupled with two spatially inhomogeneous l
ear equations.

The Ginzburg-Landau equation describes the time evo
tion of the order parameteru taking values close to 1 or
21. This model is used to study a nonlinear medium w
well localizedd-like defects. It is a modification of the wel
known models describing the layered structure format
@4,12,14,15,29# in block copolymers, magnetic thin films, o
smectic liquid crystals. As well it can be considered as
development of work@22# which showed how to contro
structure described by the complex Ginzburg-Landau eq
tion by many organizing centers.

We find that for large times the energy of our syste
consists of two parts. The first is a short-range one~the
Ginzburg-Landau energy!. The second one is a long-rang
energy~cf. Refs. @4,30#!. If the system parameters are a
justed in a special way, this second term can play a cru
role and define a pattern form. Then the system energy
most coincides with the energy of an associated spin-g
system.

For this model, we develop a method allowing us to co
trol the nonlocal energy by choosing the coefficients app
priately. The long-ranged energy has the following form

Enonloc5(
i j

m

Ji j SiSj ,

whereSi is the averaged value of the order parameter ati th
localized defect:Si5*v i

u(x)dx, andv i is a small ball con-
taining the defect. We show that the matrixJ depends lin-
early on the coefficients of the model and that, to obt
givenJ, it is enough to resolve an algebraic system of line
equations.

The most straightforward application of our results is
neural networks. Indeed, they yields that the Hopfield neu
networks can be realized as parallel and locally control
systems. Notice that in Hopfield neural networks@31# all the
neurons are globally connected, and one cannot perfor
©2004 The American Physical Society15-1
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local control. A price that one pays for the local control a
the parallel architecture is an increase in the number of n
rons.

On the other hand, our spatially extended systems pos
a great capability to produce a large number of patterns.

We choose an inhomogeneous spatial perturbation a
sum of strongly localized~microscopical! defects. By these
localized defects we can obtain different complicated p
terns. The patterns consist of many domains where the o
parameter is either 1 or21. Under an appropriate choice o
the system parameters, some set of microscopical impur
give rise to macroscopic domains, containing the impurit
where states of all the cells are identical. Thus, one can
pect that, if the number of defects is large, the system
capable to produce many complicated patterns descri
separation of the two phases. Recall that in Ref.@4# layered
structures are studied. Here the patterns can be more c
plex. In particular, even using only some of the model p
rameters, one can obtain any convex polygons and union
these polygons.

To conclude this introduction, notice that the Ginzbu
Landau contribution, even if it is relatively small, plays a
important role. Namely, it smoothes and regularizes str
tures removing too complicated patterns with a great in
face length. In consequence, the set of stable structures
comes more narrow and structures themselves are m
regular.~The spin glasses with additional short-range int
actions were studied, among others, in Ref.@32#.!

The paper is organized as follows. In Sec. II we formul
our Ginzburg-Landau models. In Sec. III we describe so
key physical and mathematical ideas. In Sec. IV the asy
totical solutions corresponding to narrow interface~‘‘cell’’ !
patterns are constructed. Here we also obtain an expres
for the system energy. We prove that our system is alm
gradientlike for large times. It implies the convergence
trajectories to local minima of the energy. Section V is f
cused on the problem of energy minimization. We stu
some particular cases, where minimizers can be obtaine
where some qualitative properties of the minimizers can
described.

In Sec. VI, we find the connection between the patt
control problems and spin-glass systems. In this section
also describe control algorithms. Section VII concerns
merical simulations illustrating and complementing analy
cal approaches and results. At last, Sec. VIII contains fi
conclusions.

II. MODEL

We consider the following system of three equations:

ut5e2Du1u2u31lgv, ~1!

t1v t5d1Dv2a1
2v1bw, ~2!

t2wt5d2Dw2a2
2w1gu. ~3!

Here the coefficientg is
01621
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g~x,y!5(
i 51

N

d~r2r i !,

where r5(x,y)PV and r i are distinct points ofV and d
denotes an approximation of Diracd function. For example,
we can setd(r )51/(pr2) for ur u,r, where r is a small
radius. This choice ofg helps us to connect this model wit
spin-glass systems.@We will see thatSi5u(r i).# Moreover,
we assume thate.0 andl.0 are independent small param
eters. We take the coefficientb depending on space coord
nates,b5b(x,y). It defines a feedback loop that is a key to
in the pattern control machinery.

Notice that simpler~and more fundamental! systems con-
sisting of the Ginzburg-Landau equation coupled with o
linear equation play the key role in many applications a
were studied in Refs.@4,30,33#.

Such systems can be also reduced to spin-glass mode@if
we insertd-like perturbations similarly to Eq.~3!#. In this
case, however, it is impossible to control completely the s
interaction matrixJ. For the three component model th
control exists due to the inhomogeneous coefficientb
5b(x,y) involved in the second equation~for details, see the
Appendix!. Roughly speaking we use the second linear eq
tion to introduce the spins and the first one to control
matrix of the spin interaction. We thus think that syste
~1!–~3! is the simplest modification of the systems studied
Refs.@4,30# that can be reduced to spin-glass systems wit
controllable spin interaction.

We investigate system~1!–~3! in a two dimensional do-
main V with a smooth boundary under the zero Neuma
boundary conditions for the unknown functionsu, v, andw:

]u

]n
50,

]v
]n

50,
]w

]n
50, ~x,y!P]V.

Also we discuss the one-dimensional~1D!-case, since it
gives us simple test examples that can be examined ana
cally for smalle. ThenV5@0,1# andb5b(x), u, v, andw
are functions ofx,t.

The quantityu can be interpreted as an order parame
and Eq.~1! is the time dependent Ginzburg-Landau~TDGL!
equation weakly perturbed by the termlgv. Equations~2!
and~3! can describe, for example, an interaction of the or
parameter with linear fields.

These fields play the important role creating a nonlo
long-range interaction betweenu states localized at differen
parts of our domainV. The characteristic radiusRchar of this
interaction has the ordera1

21Ad11a2
21Ad2. It is well known

that a necessary condition for the pattern formation is t
the v andw diffuse much faster than the order parameteru,
i.e., e2!di .

III. KEY IDEAS

To investigate system~1!–~3! we use essentially the ap
proach of the work@30#.

To start our analysis, suppose first thatl50. Then Eq.~1!
is the nonperturbed TDGL equation. Typically, it describ
5-2
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interfaces’ growth and their slow time evolution. The inte
faces occur in a setI defined by the equationu(x,y,0)50.
Generically,I is a union of curves defined by the equatio
Rl(x,y)50, l 51, . . . ,m. These lines separate domainsVk
where the order parameter approaches 1 or21 as the time
increases.

The interface growth takes the time of orderu ln eu, and
later a slow evolution of these lines starts. The interfa
curvesRl(x,y,t)50 evolve, at each point (x,y), according
to the mean curvature motion:Vn5e2k, where Vn is the
normal interface velocity andk is the interface curvature a
this point ~see Refs.@34,35# for details!.

This dynamical process can be described by the energ
functional of the Ginzburg-Landau type associated w
Eq. ~1!:

FGL@u#5
1

2EV
S e2u“uu21

~12u2!2

2 Ddxdy. ~4!

The energyFGL is monotonically nonincreasing on solu
tions of Eq.~1! and thus all equilibrium stable configuration
are given by local minima of energy~4!. Nontrivial stable
equilibria can exist only for nonconvex domainsV. It is well
known that, ife is small and the pattern is an union of su
domains separated by interfaces, the Ginzburg-Landau
ergy ise constL, whereL is the complete interface length

In the block copolymer theory, or if Eq.~1! is coupled
with only a single additional linear equation through a te
lgv ~whereg is a constant!, the pattern, ase tends to 0,
stays the same: it is a partition ofV to subdomainsVk ,
whereuuu51. These subdomains are separated by interfa
of width O(e)~@4,30#!. The equilibrium structures are give
by local minima to the following nonlocal functional:

F@u#5FGL@u#1
l

2EV
E

V
K~x,yux8,y8!u~x,y!

3u~x8,y8!dxdydx8dy8

5FGL@u#1lFnonloc@u#,

whereK is a symmetric positive kernel. The nonlocal ter
describes the energy connected with long-range interact
in the system arising from coupling throughv and u while
FGL is a gradient contribution connected with interface fo
mation.

In contrast toFGL , this nonlocal functional, in genera
describes nontrivial stable structure even for convex
mains. Simple examples of layered patterns observed
block copolymers are given in Refs.@12,14#, a general theory
is developed in Ref.@29#.

In fact, the structure with a small number of interfaces
energetically non-advantageous since thenFnonloc becomes
too great. On the other hand, if too many interfaces coex
the gradient energyFGL becomes very large. Finally, w
have some optimal equilibrium interface number. This va
is in an excellent accordance with the experimental d
~Refs.@12,14#!.
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The key idea of our approach is the following. In o
case, the equilibrium patterns are described by the follow
functional:

F@u#5FGL@u#1
l

2 (
i , j

Ji j
b u~xj ,yj !u~xi ,yi !

5FGL@u#1lFnonloc@u#, ~5!

where the indexb marks that the matrixJ depends on the
densityb(x,y). The main mathematical result of our analys
is as follows. In the 2D-case we can control completely
matrix J by a choice of this density. Ifl is small, but much
bigger thane, we are able to describe analytically occurrin
complicated patterns. Indeed, we show that then the en
of the system has the same form as the energy of some s
glass system. The kernelJ defines the energy of this assoc
ated spin-glass system. All stable patterns of our system
respond to stable equilibria of this spin system. It is w
known @36# that by changingJ one can obtain many stabl
spin configurations.

However, as we will show, this control ofJ does not work
for one-dimensional domains. In this case the control po
bilities have been restricted: it is impossible to obtain a
matrix J merely by changingb(x).

IV. ASYMPTOTIC SOLUTIONS

Solutions describing the slow interface evolution a
given by the following relations:

u5Uint1ũ,

whereUint is the main contribution andũ is a small correc-
tion. The termUint is a solution describing the interfaces. A
we mentioned above, generically the interfaces are an un
of curves. Near each curve the interface solution has
form Uint5tanh@A2e21n(x,y,t)# wheren is the signed dis-
tance between the point (x,y) and the considered curve a
time t, with n.0 if the point is in the domain whereu.0
~see for details Refs.@34,35#!.

For t i!1 and sufficiently larget the functionsv and w
can be approximated by the solutionsV andW of the elliptic
equations

d1DV2a1
2V52bW, ~6!

d2DW2a2
2W52gUint . ~7!

The solutions of Eq.~7! depend on time, since the right han
sides of this system are time dependent~through Uint).
Physically, it is obvious that in the limitt i→0 the dynamics
of the fieldsv,w is captured by a slow interface dynamics

Notice that the functionV is of classC 2.
The mathematical analysis can be done more rigorou

and we will describe it in future publications.
Let us return now to Eq.~7!. Denote
5-3
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Si5E
v i

u~x,y!dxdy

the average of the order parameter at (xi ,yi).
From Eq.~7! we obtain

W~x,y,t !52(
i 51

N

G2~x,yuxi ,yi !Si , ~8!

whereGi , i 51,2 are the Green functions of the operato
diD2ai

2 .
Let us define the kernelKb by the following relation:

Kb~x1 ,y1ux2 ,y2!

5E
V

G1~x1 ,y1ux,y!b~x,y!G2~x,yux2 ,y2!dxdy.

Now by substituting Eq.~8! into Eq. ~6! we have

V~x,y,t !5(
i 51

N

SiKb~x,yuxi ,yi !.

This relation yields that asymptotically, for large times, t
time evolution of the order parameteru is gradientlike. There
is a functional ofu ~an ‘‘energy’’! that decreases along solu
tions of Eq.~1!. Indeed, with our weakly perturbed TDG
Eq. ~1! the following energy can be associated:

F5FGL1
l

2 (
i 51

N

(
j 51

N

SiSjKb
sym~xi ,yi uxj ,yj !,

where the kernelKb
sym is the symmetrization ofKb : Kb

sym

5 1
2 @Kb(x1 ,y1ux2 ,y2)1Kb(x2 ,y2ux1 ,y1)#. Denoting Ji j

b

5Kb
sym(xi ,yi uxj ,yj ) we obtain relation ~5! announced

above.
We will denote the nonlocal part of this energy b

Fnonloc.
Thus one can expect that all solutions converge, for la

times, to stationary patterns that minimize this energy~mini-
mizers!.

In the following section we consider these minimizers.

V. PATTERNS MINIMIZING ENERGY

Here we describe minimizersueq(x,y) of the energy~5!
giving equilibrium stable patterns. Eachueq(x,y) corre-
sponds to a local minimum ofF. To simplify our statement
first we consider a one-dimensional analog of functional~5!.
Below we extend our arguments to the 2D case.

Suppose, for the 1D case, that our domainV is the inter-
val @0,1#. Then we have for smalle

FGL@u#5
1

2E0

1S e2ux
21

~12u2!2

2 Ddx'ceNint ,

whereNint is the number of interfaces,c is a constant. Recal
that we supposee!l!1. To start our analysis, assume tem
porarily thate50. ~It is clear, however, that this contributio
01621
s

e

may be important, even ife is very small, and in the seque
we are going to take it into account!. If e50, for the mini-
mizers we have

u~xi ,yi !5Si* , ~9!

whereSi* P$21,1% is a minimizer of the spin glass with th
interactionJi j

b . Clearly now for smalle the minimizers are
formed by the minimal number of kinks~interfaces! such
that Eq.~9! is satisfied. So, to find a minimizer, we operate
two steps: first we seek a spin pattern minimizing the as
ciated spin-glass energyFspin , second we find a kink struc
ture with the minimal kink number consistent with~9!.

This result is confirmed by numerical simulations~see
Sec. VII!. It holds under the conditionse!l!1. In fact, if
l!e then the minimizer is trivial: it isu[61. If, on the
contrary,l is order 1 or larger, then our problem cannot
asymptotically reduced to the spin-glass sinceuSi u are not
close to 1:uuu215O(l).

Let us turn to the 2D case. Here we use the well kno
fact @34,35# that for smalle,

FGL@u#'ceLint ,

whereLint is the complete length of all interfaces separati
zones whereu51 or u521.

First we find a spin distributionSi* that minimizes the
spin-glass energyFspin . Repeating the previous argumen
we must now seek a pattern with a minimal interface len
consistent with the condition~9!.

In some situations, this pattern can be described. If theSi*
are all equal, which is the case ifb takes only negative val-
ues, the optimal pattern consists of two zones: the con
envelope of the pointsr i is occupied by one phase while th
rest of the domainV is occupied by the opposite phase.

VI. SPIN-GLASS ENERGY CONTROL

We see that the energy of our system coincides with
energy of some spin-glass system, with a nonlocal spin
teraction Jkl . These spin systems are well studied~Refs.
@25–27#!. Usually they have many stable spin configuratio
Below, some ideas of our approach are a little bit similar
Ref. @36#.

The problem on the nonlocal~spin! energy control re-
duces to the following: given a matrixJ, to find a function
b(x,y) such that

2Jkl5E
V

@G1~xk ,ykux,y!G2~x,yuxl ,yl !

1G2~xk ,ykux,y!G1~x,yuxl ,yl !#b~x,y!dxdy.

~10!

This problem is resolvable even if the supportb is localized
inside some small open subdomainB,V. A formal math-
ematical proof can be found in the Appendix.

Consider algorithms that allows us to findb(x,y). Prac-
tically, to obtain a numerical method, we can consid
5-4
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b(x,y) as a sum ofd functions with weightswk . If the
numberp of thesed peaks is large enough we can adjust t
weights to satisfy Eq.~10!. It is easy to see that it is enoug
to take at leastp5N2 pointsxk,yk chosen randomly andN2

weightswk . The choice of the weights can be performed
the least square method.

There is a second method that allows us to resolve
problem in an elementary way, however, this approach
valid under some conditions on the location of localized
fectsd(r2r i).

Namely, let us suppose that effective diffusion radiiRi

5aidi
21/2, i 51,2 for v and w are much less than the dis

tancesDi j 5ur i2r j u, iÞ j between the localized defects. L
us assume thatR1 andR2 have the same orderR. We choose
suchb that b(x,y) is zero for points (x,y) close enough to
r k . Namely, we suppose thatb(x,y) is nonzero only if the
minimal distanceD(r ) betweenr5(x,y) and all localized
defectsD(r )@R but D(r )!Di j .

Then, in Eq.~10! we can use a rough asymptotic of th
Green function

Gi~x,yuxk ,yk!'f i exp~2ur2r ku/Ri !,

where the coefficientf i contains a nonexponential facto
Thus, the integral in Eq.~10! that definesJkl , kÞ l depends
essentially only on the valuesb(x,y) for points (x,y) on
some interval of the right line that connects the pointsr k and
r l . If k5 l thenJkl'0.

These values can be chosen independently since all in
vals are disjoint. Thus system~10! splits then intoN(N
21)/2 elementary independent equations.

It is difficult to investigate these algorithms numerical
because there are a number of choices ofb(x,y) and of the
points (xi ,yi). In the numerical simulations presented he
only simple choices ofb are used.

VII. NUMERICAL SIMULATIONS

We first illustrate the 1D case. System~1!–~3! on the seg-
ment@0,1# is discretized by finite differences, the diffusion

FIG. 1. Stationary solutionu. The parameters aree250.001,l
50.1, t15t250.01, d15d25a15a251.
01621
e
is
-

er-

,

implicit and the reaction explicit.
For the case presented in Fig. 1, one considers th

d-like functions located atx151/6, x251/2, andx355/6.
The value of the control parameter is

b~x!5H 1 if xP@0,1/3#

21/2 if xP@1/3,1#.

In this case, settingd15d25a15a251 in Eqs.~2! and
~3!, one obtainsJ12.0, J13.0, andJ23,0. Hence the op-
timal configuration for the long-range energy satisfies

u~x1!u~x2!,0, u~x1!u~x3!,0, u~x2!u~x3!.0. ~11!

In Fig. 1 the stationary solutionu of system~1!–~3! is plot-
ted. It satisfies spin condition~11! and presents only one
kink, hence confirming the arguments of Sec. V.

Note that to obtain the configuration of Fig. 1 the initi
conditions have to be chosen properly. For the computa
presented in Fig. 1, it isu0(x)51 for xP@0,1/3# and
u0(x)521 for xP@1/3,1#. Hence the initial condition con-
tains already one kink. Changing it tou0[1 on @0,1#, one
obtains a stationary solution without kink which does n
satisfy condition~11!.

Nonetheless the role of the control parameterb is crucial
for the computation ofu from Fig. 1. Changing it to

b[21/2 on @0,1# ~12!

yields J12,0, J13,0, J23,0, and replaces condition~11!
by

FIG. 2. Scheme of a choice ofb, of thed functions, and of the
initial condition for u leading to the convex pentagon of Fig. 3.

FIG. 3. Stationary solutionu. The parameters aree2

53.7531025, l50.02, t15t25d15d25a15a251.
5-5
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u~x1!u~x2!.0, u~x1!u~x3!.0, u~x2!u~x3!.0.
~13!

Setting all parameters as for Fig. 1 exceptb defined by Eq.
~12! leads to a stationary solution without kink, satisfyin
condition ~13! instead of condition~11!.

We now turn to the 2D case. System~1!–~3! on the square
domain@0,1#3@0,1# is discretized similarly as in the 1D cas
by using alternated directions.

For the computations presented in Figs. 3–5 the ini
condition is u0(x,y)51 for (x,y)PD„(1/2,1/2),1/3… and
u0(x,y)50 otherwise@D„(1/2,1/2),1/3… denotes the disk o
center~1/2,1/2! and radius 1/3#. In this case, ifl50 (u is
then the solution of the non perturbed TDGL equation! the
zone whereu(x,y)Þ21 vanishes and the stationary solutio
is u[21. WhenlÞ0, Fnonloc can change the final station
ary solution.

Here we present two ways of achieving it. The first o
illustrates the arguments of Sec. VI. We consider sev
‘‘packs’’ constituted of twod functions separated by a zon
whereb is positive. In this situation, if the effective diffusio
radii are small enough, the long-range part of the energ
minimal whenu has opposite sign at the twod functions.
This is the spin condition. Then, due to the Ginzburg-Land
part of the energy, the final pattern foru is a convex polygon
whose edges are some of thed functions~determined by the
initial condition for u). In Fig. 2 is schematized such
choice of b, of the location of thed functions, and of the
initial condition for u. The final pattern is also schematize
In Fig. 3 is presented the resulting final pattern foru. This
procedure allows to obtain any pattern constituted of
union of convex polygons.

This can also be obtained by a second procedure. In F
4 and 5, one considers fived-like functions constituting a
convex pentagon included in the domain whereuÞ21 ini-
tially.

The control parameterb takes only negative values@in the
computations presented b(x,y)521 for (x,y)
PD„(1/2,1/2),1/5… and b(x,y)50 otherwise# yielding that
all the nondiagonal entries of the interaction matrixJ be
negative. The spin condition is then

u~xi ,yi !u~xj ,yj !.0 for i , j 51,2 . . . ,5.

This prevents the zone whereu(x,y)Þ21 from vanishing.

FIG. 4. Stationary solutionu. The parameters aree2

53.7531025, l50.004,t15t25d15d25a15a251.
01621
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In Figs. 4 and 5 the stationary solutionsu are presented in
this case. Note that the control parameterb in both of the
graphs is the same. They differ only by the location of t
d-like functions. The solutions of Figs. 4 and 5 satisfy t
above spin condition and also minimize the interface leng
as expected by the arguments of Sec. V.

VIII. CONCLUSIONS

We have considered some spatially extended syst
which are a natural generalization of models describing l
ered patterns@4#. Under an appropriate choice of their coe
ficients, it is possible to carry out a complete mathemati
analysis of these models. It is based on a connection w
spin-glass models that can be associated with these spa
extended systems.

It allows to show that the pattern capacity of some s
tially extended systems is large. To be more precise, th
systems can generate many patterns of complicated fo
depending on initial data and parameters.

APPENDIX

Assuming the points (xk ,yk),k51,2, . . . ,p fixed, let us
prove the solvability of Eq.~10! for any right hand sidesJkl .
DenoteMp the space of all symmetric matricesE of size
p3p. Let us enable this space with the inner scalar prod
(E,G)5( i j Ei j Gi j . Consider the subsetM* of the matrices
having the form

Mkl5E
V

@G1~xk ,ykux,y!G2~x,yuxl ,yl !

1G2~xk ,ykux,y!G1~x,yuxl ,yl !#b~x,y!dxdy

where b is a smooth function defined onB. To prove the
solvability, we must show thatM* 5Mp . Suppose the op-
posite. Then, asM* is a closed subspace ofMp , there
exists a normal vector~i.e., a nonzero matrix! E orthogonal
to the whole subspaceM* . This means that

(
kl

EklE
B
@G1~xk ,ykux,y!G2~x,yuxl ,yl !

1G2~xk ,ykux,y!G1~x,yuxl ,yl !#b~x,y!dxdy50

FIG. 5. Stationary solutionu. Same parameters as Fig. 4.
5-6
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for any b. Sinceb is arbitrary, this yields that

H~x,y!5(
k,l

Ekl@G1~xk ,ykux,y!G2~x,yuxl ,yl !

1G2~xk ,ykux,y!G1~x,yuxl ,yl !#[0 ~A1!

for any (x,y)PB and (x,y)Þ(xk ,yk). Notice thatH(x,y) is
a real analytic function for all (x,y) outside of the boundary
]V and such that (x,y)Þ(xk ,yk) since the Green function
G1 and G2 possess these properties~see, for example, Ref
@37#!. It is well known that if a real analytic function is equa
to zero in some open subdomain, then this function is eq
to zero anywhere, where it is defined.

Thus, Eq.~A1! actually holds for any (x,y)Þ(xk ,yk), k
51,2, . . . ,p. Let us fix an indexi. Consider (x,y) from a
small neighborhood of the point (xi ,yi). Near this point, the
Green functions have the form

Gs~x,yuxi ,yi !5cs ln@~x2xi !
21~y2yi !

2#1G̃s~x,y!,
~A2!

for s51,2, whereG̃s are bounded and smooth as (x,y)
→(xi ,yi). Substituting relation~A2! into Eq. ~A1! and in-
vestigating the behavior of the functionH as (x,y)
→(xi ,yi), we see that the main singularity has the fo
Eii $ ln@(x2xi)

21(y2yi)
2#%2 and the other singularities hav

smaller order. Thus, we conclude thatEii 50 so that Eq.~A1!
can be satisfied.

Now, again letting (x,y) tend to (xi ,yi) and analyzing the
logarithmic singularity of the left hand side of Eq.~A1! after
the elimination of the term withk5 i ,l 5 i , we obtain
i-

hy

.

01621
al

H̃ i~x,y!5 (
k,kÞ i

Eki@c1G1~xk ,ykux,y!1c2G2~xk ,ykux,y!#

[0

in a small neighborhood of (xi ,yi). Repeating the previous
arguments and using the analyticity of the Green functio
outside of]V and the points (xl ,yl), l 51,2, . . . ,p, we ob-
tain that Eq.~A1! actually holds for all (x,y)Þ(xl ,yl), l
51,2, . . . ,p, insideV.

Since the indexi can be chosen arbitrarily, it holds for an
i. Now let us fix a new indexj and let (x,y) tend to (xj ,yj ).
The only singular term in Eq.~A1! has the coefficient (c1
1c2)Ei j wherec1,0,c2,0.

Thus,Ei j 50 and we have proved thatE50.
This contradiction proves the solvability of system~10!.

Notice that in one-dimensional case this proof does not w
and system~10! cannot be solved, at least for generalJkl .
Actually, then the Green functions have the formGs(xuxk)
5Cs exp(2bsux2xku) where bs5asds

21/2. Suppose that the
domainV5@21,1# and that the support ofb is a small inter-
val B centered at 0. Then, independently of the choice ob,
all Jkl will have the same signs for anyxk andxl outside of
the support ofb:

Jkl5C~b,b1 ,b2!$exp@2~b1xk1b2xl !#

1exp@2~b2xk1b1xl !#%. ~A3!

We see from Eq.~A3! that the control ofJkl is impossible
for the one-dimensional case.
s.
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