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Pattern formation capacity of spatially extended systems
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We analyze a class of spatially extended systems which are capable of generating many complicated pat-
terns. These systems are given by the Ginzburg-Landau equation coupled with a system of two linear equations
and describe nonlinear media with localized defects. We find a connection between these systems and spin-
glass systems. We show that the system is capable to produce many patterns and describe patterning algo-
rithms.
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[. INTRODUCTION Landau type coupled with two spatially inhomogeneous lin-
ear equations.

In the last decade, great attention has been given to the The Ginzburg-Landau equation describes the time evolu-
problem of pattern formation and control. Complicated pat-tion of the order parameter taking values close to 1 or
terns can be observed in chemisteyg., Refs[1-3]), phys- —1. This model is used to study a nonlinear medium with
ics (liquid crystals, magnetic thin films, Langmuir monolay- Well localized 5-like defects. It is a modification of the well
ers; see, e.g., Ref4] and references therein, Ref&,6]), known models describing the layered structure formation
biology (Refs.[7—11] among many otheJsor in polymers [4,12,_14,_15,_2}9in block copolymers, magnetic thin films, or
(e.g., Refs[12-15). smectic liquid crystals. As WQII it can be considered as a

Since the general problem of pattern control is very diffi-development of work22] which showed how to control
cult, it makes sense first to focus attention on simple fundaStucture described by the complex Ginzburg-Landau equa-

mental models such as the Gi_nzburg-Landau_ and the Conjii-or\llvzyfmgn%gggfi?iT;TgeC?irr]r:eerss.the energy of our system
plex Ginzburg-Landau equations, the SW|ft—HohenbergC nsists of two parts. The first is a short-range dtie
equations, etc. Indeed, these equations are partial differenti inzburg-Landau ene}gyThe second one is a long-range
equation analogs of the normal forms for dynamical systemaner of Refs.[4.30 llf the svstem parameters are ad-
(Ref. [16]). They have been successfully used to analyz gy (cf 14,30 y P

, ; usted in a special way, this second term can play a crucial
different patterns. Based on this approach, the pattern contrpl|o and define a pattern form. Then the system energy al-

theory has been developed in many pagerg., Refs[17— 45t coincides with the energy of an associated spin-glass
23] for continuous models, Ref24] for coupled latticels system.

The goal of this paper is to show that there is a connection For this modeL we deve|op a method a”owing us to con-
between pattern formation problem and spin-glass modelgrol the nonlocal energy by choosing the coefficients appro-
During the last decades much attention was given to theSQriately_ The long-ranged energy has the following form
spin-glass systems which are of great importance in neural
networks and in other applicatioriRefs.[25—-28). m

The results of this work can have applications both to Enontoc= 2 JiiS'S;
patterning and neural networks. 1]

Namely, we show that the long-range part of the expres-
sion for energy of some spatially extended systems coincideghereS; is the averaged value of the order parametethat
with the expression for energy of appropriate spin glasses. Aocalized defectS = [, u(x)dx, andw; is a small ball con-
such an extended system, we consider a model of Ginzburgaining the defect. We show that the matdxdepends lin-

early on the coefficients of the model and that, to obtain
givenJ, it is enough to resolve an algebraic system of linear
*Electronic address: vakul@mech.ipme.ru equations.
Electronic address: bkazmier@ippt.gov.pl The most straightforward application of our results is to
*Also at Department of Mathematics and the Interdisciplinaryneural networks. Indeed, they yields that the Hopfield neural
Center for the Study of Biocomplexity, University of Notre Dame, networks can be realized as parallel and locally controlled
Notre Dame, IN 46556-5670. systems. Notice that in Hopfield neural netwofR4] all the
$Electronic address: genieys@maply.univ-lyon.fr neurons are globally connected, and one cannot perform a
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local control. A price that one pays for the local control and N
the parallel architecture is an increase in the number of neu- y(x,y)zZ S(r—ry),
rons. i=1

On the other hand, our spatially extended systems possess o .

a great capability to produce a large number of patterns. Wherer=(x,y) e andr; are distinct points o} and &

We choose an inhomogeneous spatial perturbation as @enotes an approximation of Diraicfunction. For example,
sum of strongly localizedmicroscopical defects. By these We can sets(r)=1/(mp?) for |r|<p, wherep is a small
localized defects we can obtain different complicated patfadius. This choice of helps us to connect this model with
terns. The patterns consist of many domains where the ordéPin-glass systemgWe will see thatS =u(r;).] Moreover,
parameter is either 1 or 1. Under an appropriate choice of We assume that>0 and\ >0 are independent small param-
the system parameters, some set of microscopical impuritiedters. We take the coefficiebtdepending on space coordi-
give rise to macroscopic domains, containing the impuritieshatesb=b(x,y). It defines a feedback loop that is a key tool
where states of all the cells are identical. Thus, one can exD the pattern control machinery.
pect that, if the number of defects is large, the system is Notice that simpleand more fundamentasystems con-
capable to produce many complicated patterns describingisting of the Ginzburg-Landau equation coupled with one
separation of the two phases. Recall that in Réflayered linear equation play the key role in many applications and
structures are studied. Here the patterns can be more corfyere studied in Ref44,30,33.
plex. In particular, even using only some of the model pa- Such systems can be also reduced to spin-glass migflels
rameters, one can obtain any convex polygons and unions #f€ inserts-like perturbations similarly to Eq3)]. In this
these polygons. case, however, it is impossible to control completely the spin

To conclude this introduction, notice that the Ginzburg-interaction matrixJ. For the three component model this
Landau contribution, even if it is relatively small, plays an control exists due to the inhomogeneous coefficiént
important role. Namely, it smoothes and regularizes struc=Db(X,y) involved in the second equati¢for details, see the
tures removing too complicated patterns with a great interAppendiX. Roughly speaking we use the second linear equa-
face length. In consequence, the set of stable structures béon to introduce the spins and the first one to control the
comes more narrow and structures themselves are mofgatrix of the spin interaction. We thus think that system
regular.(The spin glasses with additional short-range inter-(1)—(3) is the simplest modification of the systems studied in
actions were studied, among others, in R8g].) Refs.[4,30] that can be reduced to spin-glass systems with a

The paper is organized as follows. In Sec. Il we formulatecontrollable spin interaction.
our Ginzburg-Landau models. In Sec. Il we describe some We investigate syster(l)—(3) in a two dimensional do-
key physical and mathematical ideas. In Sec. IV the asympmain {1 with a smooth boundary under the zero Neumann
totical solutions corresponding to narrow interfaéeell” ) ~ boundary conditions for the unknown functionsv, andw:
patterns are constructed. Here we also obtain an expression
for the system energy. We prove that our system is almost Jgu__ dv
gradientlike for large times. It implies the convergence of %_0’ on
trajectories to local minima of the energy. Section V is fo-
cused on the problem of energy minimization. We study Also we discuss the one-dimensioraD)-case, since it
some particular cases, where minimizers can be obtained @ﬂves us Simp|e test examp|es that can be examined ana]yti_
where some qualitative properties of the minimizers can beally for smalle. ThenQ=[0,1] andb=b(x), u, v, andw
described. _ _ are functions of,t.

In Sec. VI, we find the connection between the pattern The quantityu can be interpreted as an order parameter
control pro.blems and spln—glass systems. In this section wgng Eq.(1) is the time dependent Ginzburg-Land@DGL)
also_ desgnbe sontrql algor!thms. Section VII concerns Nuequation weakly perturbed by the temnyy. Equations(2)
merical simulations illustrating and complementing analyti-and (3) can describe, for example, an interaction of the order
cal approaches and results. At last, Sec. VIII contains finaharameter with linear fields.
conclusions. These fields play the important role creating a nonlocal

long-range interaction betweenstates localized at different
1. MODEL parts of our domaiif). The characteristic radiuR;,, of this
interaction has the order; *\/d; +a, *d,. It is well known
that a necessary condition for the pattern formation is that
thev andw diffuse much faster than the order parameter

—0, o 0
- ,ﬁ_n_ ) (X!y)ea .

We consider the following system of three equations:

u;=e?Au+u—ud+Ayv, 1) e, €?<d;.
r0,=d;Av—ajv +bw, 2 lll. KEY IDEAS
) To investigate systeril)—(3) we use essentially the ap-
oW = dAW—asw+ yu. ) proach of the work30].
To start our analysis, suppose first that0. Then Eq(1)
Here the coefficienty is is the nonperturbed TDGL equation. Typically, it describes
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interfaces’ growth and their slow time evolution. The inter- The key idea of our approach is the following. In our
faces occur in a sdtdefined by the equation(x,y,0)=0. case, the equilibrium patterns are described by the following
Generically,l is a union of curves defined by the equationsfunctional:

Ri(x,y)=0, I=1,... m. These lines separate domaiflg

where the order parameter approaches 1-dras the time )N
increases. Flul=Fg [u]+ > > Ipu(x;,yu(xi ,yi)
The interface growth takes the time of ordém €|, and h
later a slow evolution of these lines starts. The interface =Fg[u]+NF oniod ul, (5)

curvesR|(x,y,t)=0 evolve, at each pointx(y), according

- _ 2 .
to the mean curvature motion/,=e"x, whereV, is the here the indesh marks that the matrix) depends on the
normal interface velocity ane is the interface curvature at gensityh(x,y). The main mathematical result of our analysis

this point(see Refs[34,3 for detaily. is as follows. In the 2D-case we can control completely the
This dynamical process can be described by the energetig,iix 3y a choice of this density. I is small, but much

functional of the Ginzburg-Landau type associated Withyigqer thane, we are able to describe analytically occurring

Eq. (1): complicated patterns. Indeed, we show that then the energy
(122 Olf the system ha;]s tEe sa:gefform er1]s the energfy gf some spin-
_ 2 2 - glass system. The kernéldefines the energy of this associ-
Foulul= EJQ( €| Vul*+ 2 dxdy. ) ated spin-glass system. All stable patterns of our system cor-
respond to stable equilibria of this spin system. It is well
known [36] that by changing) one can obtain many stable
spin configurations.
However, as we will show, this control dfdoes not work
for one-dimensional domains. In this case the control possi-

equilibria can exist only for nonconvex domaifis It is well . . P : .
e X . bilities have been restricted: it is impossible to obtain any
known that, ife is small and the pattern is an union of sub- : .
matrix J merely by changindp(x).

domains separated by interfaces, the Ginzburg-Landau en-
ergy ise constL, whereL is the complete interface length.

In the block copolymer theory, or if Eq1) is coupled IV. ASYMPTOTIC SOLUTIONS
with only a single additional linear equation through a term
Ayv (where y is a constant the pattern, ag tends to O,
stays the same: it is a partition ¢ to subdomaind},,
where|u|=1. These subdomains are separated by interfaces 5
of width O(€)([4,30]). The equilibrium structures are given u=Uj+u,
by local minima to the following nonlocal functional:

The energyF¢, is monotonically nonincreasing on solu-
tions of Eq.(1) and thus all equilibrium stable configurations
are given by local minima of energi). Nontrivial stable

Solutions describing the slow interface evolution are
given by the following relations:

whereU,,; is the main contribution and is a small correc-

A tion. The termU;,; is a solution describing the interfaces. As
Flul=Fg[u]+ §J J KOy, y" u(x,y) we mentioned above, generically the interfaces are an union
oo of curves. Near each curve the interface solution has the
Xu(x',y")dxdydxXdy’ form U;,,=taniy2e 'n(x,y,t)] wheren is the signed dis-
tance between the poink(y) and the considered curve at
=Fg[U]+AFoniod ul, time t, with n>0 if the point is in the domain where>0

(see for details Ref$34,35).
whereK is a symmetric positive kernel. The nonlocal term  For r;<1 and sufficiently large the functionsv andw
describes the energy connected with long-range interactiorsan be approximated by the solutioiandW of the elliptic
in the system arising from coupling throughandu while  equations
F¢L is a gradient contribution connected with interface for-
mation. _ _ _ d;AV—ajV=—bWw, (6)
In contrast toFg, , this nonlocal functional, in general,
describes nontrivial stable structure even for convex do-
mains. Simple examples of layered patterns observed in
block copolymers are given in Refd.2,14], a general theory
is developed in Ref.29]. The solutions of Eq(7) depend on time, since the right hand
In fact, the structure with a small number of interfaces issides of this system are time dependétitrough U;,,).
energetically non-advantageous since tlfgg,.c becomes Physically, it is obvious that in the limit;— 0 the dynamics
too great. On the other hand, if too many interfaces coexisif the fieldsv,w is captured by a slow interface dynamics.
the gradient energyg, becomes very large. Finally, we Notice that the functiorV is of classC?.
have some optimal equilibrium interface number. This value The mathematical analysis can be done more rigorously
is in an excellent accordance with the experimental datand we will describe it in future publications.
(Refs.[12,14). Let us return now to Eq.7). Denote

daAW—aZW=—yUjp;. (7)
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may be important, even ¥ is very small, and in the sequel
S=J u(x,y)dxdy we are going to take it into accoyntf =0, for the mini-
“i mizers we have

the average of the order parameterat,y;).

From Eq.(7) we obtain u(xi,yi)=S", (9)
N whereS® e {—1,1} is a minimizer of the spin glass with the
WXy, == 2 Ga(xYX ,¥i)S, (8 interactionJf} . Clearly now for smalle the minimizers are
=1 formed by the minimal number of kinkénterface$ such
whereG;, i=1,2 are the Green functions of the operatorsthat Ed.(9) is satisfied. So, to find a minimizer, we operate in
d,A—a?. two steps: first we seek a spin pattern minimizing the asso-

ciated spin-glass enerdys,i,, second we find a kink struc-
ture with the minimal kink number consistent wit8).
Kp(X1,Y1]X2,Y2) This result is confirmed by numerical simulatiofsee
Sec. VII. It holds under the conditione<\<1. In fact, if
\<<e then the minimizer is trivial: it isu==1. If, on the
contrary,\ is order 1 or larger, then our problem cannot be
asymptotically reduced to the spin-glass siiéd are not
Now by substituting Eq(8) into Eq. (6) we have close to 1:Ju|—1=0(\).

N Let us turn to the 2D case. Here we use the well known

fact [34,35 that for smalle,
Vixy D=3, SKe(x Yl Y0 34,39 ¢

Let us define the kerné{, by the following relation:

- | G0y by Gatxylre yalaxay

Foilu]~ceLin,
This relation yields that asymptotically, for large times, the
time evolution of the order parameteis gradientlike. There WhereL;,, is the complete length of all interfaces separating
is a functional ofu (an “energy”) that decreases along solu- zones wherai=1 oru=—1.
tions of Eq.(1). Indeed, with our weakly perturbed TDGL First we find a spin distributior§* that minimizes the
Eq. (1) the following energy can be associated: spin-glass energ¥,;,. Repeating the previous arguments,
N we must now seek a pattern with a minimal interface length
B N sy consistent with the conditio(D).
F=Fct3 ;1 121 SSKExLYilx; i), In some situations, this pattern can be described. IShe
are all equal, which is the casebftakes only negative val-
where the kerneK;¥™ is the symmetrization oK,: Kg¥™  ues, the optimal pattern consists of two zones: the convex
= 1[Kp(X1,Y1]X2,Y2) + Kp(X2,Y2X1,y1)].  Denoting Jib]_ envelope of the poin_ta is occ_upied by one phase while the
=K§Y™(x;,yilx;,y;) we obtain relation (5) announced rest of the domairf) is occupied by the opposite phase.
above.
We will denote the nonlocal part of this energy by VI. SPIN-GLASS ENERGY CONTROL

I:nonloc- L .
Thus one can expect that all solutions converge, for large We see that the energy of our system coincides with the

. . S : .. ~eénergy of some spin-glass system, with a nonlocal spin in-
tr;]rinzeesr,s)to stationary patterns that minimize this endgini teractionJ,,. These spin systems are well studiéelefs.
In the following section we consider these minimizers. [25-27). Usuz_illy they have many stable spin conflgqra_tlons.
Below, some ideas of our approach are a little bit similar to
Ref. [36].
The problem on the nonlocdkpin) energy control re-
Here we describe minimizem;eq(x’y) of the energy(S) duces to the fOIlOWing: given a matri¥ to find a function
giving equilibrium stable patterns. Eadhe,(x,y) corre-  P(Xy) such that
sponds to a local minimum d¥. To simplify our statement,
first we consider a one-dimensional analog of functidbal 2] :J' Gi(x X V) Go(X.V|x
Below we extend our arguments to the 2D case. K 9[ 10 Yid%,y) Gaxy X1 )
Suppose, for the 1D case, that our dom@ins the inter-
val [0,1]. Then we have for smak +Ga(Xi, Yl %, Y) G1(X,y[x,y1) Ib(x,y) dxdy.
11
Fellul= Efo This problem is resolvable even if the suppbiis localized
inside some small open subdoma@ (). A formal math-
whereN;,; is the number of interfaces,is a constant. Recall ematical proof can be found in the Appendix.

that we suppose<<\<<1. To start our analysis, assume tem-  Consider algorithms that allows us to fitx,y). Prac-
porarily thate=0. (It is clear, however, that this contribution tically, to obtain a numerical method, we can consider

N

V. PATTERNS MINIMIZING ENERGY

22 (10
62U2+ —(1 u)

X 2 dX%CENint,
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1 1
/_-\ . Delta—like function
=8 ’/ T
05t § 07‘—_-* ----- ',o @ Zone where b=1
— '§. ’ “ ,' ‘!
=3 gl i .
2 slv . -
% Or g ° Adiaiaiaieiaiaiai ¢ / \ Zone where u=1 initially
E . . . . .
& -0.5 reeeer - 1 7 Final pattern (zone where u=1
& ’ 0 ' ____! inthe stationary solution)
8 0 Space coordinate x 1
-1 . .
FIG. 2. Scheme of a choice tf of the § functions, and of the
initial condition for u leading to the convex pentagon of Fig. 3.
-1.5 1 ! ) !
0 0.2 0.4 06 0.8 1 implicit and the reaction explicit.

Space coordinate x For the case presented in Fig. 1, one considers three
o-like functions located ak;=1/6, x,=1/2, andx;=5/6.

FIG. 1. Stationary solution. The parameters ar€®=0.001, A The value of the control parameter is

:Ol, 7'1:7'2:0.01,d1:d2:a1:a2:1.
1 if xe[0,1/3]

b(x,y) as a sum ofé functions with weightsw, . If the b(x)=

numberp of theses peaks is large enough we can adjust the —1/2 if xe[1/3,1].

weights to satisfy Eq(10). It is easy to see that it is enough

to take at leasp=N? pointsx¥,y* chosen randomly ani? In this case, settingl,=d,=a;=a,=1 in Egs.(2) and
weightswy . The choice of the weights can be performed by(3) one obtainsl;,>0, J;5>0, andJ,;<0. Hence the op-
the least square method. timal configuration for the long-range energy satisfies

There is a second method that allows us to resolve the
problem in an elementary way, however, this approach is U(X1)U(X2) <0, u(X7)u(x3)<0, u(x,)u(xz)>0. (11)
valid under some conditions on the location of localized de-
fects 8(r —r;). In Fig. 1 the stationary solution of system(1)—(3) is plot-
Namely, let us suppose that effective diffusion radji  ted. It satisfies spin conditiofill) and presents only one
=a;d; Y2, i=1,2 forv andw are much less than the dis- kink, hence confirming the arguments of Sec. V.
tancesD;;=|r;—r;|, i#] between the localized defects. Let ~ Note that to obtain the configuration of Fig. 1 the initial
us assume tha®; andR, have the same ord& We choose conditions have to be chosen properly. For the computation
suchb thatb(x,y) is zero for points X,y) close enough to presented in Fig. 1, it isug(x)=1 for x<[0,1/3] and
r.. Namely, we suppose théi(x,y) is nonzero only if the Uo(Xx)=—1 for xe[1/3,1]. Hence the initial condition con-
minimal distanceD(r) betweenr=(x,y) and all localized tains already one kink. Changing it tg=1 on[0,1], one

defectsD(r)>R but D(r)<D;; . obtains a stationary solution without kink which does not
Then, in Eq.(10) we can use a rough asymptotic of the satisfy condition(11).
Green function Nonetheless the role of the control paramétés crucial

for the computation oti from Fig. 1. Changing it to

Gi(X,Y[X Y= ¢ exp(—|r—r|/Ri),
|( Y| k yk) d)l IO( | kl |) ——12 on[O,l] (12)
where the coefficientp; contains a nonexponential factor. -
Thus, the integral in Eq0) that defines),|, k#| depends Yi€lds J12<<0, J15<0, J23<<0, and replaces conditiofL1)
essentially only on the valuds(x,y) for points (x,y) on by
some interval of the right line that connects the pomtand
r. If k=1 theanﬁO.

These values can be chosen independently since all inter 25
vals are disjoint. Thus systerfl0) splits then intoN(N 1%
—1)/2 elementary independent equations. },

It is difficult to investigate these algorithms numerically,
because there are a number of choiceb(of,y) and of the
points (;,y;). In the numerical simulations presented here,
only simple choices ob are used. 0

Order parameter u(x,y)

APy

0.4

0.6

0.8
VIl. NUMERICAL SIMULATIONS Space coordinate x 70

Space coordinate y

We first illustrate the 1D case. Systdf)—(3) on the seg- FIG. 3. Stationary solutionu. The parameters aree?
ment[ 0,1] is discretized by finite differences, the diffusion is =3.75x107%, A=0.02, r;=7,=d,=d,=a;=a,=1.
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Order parameter u(x,y) Order parameter u(x,y)

2.g 25
1-? 1.?
0.5 T 0.5
3 LT 0
1I“\
03 ' l‘o:\\\l\_m \ 3
1 1
0.8 o6 0.8
° 0 0.4
Space coordinate x 0 Space coordinate y Space coordinate x 0 Space coordinate y
FIG. 4. Stationary solutionu. The parameters aree? FIG. 5. Stationary solution. Same parameters as Fig. 4.

=3.75< 105, A=0.004,7,=71,=d;=d,=a;=a,=1.
In Figs. 4 and 5 the stationary solutionsre presented in
U(Xp)U(X2)>0, u(xq)u(x3)>0, u(xy)u(xz)>0. this case. Note that the control parametein both of the
(13 graphs is the same. They differ only by the location of the
&like functions. The solutions of Figs. 4 and 5 satisfy the

Setting all parameters as for Fig. 1 excepdefined by EQ.  4p6ve spin condition and also minimize the interface length,
(12) leads to a stationary solution without kink, satisfying 54 expected by the arguments of Sec. V.
condition (13) instead of conditior(11).

We now turn to the 2D case. Systéfr)—(3) on the square
domain[0,1]x[0,1] is discretized similarly as in the 1D case Viil. CONCLUSIONS

by using alternated directions. o _ .. We have considered some spatially extended systems
For the computations presented in Figs. 3-5 the initialynich are a natural generalization of models describing lay-
condition is Up(x,y)=1 for (x,y)eD((1/2,1/2),1/3 and  greq pattern4]. Under an appropriate choice of their coef-
Uo(x,y) =0 otherwise[ D((1/2,1/2),1/3 denotes the disk of ficients, it is possible to carry out a complete mathematical
center(1/2,1/2 and radius 1/8 In this case, if\=0 (U is  analysis of these models. It is based on a connection with
then the solution of the non perturbed TDGL equalitie  gpin glass models that can be associated with these spatially
zone whereaiu(x,y) # — 1 vanishes and the stationary solution gytended systems.
is u=—1. When\#0, Fronioc can change the final station- ¢ allows to show that the pattern capacity of some spa-
ary solution. tially extended systems is large. To be more precise, these

_Here we present two ways of achieving it. The first onésystems can generate many patterns of complicated form,
illustrates the arguments of Sec. VI. We consider severgliepending on initial data and parameters.

“packs” constituted of twoé functions separated by a zone

whereb is positive. In this situation, if the effective diffusion

radii are small enough, the long-range part of the energy is APPENDIX

minimal whenu has opposite sign at the tw® functions. Assuming the pointsxX,yy),.k=1,2, ... p fixed, let us
This is the spin condmo.n. Then, due to the szburg—LandaLbrOVe the solvability of Eq(10) for any right hand sided, .

part of the energy, the final pattern foiis a convex polygon Denote M, the space of all symmetric matric& of size
whose edges are some of théunctions(determined by the ) | ot ys enable this space with the inner scalar product

initial condition for u). In Fig. 2 is schematized such a EG)=3.E.G:. . Consider the subsett* of the matrices
choice ofb, of the location of thes functions, and of the ﬁla;/in)g thg f(')er” ' eu

initial condition foru. The final pattern is also schematized.
In Fig. 3 is presented the resulting final pattern @orThis
procedure allows to obtain any pattern constituted of an Mkl:f [G1(X, Yl X V)G, Y| Y1)
union of convex polygons. Q

This can also be obtained by a second procedure. In Figs.

4 and 5, one considers fivélike functions constituting a G0k YilX,y) Ga(x,yIx1 Y1) Ib(x,y)dxdy
convex pentagon included in the domain whare—1 ini- . ) .
tially. where b is a smooth function defined oB. To prove the

The control parametds takes only negative valugi the ~ Solvability, we mus‘i show that1* = M, Suppose the op-
computations  presented b(x,y)=—1 for  (x,y) posite. Then, asM* is a closed subspace o1, there

eD((1/2,1/2),1/9 and b(x,y)=0 otherwisé yielding that ~ €XiSts & normal vecto(ﬂ.e;., a nonzero matrjxe orthogonal
all the nondiagonal entries of the interaction matixe O the whole subspacs1®. This means that
negative. The spin condition is then

u(x;,y)u(x;,y)>0 for i,j=1,2...,5. %: EkIfB[Gl(Xk1yk|va)G2(X7y|XI Y1)
This prevents the zone wheugx,y)# —1 from vanishing. + Go (X, Yl X, Y) G (X, Y[X,y1) 1b(X,y)dxdy=0
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for anyb. Sinceb is arbitrary, this yields that -
Hi(XaY):k%i Eilc1G1(Xi, Yl X, Y) +C2G2(Xi, Vil x,¥) ]

H(x.y>=§ Eil G1(Xk, YilX,¥) Ga(X,y[X; Y1)

0

TG Ydx IGO0 XLYDI=0 (AL  ay neighborhood ofx{,y;). Repeating the previous
for any (x,y) € B and (,y) # (X, yi). Notice thatH(x,y) is ~ arguments and using thg analyticity of the Green functions
a real analytic function for allX,y) outside of the boundary outside ofd(} and the pointsX;.y;), I=1,2,... p, we ob-
4Q and such thatx,y) # (x,yi) Since the Green functions tain that Eq.(A1) actually holds for all &,y)#(x.y), |
G, and G, possess these propertigse, for example, Ref. =1.2,...p, inside(}. o
[37)). It is well known that if a real analytic function is equal ~ Since the index can be chosen arbitrarily, it holds for any
to zero in some open subdomain, then this function is equdt Now let us fix a new indexand let &,y) tend to §;.,y;).

to zero anywhere, where it is defined. The only singular term in EqAl) has the coefficientq;
Thus, Eq.(A1) actually holds for anyX,y) # (x.,yi), k T C2)Eij wherec;<0,c,<<0.
=1,2,...p. Let us fix an index. Consider k,y) from a Thus, E;;=0 and we have proved th&=0.
small neighborhood of the poink(,y;). Near this point, the This contradiction proves the solvability of systeD).
Green functions have the form Notice that in one-dimensional case this proof does not work
and systen(10) cannot be solved, at least for genedg).
Go(X,Y|Xi ,Yi) = Cs IN[ (X=X 2+ (y—¥)2]+ Go(X,Y), Actually, then the Green functions have the fofg(x|x,)

(A2)  =Cgexp(—BJx—x]) where B;=a.d; ?. Suppose that the
_ domainQ=[—1,1] and that the support df is a small inter-
for s=1,2, whereGg are bounded and smooth ag,) val B centered at 0. Then, independently of the choicé,of
—(x;,yi). Substituting relatior(A2) into Eq. (A1) and in-  all J,, will have the same signs for ang andx, outside of
vestigating the behavior of the functiob as (x,y) the support ob:
—(X;,Yi), we see that the main singularity has the form

Ei{In[(x—x)?+(y—y)?]}*> and the other singularities have Ju=C(b, By, B {exd — (Bix+ Box))]

smaller order. Thus, we conclude thigi=0 so that Eq(Al)

can be satisfied. +exf — (Bxc+ Baxi) 1} (A3)
Now, again letting X,y) tend to ; ,y;) and analyzing the

logarithmic singularity of the left hand side of E@\1) after We see from Eq(A3) that the control ofl,, is impossible

the elimination of the term wittk=i,I=i, we obtain for the one-dimensional case.
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