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Chaos in an exact relativistic three-body self-gravitating system
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We consider the problem of three-body motion for a relativistic one-dimensional self-gravitating system.
After describing the canonical decomposition of the action, we find an exact expression for the three-body
Hamiltonian, implicitly determined in terms of the four coordinates and momentum degrees of freedom in the
system. Nonrelativistically these degrees of freedom can be rewritten in terms of a single particle moving in a
two-dimensional hexagonal well. We find the exact relativistic generalization of this potential, along with its
post-Newtonian approximation. We then specialize to the equal-mass case and numerically solve the equations
of motion that follow from the Hamiltonian. Working in hexagonal-well coordinates, we obtain orbits in both
the hexagonal and three-body representations of the system, and plot the Pe@utiares as a function of the
relativistic energy parametey. We find two broad categories of periodic and quasiperiodic motions that we
refer to as the annulus and pretzel patterns, as well as a set of chaotic motions that appear in the region of phase
space between these two types. Despite the high degree of nonlinearity in the relativistic system, we find that
the global structure of its phase space remains qualitatively the same as its nonrelativistic counterpart for all
values ofy that we could study. However, the relativistic system has a weaker symmetry and so its Poincare
section develops an asymmetric distortion that increases with increaskay the post-Newtonian system we
find that it experiences a chaotic transition in the interval €.23%0.26, above which some of the near-
integrable regions degenerate into chaos.
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I. INTRODUCTION the OGS phase spaf2]. These model a dense massive core
in near-equilibrium, surrounded by a halo of high kinetic
The N-body problem, that of determining the motion of a energy stars that interact only weakly with the core. Further
system ofN particles mutually interacting through specified examples include collisions of flat parallel domain walls
forces, is one of the oldest problems in physics. It continuesnoving in directions perpendicular to their surfaces and the
to be of key importance over a variety of distinct subfields,dynamics of stars in a direction orthogonal to the plane of a
including nuclear physics, atomic physics, stellar dynamicshighly flattened galaxy. In addition to this, a number of open
and cosmology. When the interactions are purely gravitaguestions remain concerning the statistical properties of the
tional the problem is particularly challenging. While an exactOGS, including its ergodic behavi$8], the circumstances
solution is known for pure Newtonian gravity in three spatial (if any) under which equipartition of energy can be attained,
dimensions in theN=2 case, there is no corresponding so-whether or not it can reach a true equilibrium state from
lution in the general-relativistic case. This is due to dissipaarbitrary initial conditions, and the appearance of fractal be-
tion of energy in the form of gravitational radiation, which so havior [4].
far has necessitated recourse to various approximation In a relativistic context, reduction of the number of spatial
schemes. dimensions results in an absence of gravitational radiation
Considerable progress has been made in recent years khilst retaining mostif not all) of the remaining conceptual
reducing the number of spatial dimensions. Indeed, nonreldeatures of relativistic gravity. Consequently one might hope
tivistic one-dimensional self-gravitating systef@GS of N to obtain insight into the nature of relativistic classical and
particles have played an important role in astrophysics anduantum gravitation in a wide variety of physical situations
cosmology for more than 30 yedrs]. While used primarily by studying the relativistic OGS, or ROGS.
as prototypes for studying the behavior of gravity in higher Comparatively little was known about the ROG&ven
dimensions, they also approximate the behavior of somér N=2) until quite recently, when a prescription for ob-
physical systems in three spatial dimensions. For examplgaining its Hamiltonian from a generally covariant minimally
very long-lived core-halo configurations, reminiscent ofcoupled action was obtaind8]. In the nonrelativistic limit
structures observed in globular clusters, are known to exist ific—<), the Hamiltonian reduces to that of the OGS. This
opened up the possibility of extending the insights of the
OGS into the relativistic regime, and indeed, considerable
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the static-balance problem has been obtaifE@l. In the  both cases, but curve the sides of the hexagon outward.
N-body case the Hamiltonian can be obtained as a series The action principle underlying the dynamics of the sys-
expansion in inverse powers of the speed of light arbi- tem must include a scaladilaton) field [21] since the Ein-
trary order, and a complete derivation of the partition andStein action is a topological invariant in {11) dimensions.
single-particle distribution functions in both the canonical Ve find upon canonical reduction that the Hamiltonian is
and microcanonical ensemblgsl], providing interesting in-  J1Ven in terms of a spatial integral of the second derivative of
formation concerning the influen,ce of relativistic effects onthe dilaton field, regarded as a function of the canonical vari-
ormation cc g . ables of the particlegcoordinates and momentand is de-
self-gravitating systems. Very recently, formulation of the

. . termined from the constraint equations. Solving these equa-
ROGS has been extended to circular topologie?§ (forbid-  (ions matched across the particles yields a transcendental

den for the OG§ and a newN-body dynamic equilibrium  equation that determines the Hamiltonian in terms of the
solution has been four{d 3]. remaining degrees of freedom of the system wien 3.

In this paper we consider the three-body problem for asince we can determine from it the Hamiltonian in terms of
relativistic self-gravitating system in lineal gravity. Its non- the relative proper separations of the bodies and their conju-
relativistic counterpart models several interesting physicajate momenta, we refer to this transcendental equation as the
systems, including perfectly elastic collisions of a particledetermining equation. From the determining equation we can
with a wedge in a uniform gravitational fie[d4], two elas-  derive the canonical equations of motion. The equations are
tically colliding billiard balls in a uniform gravitational field considerably more complicated than their nonrelativistic
[15], and a bound state of three quarks to form a “linearcounterparts, and we solve them numerically. We find an
baryon”[16]. These systems have recently been shown to bextremely rich and interesting dynamics dependent upon the
subject to experimental tegt7]. To our knowledge, ours is initial conditions imposed on the system.
the first study of three-body motion in a fully relativistic  In order to have a controlled investigation and comparison
context. of the relativistic effects, we consider three distinct physical

We work with a two-dimensional2D) theory of gravity — systems: the nonrelativistidN) system, whose Hamiltonian
on a line(lineal gravity that models 4D general relativity in has been considered previough4—16 in a variety of con-
that it sets the Ricci scald® equal to the trace of the stress texts, its exact relativisti€R) counterpart Hamiltonian sys-
energy of prescribed matter fields and sources. Hence, as tem, and the post-Newtoniai?N) expansion of the R sys-
(3+1) dimensions, the evolution of space-time curvature igem, truncated to leading order in 2, wherec is the speed
governed by the matter distribution, which in turn is gov- of light. Thec— < limit of both the R and PN systems is the
erned by the dynamics of space-tifit8]. Sometimes re- N system; consequently we have both an exact relativistic
ferred to aR=T theory, it is a particular member of a broad generalization of the OGS and a well-defined relativistic ap-
class of dilation gravity theories formulated on a line. Whatproximation to it. We find intriguing relationships and strik-
singles it out for consideration is its consistent nonrelativisticing differences between all three systems. For example,
(i.e.,c—) limit [18], in general a problematic limit for a tightly bound states of two bodies undergoing a low-
generic (1+1)-dimensional theory of gravity19]. Conse- frequency oscillation with the third occur in both the N and
guently it contains each of the aforementioned nonrelativistid®R systemg(this has previously been seen in the N system,
self-gravitating systems as special cases. Furthermore, it r€3]). However, the motion in the R system for the bound pair
duces to Jackiw-Teitelboim theof0] when the stress en- and the third body take on features similar to that of two-
ergy is that of a cosmological constant. body ROGS motion studied previoudl§,9,7], whereas the

We have found that the most effective means by which tacorresponding motions in the N system have the expected
extract and study the dynamics of the ROGS is to work inparabolic behavior. In general, bound-state oscillations in the
the canonical formalisnj5]. We formulate the three-body R system at a given energy have a higher frequency and
problem in relativistic gravity by taking the matter action to cover a smaller region of the position part of the phase space
be that of three point-particles minimally coupled to gravity.than its N and PN counterparts do at the same energy.

We obtain an exact expression for the Hamiltonian in terms The global structure of phase space can be probed using
of the four physical degrees of freedom of the syst¢ghe  Poincare sections. Remarkably, the Poingales of the R

two proper separations and their conjugate momegigen  system are qualitatively similar to those of the N system, but
as a transcendental equation. Under a simple coordinatdistorted toward the lower right of the phase plane. This is
transformation the nonrelativistic system is equivalent to thabecause there is a component to the gravitational momentum
of a single particle moving in a hexagonal-well potential inin the R case which is absent in the N case, continuously
two spatial dimensions. The system we study is an exadransforming the basic structure of the Poincpi@. On the
relativistic generalization of the hexagonal-well problem, af-other hand the PN system develops additional regions of
fording insight into intrinsically nonperturbative relativistic chaos in phase space that neither the N nor R systems have.
effects, as well as allowing a controlled study into its slowThis suggests that there are limits to the reliability of a PN
motion, weak field limit so as to determine its relativistic approximation® a R system.

corrections to leading order. When the masses of all particles In Sec. Il we review the formalism of tHé-body problem

are equal the cross-sectional shape of the well in the nonrein lineal gravity, discussing the canonical decomposition of
ativistic case is that of a regular hexagon; unequal massdke action and Hamiltonian. The technical details of solving
distort this symmetry to that of a hexagon with sides of dif-the constraint equations and deriving the equations of motion
fering length. Relativistic effects maintain this symmetry in are relegated to Appendix A. Before solving the equations of
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motion we first consider some of the general properties ofvhere
each system(N, R, and PN in Sec. Illl. We find its post-

Newtonian expansion and use this to study how the 1 dz; dz )
hexagonal-well potential is modified by relativistic correc- Twzza Ma f d"afgmgvpﬁﬂfs [X=2a(7a)]
tions. In Sec. IV we describe our methods for numerically 9 a-e 5

solving the three-body system. Working in hexagonal-well

coordinates, we describe our methods for obtaining orbitsis the stress energy of tiébody system. Equatiof8) guar-

Poincaremaps, and graphs that illustrate the oscillation pat-antees the conservation ®f,, . By inserting the trace of Eq.
terns of the three particles. We then go on to numerically3) into Eq. (2) we obtain

solve the equations of motion of the system in Sec. V in the

equal-mass case. We find two broad categories of periodic R= KTZ' (6)
and quasiperiodic motions that we refer to as the annulus and

pretzel patterns. We also find a set of chaotic motions thaEquations(4) and (6) form a closed system of equations for
appear in the region of phase space between these two othtie N-body system coupled to gravity.

types. To complete our investigation we present various In the canonical formalism the actidf) is written in the
Poincare maps in Sec. VI. Here we discuss the striking simiform

larities and differences in the global structure of phase space

between the three systems. In Sec. VIl we discuss the salient ) N ) 0

features of our solutions and make some conjectures regard- ' :f d*x a; PaZad[X—Za(X") ]

ing their general properties. We close our paper with some

concluding remarks and directions for further work, includ- .

ing an appendix containing the transformation to hexagonal +ay+ 11V +NoR+ NlRlJ, )
coordinates.

where the metric is
II. CANONICAL REDUCTION OF THE N-BODY

PROBLEM IN LINEAL GRAVITY 2 9
ds?=—Nj(x,t)dt>+ y

N, \?
dx+ —dt (©)]
The general procedure for the derivation of the Hamil- Y
tonian via canonical reductiof22] has been given previ- and 7 and II are conjugate momenta tp and ¥, respec-

ously [6,8], and so here we briefly review this work, high- . A 1 .
lighting those aspects that are peculiar to the three-bod%}vely' The quantities}”™ andR™ are given by

case. R
We begin with an action that describes the minimal cou- RO= _ [y 72+ 2 \[ymIT+ ! (P')2— E(\p—)

pling of N point masses to gravity, 4y <\ \y
N
1= [ 02 = Tgg YR, 4V, U, -3 R max- 200, ©
- X 2k g9 ur oo Tp v a=1 Y
N v\ 1/2 N
dz dz, v 1 p
— — < _< i_7 = ’ ' Fa _ 0
+§l dra[ ma( 0,(X) dTa> ] Ri=Zm— MW +27 +a§l -, o= z00],
(10
X 8P[x—z4( Ta)]}, () and describe the constraints of the system, with the symbols

dot and prime denoting, and d,, respectively. SettingR’

whereV is the dilaton fieldg,, andg are the metric and its
determinantR is the Ricci scalar, and, is the proper time
of ath particle, respectively, witk=87G/c*. We denote by
V , the covariant derivative associated wih, .

o
From the action1) the field equations are

tional field. SettingR'=0 yields an equation in which the

of the gravitational field.
The transformation from Eql) to Eq. (7) is carried out
R-g“'V,V,¥=0, 2) by rewriting the particle Lagrangian into first-order form us-

=0 yields an energy-balance equation, in which the total
energy of the particles is offset by the energy of the gravita-

total momenta of the particles is balanced by the momentum

ing the decomposition of the scalar curvature in terms of the

VUV, ig, VIV, W g, VIV, -V, Y, extrinsic curvatureK via

—kT,,. 3) V=gR=—2d5(VyK) +2d:[ V¥ (N*K =y *9;No)],
d dz) 1 dz’ 42 whereK=(2Ngy) " (20:N1— v~ N1y~ do).
m 9,,(Za) Al 29 () % 0% =0, (4) The action(7) leads to the following system of field equa-
a dry [ 7H7 a dr, 2 9hmita dr, d74 ’ tions:
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\/—77 _\/_;WH+8K\/—7

(P')?

7+ N

1 ' p
+N1[ ~ ST+ —+ —Zé[x—za(xo)]]
Y Y a v

\If’+N1 -0, (11)

2K\/_7

y—No(2k\yym—2k/yI1)+ Nlly—ZNizo, (12)

R°=0, (13
R'=0, (14
M+ lNH+ ! NV’ + ! N, |=0, (15
1 y 1 2K\/; 0 [y 0 ’
. 1
\P+N0(2K\/;7T)—Nl(;\lf'>=0, (16)
_Ng _[p3 ) No P2 9y
Pat — \/ —+mi—
0Z, Y pg Y 924
2\/—+m?
y
Ny p p. dy
- 2N —=0, (17)
0z, 7y Ve 0z,
Pa
N
2.~ Ng—ra—+ 2=, (18)
Pa, o 7
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straint Eqgs.(13) and (14) may be solved for the quantities
(¥'/\y)" and 7', since they are the only linear terms
present. We then transform the total generator obtained from
the end point variation into an appropriate form to fix the
coordinate conditions. These conditions can consistently be
chosen to b¢5,6]

v=1 and II=0, (19

and, upon elimination of the constraints, yield
. 1
|=f dzx[E pazab‘(x—za)Jr;A\If] (20)
a

for the action(7). From this we read off the reduced Hamil-
tonian for the system dfl particles,

fdxH——EJ dx(AW), (21)

whereV is understood to be a function af andp, deter-
mined by solving the constrainid3) and (14). Under the
coordinate condition§19) these become

+KZ p2+m28(X—25) =0,
(22)

1\1,/2
Z( )+K

27 + D Pad(x—2z4)=0. (23)

The consistency of this canonical reduction can be demon-
strated by showing that the canonical equations of motion
derived from the reduced Hamiltoni&®1) are identical with
Egs.(17) and(18) [6,8].

Due to their technical nature, the details of solving Egs.
(22) and(23) and then Eq(21) are described in Appendix A.
The HamiltonianH is given implicitly by

kl4)s 4 (L1 +9M1)213— (Lo+Mp1) 23]

LiLola=9,0pL 3 el
+ mZMSZLI e(K/4)Szi(L2+§mz3)221f (Lg+M30)z34]

+ mtSlmlSL; e( kl4)s3q[ (L3 +9M3q) 23— (L1 +M13)715] ’

where all metric componentdg,N; ,y) are evaluated at the Where

point x=2z, in Egs.(17) and(18), with
of  af(x)

9z4 X

X=2Z4

The quantitiesN, and N; are Lagrange multipliers which
yield the constraint Eqg13) and (14). It is straightforward
to show[5] that this system of equations is equivalent to the

set of equation$3), (4), and(6).

Full canonical reduction of the actidd) involves elimi-
nation of the redundant variables by employing the con-

(24
Mij=M;—episij, M;=pj+my, (25
Li:H—Mi_€<§j: ijji>,
L ={1- ]I SijSik |[Mi+L;, (26)
j<k#i
with Zij :(Zi_zj) andsi]- :Sgnéij).

The equations of motion are determined from the canoni-

straint equations to fix the coordinate conditions. The con€al equationg5]
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~oH fix the center of inertia; in other words we can get=0
Za=gp (27)  without loss of generality. In this case we obtain
a
1 1
S ==Pt Py, (36)
Pa=— 7 (28) P1 \/gpx v P
(where the dot denotes a derivative with respect to the coor- 1 1
dinate timet) by implicitly differentiating Eq. (24). The pzzﬁpx—ﬁpp, (37)
equations of motion are highly cumbersome and will not be
reproduced here. Examples are given in E(s38) and
(A39) 2
: Ps=—\3P (38)

Ill. GENERAL PROPERTIES OF THE EQUATIONS

upon inversion of the preceding relations.
OF MOTION

The relativistic Hamiltonian can then be regarded as a

In this section we undertake a general analysis of the defunction H=H(p,\,p,,p,), determined by replacing the
termining equation for the Hamiltoniaf®24) and the equa- variables ¢;,z;,23,p1,p2,p3) With (p,\,p,,p,) from Egs.
tions of motion(27) and (28) before proceeding ttnumeri-  (31) and (36)—(38). The resultant expression is rather cum-
cally) solve them. bersome, but can be written compacflyqg. (B5)] using a

Consider first the determining equati¢24). Its solution  judicious choice of notation, as shown in Appendix B.
yields the Hamiltonian, which is a function of only four in- A post-Newtonian expansiofb] of Eqg. (24) [or equiva-
dependent variables: the two separations between the pdently Eq. (B5)] in these variables in the equal-mass case
ticles and their conjugate momenta. Hence a simpler descripdelds
tion can be given by employing the change of coordinates,

2 2 24
p,t Py «m<C V3 p
21~ 2,=V2p, (29 ~ H=3me+ st | llr | Mg
2,+2,—223= /6, (30) p (P2+pD)? ke kC?
+IN-— —W+T|P|pp+
which in turn implies v3 8 16v2
1 1 X LA 24 p?)+ + 2
215=V2p, Z13=—(V3N+p), Z3=— (V3N —p). 3™ V3 A V3 (V3py+p,) 6| A V3
V2 V2
S p . k?m3c®| |p|v3 N
The coordinatep and A describe the motions of the three V3 PpPa 16 2 V3
particles about their center of mass. Their conjugate mo-
menta can be straightforwardly obtained by imposing the p 3 p pl 3
: FIN=—| |+ 5| N =[N —=| = s (N2 +p?D) |,
requirement sl ta A A 7 (AP
{A,pg}= s> (32 (39
whereA,B=p,\,Z. This yields where factors of the speed of lighthave been restoregde-
call thatk =87G/c?). The first three terms on the right-hand
1 ) 33 side of Eq.(39) are
Pp,=—"=(P1—P2), 33
V2 pp+pR  wkmict
H=3mc*+
1 2m J8
=—=(P1+P2—2py), (34)
P /6 P1T P2~ 2P3 V3 ) )
X|p|+ 5| [N+ —| +| A= — (40)
2 V3 V3
_1
Pz=3 (P2t P2t P3), B9 and are equivalent to the hexagonal-well Hamiltonian of a

single particle studied in Ref16], the first term being the
whereZ=1z;+2z,+z3 is the remaining irrelevant coordinate total rest mass of the system. The rest mass is irrelevant
degree of freedom; the Hamiltonian is independerZ @ind  nonrelativistically, but we shall retain it so that we can
pz. In the nonrelativistic limit Z,p;) corresponds to the straightforwardly compare the motions and energies of the
center of mass and its conjugate momenta. While it is notelativistic and nonrelativistic systems. The Hamilton{40)
possible to fix the value of relativistically, it is possible to  describes the motion of a single particle of masgwhich
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we shall refer to as the hex-partil| a linearly increasing
potential well in the(p, \) plane whose cross-sectional shape
is that of a regular hexagon.

If we regard the potential as being defined by the relation 15
V(p,\)=H(p,=0,p,=0), we can make a comparison of v ,
the nonrelativistic, post-Newtonian, and exact relativistic s
cases at any given value of the conserved Hamiltonian. The 4

14

PN potential takes the form 3 2
Rv2 T
Vpn=3mc+ szc“T |sing|+ sin( 0+ 3 ‘
2 2
. T K’m3R%c8 (| . T
—|sin 0= = || |+ 5 singsin 6+ = FIG. 1. The shape of the relativistic potenthlin the equal-
mass case. The coordinatgs \) are on the horizontal axes.
+sin@sin 6+ T + sinesin( 0— z) of the hexagon become convex, even at energies only
3 3 slightly larger than the rest mass. See Fig. 3 for a comparison
of the three potentials. The growth of the relativistic potential
o aa K . . . . .
—sinasin( — —|+|sinl 6— _) sinl 9+ — Vgwith increasingp and \ is extremely rapid compared to
3 3 3 the other two cases, and so the overall size of the hexagon at
a given value olVy is considerably smaller. The size of the
a K . .
+sin §— =|sin 6+ =], (41 cross-sectional hexagon reaches a maximunVgt Vg,
3 3 =6.71196802thc?, after which it decreases in diameter

. like In(VR)/Vg with increasingVg.
Whgre we have made the hexagonal symmetry manifest by part of the potential on the branch wWith> Vg is in
writing an intrinsically nonperturbative relativistic regime. The mo-
o _ tion for values oV larger than this cannot be understood as
p=Rsing, r=Rcosp. (42) a perturbation from some classical limit of the motion. The

As c—o, k—0 and the potential of the hexagonal well in _nonrelauwstlc hexagonal cone becomes a hexagonal carafe

the N system is recovered. The R version of the potential id the relativistic case, with a neck that narrows\4g in-

. creases.
straightforwardly calculated from E24), Of course in both the PN and R systems the potential does
(Vr—Myc?) (Vg — Myc?)(Va—msc?) not fully govern the motion since there are couplings be-

tween the momentum and position of the hex-particle. In the

B ) 4 v2kR . post-Newtonian case we see that to leading ordec’iA
= (VR S31S32M3C”) MymyC™ exp — Vglsin 6| there is a momentum-dependent steepening of the walls of
the hexagon.
+(VR—S15513My¢%) mymgc? For unequal masses the hexagon becomes squashed, with
VIkR - two opposite corners moving inwar_d, cha_nging both the
Xex;{ Vg sin( 0— = || |+ (VR— Sp1S23m,C?) slopes of the straight edges and their relative lengths; rela-
4 3 tivistic corrections maintain this basic distortion, but with the
VIkR - straight edges becoming parabolic. We shall not discuss the
X mgm, c* exp{ Vglsin| 6+ 3 ‘ , (43 unequal mass case any further.

and also retains the hexagonal symmetry of the N system, a
well as the appropriate— o limit.

At very low energies these cases are indistinguishable ,
However, striking differences between them develop quite 1
rapidly with increasing energy, as Figs. 1 and 2 illustrate for .
the R and N systems. For all energies the Newtonian poten °®
tial takes the form of the hexagonal-well potential noted ear-
lier: equipotential lines form the shape of a regular hexagon
in the (p, \) plane, with the sides rising linearly in all direc-
tions. The post-Newtonian potential retains this basic hex-
agonal symmetry, but distorts the sides to be parabolically
concave. The growth of the potential is more rapid, with the
sides of the potential growing quadratically with\).

The exact potential differs substantively from both of  FIG. 2. The shape of the nonrelativistic poten¥iain the equal-
these cases. It retains the hexagonal symmetry, but the sidemss case. The coordinatigs \) are on the horizontal axes.

1
Bro & o

016214-6



CHAOS IN AN EXACT RELATIVISTIC THREE-BODY ... PHYSICAL REVIEW E69, 016214 (2004

the system. In our subsequent analysis we shall distinguish
between two distinct types of motidd4]: A motion, corre-
sponding to the same pair of particles crossing twice in a row

06l - (the hex-particle crossing a single bisector twice in succes-
oal T _ _ sion), andB motion, in which one particle crosses each of its
] ; N ; compatriots in successm(_the hex-particle crossing two suc-
02 i '\ : cessive sextant boundarie®/e can characterize a given mo-
< of ! [ _ tion by a sequence of lette’s and B (called a symbol se-

'- ; : quenceg, with a finite exponenh denotingn repeats and an

: \ i ' overbar denoting an infinite repeated sequence. For example,
—0af : 9 & ; the expressiorA*B® denotes fourA motions (two adjacent
' ’ J particles cross twice in a row four times in succesksifmt
lowed by threeB motions(one particle crosses the other two
in succession, which then cross each othém the (p,\)
plane this will correspond to a curve that cros¢is ex-
ample the p=0 axis four times before crossing one of the
other sextant boundaries, after which it crosses two more
sextant boundaries in succession, ending up in a sextant 180°
opposite to the one in which it began. The expression
(A"BMP denotesp repeats in succession of the motion
A"B™ and (A"B™) denotes infinitely many repeats of this
motion. Note that the classification of a crossing motioas
or B is contingent upon the previous crossing, and so there is
an ambiguity in classification of either the final or the initial

We begin our analysis of the three-body system by studyerossing. We shall resolve this ambiguity by taking the initial
ing the motion of the hex-particle in tp,\) plane. We shall ~ crossing of any sequence of motions as being unlabeled—as
consider this motion in the nonrelativisti€N), post- we are considering arbitrarily large sequences of motions,
Newtonian(PN), and exact relativisti¢R) cases described in this ambiguity in practice causes no difficulties.
the preceding section. In all three cases the bisectors joining We have carried out three methods of analysis to study the
opposite vertices of the hexagon correspond to particle crosgrotions of this system. First, we plot trajectories of the hex-
ings in the full three-particle system, and denote a disconparticle in thep-\ plane, comparing the motions of the N,
tinuous change in the hex-particle’s acceleration. Thus th&N, and R systems for a variety of initial conditions. Second,
hex-particle’s motion, in the Hamiltonian formalism, is de- we plot the motions of the three particles as a function of
scribed by a pair of differential equations that are continuougime for each case. This provides an alternate means of vi-
everywhere except across the three hexagonal biseptors sualizing the difference between the various types of motion
=0, p—Vv3\r=0, andp+v3\=0. These bisectors divide the that can arise in the system. Third, we construct Poincare
hexagon into sextants and correspond to the crossings &Ections by recording the radial momentupk( labeled as
particles 1 and 2, 2 and 3, or 1 and 3, respectively. X) and the square of the angular momentLpﬁ,(IabeIed ag)

An analogous system has been studied in the N case hyf the hex-particle each time it crosses one of the bisectors.
Miller and Lehtihet, who considered the motions of a ballWhen all three particles have the same mass, all bisectors are
under a constant gravitational force elastically colliding withequivalent, so that all the crossings may be plotted on the
a wedge[14]. They established that such motions can besame surface of section. This allows us to find regions of
analyzed using a discrete mapping that describes the pariperiodicity, quasiperiodicity, and chaos, and we shall discuss
cle’s angular and radial velocities each time it collides withthese features in turn.
the edges of the wedge, which corresponds in our case to One issue that arises upon comparison between the three
crossing one of the three hexagonal bisectors. The two sysystems is that the same initial conditions do not yield the
tems differ in that in the wedge system the hex-particle colsame conserved energy. There is therefore some ambiguity in
lides elastically with the wedg@quivalent to an elastic col- comparing trajectories between each of these three cases: one
lision between a pair of particles in the three-body system can either compare at fixed values of the energy, modifying
whereas in our system the particle crosses the hexagon’s he initial conditions as appropriatas required by the con-
sectors, equivalent to a pair of particles passing through eactervation laws for each systgnor else fix the initial condi-
other in the three-particle system. In the equal-mass case thiens, comparing trajectories at differing values t8f We
systems are nearly identical, since an elastic collision beshall consider both methods of comparison. In the former
tween two equal-mass particles cannot be distinguished fromase we fix the initial values ¢, p, \, andp,, adjustingp,

a crossing between two equal-mass particles. We do, howso that the Hamiltonian constraif4) is satisfied. We shall
ever, observe a distinction between the two systems in eefer to these conditions as fixed-enek¥E) conditions. In
certain class of orbits that we shall discuss later. the latter situation we set the initial values of all four phase-

It is the nonsmoothness of the potential along these bisespace coordinatep(\,p,,p,) in each system, allowing the
tors which in all three cases yields interesting dynamics foenergy to differ for each of the N, PN, and R systems ac-

FIG. 3. (Color onlind Equipotential lines a¥=4m¢? for each
of the N (solid/black, PN (dot/red, and R(dash-dot/blugsystems
in the equal-mass case.

IV. METHODS FOR SOLVING THE EQUATIONS
OF MOTION
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cording to their respective constraint0), (39), and (24). . 4
We shall refer to these conditions as the fixed-momé&ria) Pi=MupChi, z :Wzi , (44)
conditions. 0

There is no closed-form solution to either the determiningwhereM,;=3mis the total mass of the system apdandz

equation(24) or to the equations of motiof27) and (28) are the dimensionless momenta and positions, respectively.
. o it — 2 &
and so to analyze the motion we must solve these equatiofd"iting 7+1=H/Mc*, mj=(m;/Mq), we have
numerically. We did this by numerically integrating the equa- 2 71 A7, & o0
. . . . M;=M VPI+mMT+p) =M M, 45
tions of motion using aMATLAB ODE routine (ODE45 or for =M€ (VR M) =MioC M (45
the exact solutionspDE113. To generate Poincargections,
: ; . . — a2 a2 a _ r

we stopped the integration each time the hex-particle crossed-i=Mo€? 7+ 1— P+ My — 6( > ijji) =MLy,
one of the bisectors by using an “events” function, saving . (46)
the values of the radial and angular momentum for plotting. .
Ideally, for each chaotic trajectory the Poincasection Which in turn yields
should be allowed to run for a very long time in order to

. . . . D Lol am Bt o * @81 (L1 + M2y (Lo + My 23]
determine as accurately as possible which regions of the Lilola=MiMol 5€

plane it may visit, and which are off limits. M oy % wSod (Lot Mpg) Zp1— (Lg+ Mgp)2
As a control over errors, we imposed absolute and relative RREE S Ui
error tolerances of 10 for the numericalobE solvers. For + Mg Mol s eSal (La+Map2ap— (L1 +M9217]
the values ofy we studied[# is a dimensionless energy
parameter defined in the text preceding Eth], this yielded (47)

numerically stable solutions. We tested this by checking thafor the rescaled determining equation. Similarly the equa-
the energy remained a constant of the motion for all thregions of motion become
systems to within a value no larger than £0 for nearly all

of our runs it was comparable to the error tolerances £10 ‘7_’7: } ﬁ: 4 ﬁ: ﬁ (48)
that we imposed. ap;  capr kMc® dt gt
However, we found that fom=1 the ODE solver was
unable to carry out the integration for more than a few time an 4 JH 4 dp dp,
steps for the R system before exceeding the allowed error = 2 4] .- T~ 3 - o 49
9z kM C”) 9z, kM€ dt dt

tolerancegthis problem remains even if the error tolerances

are lowered significantly This value ofy is approximately wheret = (4/KMtotC3)f- Atime step in the numerical code has

the valueVg. at which the equipotential hexagon reaches its luei=1. Al di il be sh ina th led
maximal size. We were unable to find an algorithm capablea vaiuet= . lagrams will be Snown using the rescale

f handling th ical instabiliti hich th | coordinateg44) unless otherwise stated.
orhandling the numerical instabiliies, which thee SoIvers We close this section with some final comments regarding

we employed could not deal with, for these larger values otpe time variable. This parameter is a coordinate time and it

7. A full numerical solution in this larger regime remains  \ould be desirable to describe the trajectories of the particles

an open problem. in terms of some invariant parameter. The natural candidate
We also found that the PN system had diverging trajectois the proper timer, of each particle. From Eq.18), the

ries for values ofy larger than 0.3. We believe that this is proper time is

due to an intrinsic instability in the PN system, but we have .

not confirmed this. ’ g d7a=dt*{No(Za)® ~ [Ny (za) + 2a]%}

In addition to plots, a few other routines were used to mi
record information. While running Poincargections, the =dt2No(Za)2mez (a=1,2,3 (50
a a

name of the edge crossed at each colligmorresponding to

the pair of particles that pass through each other along thdor the ath particle. Unfortunately this is in general different
edge can be recorded in addition to the velocity. From thisfor each particle, even in the equal-mass case. This is quite
information, the symbol sequence of the trajectory can béinlike the two-body situation, in which the symmetry of the
extracted. In addition, we recorded a frequency of return: thi$ystem yields the same proper time for each particle in the
function measures the time interval separating the hex€dual-mass casghough not for the unequal-mass cE.
particle’s successive returns to within some small distance 06 Therelgrehsevera;I dlfferlfznt_;]h?r:ces avallatl_)Ie at fth's _sta?e.
its original location, and takes its inverse to find a “fre- ne cou’d choose to work wi € proper time of a single

" at h i Th | ¢t d q article in the system, in which case invariance is recovered,
quency” at each ume. Ihe valueé of irequency Cependy, + the manifest permutation symmetry between particles is

strongly on how small the specified area is; nonethelesggst Another possibility is to construct a “fictitious” fourth
these frequencies give us an approximate idea of how longarticle that does not couple to the other three, but moves
the hex-particle takes to complete one full cycle in its “or- along a geodesic of the system, and make use of its proper

bit.” _ _ _ _time. Rather than consider these or other possible options,
In performing our numerical analysis we rescale the variwe shall postpone their consideration for future research and
ables, work with t, keeping in mind that it is a coordinate time.
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V. EQUAL-MASS TRAJECTORIES the remaining initial value op, chosen to satisfy Eq$24),
(39), and (40) in each case, respectively. Ag=H/(3mc?)
. . . —1 increases, distinctions between the exact relativistic and
stitute a family of r<_a|a_ted SVSte'.“S vyhose dynamics ON% onrelativistic cases become substantive, both qualitatively
would expect to be similabut not identical at small ener- 5,4 qyantitatively. The relativistic trajectories have higher
gies, w!th increasingly different beha.vlor. emerging as th?rrequencies and extend over a smaller region of (&)
energy increases. However, our examination of the symboligane than their nonrelativistic counterparts. Their trajectory
sequence of various equal-mass trajectories reveals a strofgiterns in the pretzel class also develop a slight “hourglass”
set of similarities, in that certain types of sequences are COMshape(narrowing with increasing in the smallx region) in
mon to all three systems over the energy range we consittomparison to the cylindrical shapes of their nonrelativistic
ered. We find that the types of motion exhibited by this fam-counterparts.
ily of systems may thus be divided into three principal At FM initial conditions, we find in general that the R
classes, which we denote by the names annuli, pretzel, argystem has greater energy than its corresponding N and PN
chaotic. These depart from other systems of nomenclatureounterparts. Hence in these cases we find that the R orbits
present in the literature, particularly in the field of dynamicalcover a correspondingly larger region of the\) plane and
astronomy(see, for instance, Refi23] for a general catego- have a higher frequency.
rization of trajectories, and Ref24] for an example of a
more detailed naming systgmAs will be seen, the above
labels are used to distinguish motion relevant to the three-
body system and are independent of other naming schemes. The annuli are orbits in which the hex-particle never re-
Before discussing each of these classes in detail, we mal@osses the same bisector twice. All such orbits have the
a few general remarks. First, within each class a further dissymbol sequenc8, and describe an annulus encircling the
tinction must be made between those orbits which eventuallgrigin in the p-\ plane.
densely cover the portion dfp,\) space they occupy, and As noted above, we see that some annulus orbits are qua-
those which do not. The latter situation corresponds to regusiperiodic and fill in the entire ringgenerating one of the
lar orbits in which the symbol sequence consists of a finiteclosed trianglelike shapes in the middle of the Poincae
sequence repeated infinitely many times. The former situation) while a choice few apparently repeat themselves after
tion corresponds to orbits that are quasiregular: the symbadome number of rotations about the origin. This latter situa-
sequence consists of repeats of the same finite sequence, lioh is illustrated in Figs. 4 and 5 for the N and R cases,
with an A motion added or removed at irregular intervals. respectively. In both of these cases a wide variety of patterns
These two types of orbits are separated in phase space leynerge contingent upon the initial conditions but indepen-
separatrixegtrajectories joining a pair of hyperbolic fixed dent of the system in question. Both these orbits and those
points. Regular orbits lie inside the “elliptical” region sur- that fill in the ring(not illustrated are “close to” an elliptic
rounding an elliptical fixed point; the quasiregular orbits lie fixed point; the difference between them is that in some cases
outside such a region. the normally quasiperiodic orbits have commensurate wind-
It is useful to further distinguish between the quasiperi-ing numbers, producing an eventually periodic orbit. As pe-
odic and periodic regular orbits. Quasiperiodic trajectoriesiodic orbits are difficult to find numerically, the orbits in the
closely resemble the related periodic trajectories, except thdigures are actually orbits that are very close to periodic or-
the orbit fails to exactly repeat itself and hence eventuallybits, so that the pattern of the periodic orbit is still visible. In
densely covers some region of phase space. Thus a qudatt they are quasiperiodic orbits about these higher-period
periodic trajectory displays a high degree of regularity. In thefixed points, which means that they will not cover the entire
system we study, this regularity is manifested by its periodicannulus, only bands of phase space.
symbol sequence. The classic example of this is a particle We find no qualitative distinctions between the N and PN
moving on a toru$' x St. The motion is characterized by its annuli up to the values of that we can attain numerically.
angular velocity around each copy 8¥: if the ratio of these However we do find that the R cases appear to undergo a
is rational, the motion will be periodic; if it is irrational, the slight rotation relative to their N counterparts agncreases.
motion will be quasiperiodic. For the system consideredThis is noticeable in the right-hand diagrams of Fig. 5, for
here, nonperiodic orbits with fixed symbol sequences are;=0.75 and#»=0.9.
guasiperiodic. They appear as a collection of closed circles, In Figs. 6 and 7 we plot the positions of each of the three
ovals, or crescents in the Poincaection. Orbits with sym-  bodies as a function of time in conjunction with their corre-
bol sequences that are not fixed, however, are distinctly natponding trajectories in thg,\) plane for FE conditions in
regular; we shall refer to them as quasiregular as notetoth the N and R cases. We see that at similar energies a
above. three-body system experiencing relativistic gravitation cov-
We also note that although the orbits of the nonrelativisticers the(p,\) plane in the hex-particle representation more
and relativistic systems realize the same symbol sequencesensely than its nonrelativistic counterpart, and induces a
important qualitative differences exist between these orbithigher frequency of oscillation. This higher frequency is also
for both the trajectories and the Poincaasetions. Consider a characteristic of the two-body systef6,9], and we have
comparison between each system at identical values of thebserved it to be a general phenomenon for all FE conditions
total energyH =Ey and the initial values ofd,\,p,), with  we have studied. The increased trajectory density for FE con-

The three system@, PN, and R we consider here con-

A. Annulus orbits
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2 -1 0 1 2 -2 -1 0 1 2
P P

FIG. 4. Examples of almost-periodic annuli for the N system; trajectories do not cover the entire annul@sibdad 200 time units
A wide variety of complex patterns can be found. The square indicates the intial valggs)pf~M initial conditions were employed.

ditions is also a phenomenon we observe to generally occifamilies contain one base eleméfdr example AB®) and a
for the three-body R system, presumably because both sysequence of elements formed by appendingfato each
tems were run for the same number of time steps, and thexisting sequence of As (for example,
relativistic one has a higher frequency. {AB3,A%B3 A%BS,...}). The result is that the phase space
A comparison of orbits using FM initial conditions is also has an extremely complex structure that we shall discuss
instructive; Fig. 8 provides an example. At FM conditions fyrther in Sec. VI. It is differences in this structure and the
the R system typically has slightly higher energy, and sGnapes of the corresponding orbits that show the most re-
covers a considerably larger region of the\) plane more  ariaple distinctions between the R, PN, and N systems.
densely than its nonrelativistic counterpart, venturing slightly In the above sequences, tB& sequence corresponds to a

T e e e 10, 60" SWing of he hexparticle around th orign, and the
P 9y . 9 X . resultant figures in thép,\) plane comprise a broad variety
terpart. However ag; gets larger it becomes increasingly

more difficult to find initial conditions such that both the N O.f tW'.Sted.’ pretzel—hlge_ﬁgqres, from whence their name. This
and R annuli are close to periodic orbits. The bottom dig Situation is a key distinction between the systems we study

gram in Fig. 8 is an example aj=0.5; the N system has and the wedgezsysteﬁi4] discussed earlie_r. In th_e_ Wet%ge
about 14% more energy than its R counterpart, and so it nmﬁyStemB a't]d B® sequences are observ_ed in additiorB .
covers a larger region. sequences; we ob_serve only the latter |n.aII. pretzel .orb|ts.
Before proceeding to a detailed description of this class,
we summarize the main results of our investigation. Again
we have both regular orbitsvith the symbol sequence above
Pretzel orbits are those in which the hex-particle essenrepeatingad infinitum) and nonregular orbits that densely fill
tially oscillates back and forth about one of the three biseca cylindrical tube in thdp,\) plane. The periodic and quasi-
tors, corresponding to a stable or quasistable bound sulperiodic orbits we find in the N system appear for the most
system of two particles. The existence of a two-particlepart to have counterparts with the same symbol sequence in
bound subsystem has already been discovered in the Newhe R system(though not in the PN systemin general,
tonian casd3]. Symbolically such orbits can be written as orbits in the R system have kinks about twe O line relative
Hijk(A”iB3mi)'k, wheren;,m; I e Z", with somel, possi- to their N and PN counterparts; for example, a cylindrical-
bly infinite. The resulting collection of trajectories is ex- shaped trajectory in the N system looks like an hourglass in
tremely diverse. Many families of regular orbits exist. Suchthe R system. The PN system exhibits chaotic behavior not

B. Pretzel orbits
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n=0.1

0.6

0.4

“ A
1 /17
) 02 BRI Ay L.Q. \

-0.2

-0.4

-0.5 0 0 0.5

FIG. 5. A sampling of densely filled annuli for the R solution. All orbits were run for 200 time steps using FE initial conditions. Densely
filled annuli can be found for all values af As 7 increases, the R annuli rotate with increasing angle relative to their N counterparts; the
orientation(clockwise or anticlockwisedepends upon the initial conditions.

seen in the N and R systems, a point we shall discuss in toree-body system. These orbits are distinguished by having
subsequent section. a very high-frequency low-amplitude oscillation between
Figures 9 and 10 illustrate the development of a trajectoryywo of the particles; this pair in turn undergoes a low-
in the (p,\) plane for FE conditions at small and large valuesfrequency high-amplitude oscillation with the third. The tra-
of 7. As expected we see that for small(=0.05 there is  jectories for two of the particles are nearly indistinguishable
very little distinction between the N and R motions, consis-qye to their close proximity; the inset in the figure provides a
tent with the smooth nonrelativistic limit of E424). How-  ¢joseup of the oscillations in this two-body subsystem near
ever at larger (#=0.89 the hex-particle traces out signifi- gne of its extrema. The N oscillations are parabolic in shape
cantly different trajectories in the N and R systems. Th§ypereas the R oscillations have the shoulderlike distortion
qscnlanon frequency is higher and the trajectory is moreg, o previously in the two-body systd6l. These diagrams
::gztl?’n C%rg'rlfds’ zztnu{rgsé %’mvr\?eegslsgatsee:"g‘ évgg;?;grgé?o"lllustrate that under appropriate initial conditions two bodies
) y e . chan tightly and stably bind together in both the N and R
d|fif[-:-rent Wﬁ?;.e pattern in 'T.Iga .10 lforheach_ caset, Wlf[ht thte Rsystems(even at substantively largey), behaving like a
patiern exnibiiing a near-cylinerical shape in contrast to its single body relative to the third. N(;te that the higher-

counterpart with oscillating sides. L . .
In Fig. 11 we compare the positions of each of the thred'€duency oscillations in the R cagat the same energy as in

bodies as a function of time in conjunction with their corre- € N caseis a general characteristic distinguishing the R
sponding trajectories in thg,\) plane for two slightly dif- and N systems. _ .
ferent FE conditions in the R system. The fishlike diagram We can obtain interesting sequences of orbits of the hex-
corresponds to aAB® symbol sequence: we see that two of particle by controlling the FM initial conditions. Consider,
the particles oscillate quasiregularly about each other, thifr example, Fig. 13, which consists of members of a family
pair undergoing larger-amplitude and lower-frequency oscil-of quasiregular orbits given byA' B3} for the N case. These
lations with the third. A slight change of initial conditions snakelike orbits have two sharp turning points separated by
yields the strudel-like figure; here we see that one particlsome numben of bumps, and correspond to sequences of
alternates its oscillations with the other two, maintaining a2(n+2) circles in the lower portion of the Poincasection.
near-constant amplitude throughout. Such orbits have been shown to exist for arbitnaiy the N

We compare in Fig. 12 pretzel orbits with the same FESysterm 14]. The corresponding situation also occurs in the R
conditions in the R and N cases plotted as trajectories in thease where the outline of the “snake” takes on an hourglass
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n=1.5

Patrticle Positions, R

0 10 20
Particle Positions, N t >

FIG. 6. (Color onling Annulus orbits(N, lower left; and R, upper rightwhich are close to the chaotic region separating annulus
trajectories from pretzel trajectories are shown in conjunction with their corresponding three-patrticle trajectories, where the vertical axis is
the displacement from the origin in units @M, c/4. These orbits have been run for 200 time steps using FE initial conditions. We have
truncated the three-particle trajectory plot after 80 time steps. The R trajectory is closer to the chaotic boundary than the N trajectory.

shape, indented along the=0 axis towards the origin. We pretzel pattern. However, in the R case, the force onr®ts
have found such orbits up to=15 and conjecture that they balanced at the midpoint between 1 and 2 unless 1 and 2
also exist for arbitraryr in the R and PN systems below the have zero momentum. The velocity dependence of the poten-
threshold of chaos. In the PN system, orbits of highare  tial will cause the balance point to be offset and, by symme-
gradually destroyed by chaos gsncreases, with more and {ry, we must have two such points. The departure from the
more of the pretzel region becoming chaotic. We have foundéwtonian system, and, hence, the distinction between the
some evidencésee the following sectiorthat this may also ~ different turning points, is more prominent gsincreases.

occur in the R system; if so, the onset of chaos will be much ©Overall the variety of orbits that appear in the R system
less dramatic than in the PN case. appears to have a richer and more detailed structure than that

In Fig. 14 we compare orbits with the symbol sequenc of the N system; for example, there are indentations in the

3 N owtie patterns, the cylindrical shapes in the N system be-
AB - Here We see anpther example of how relat_|V|st|c effect come hgurglass shapeys in the R sygtem and so or}1/, as can be
induce qualitatively different features not seen in the N sys- P

. L seen in Fig. 15.
tem. As 7 increases, orbits in the R system develop two
distinct turning points at different distances from the0 ) _
axis. This is particularly evident fop=0.75. There is also C. Chaotic orbits
the development of a kink at the right-hand side of the boo- The chaotic orbits are those in which the hex-particle
merang figure that becomes increasingly more pronounce@anders betweeA motions andB motions in an apparently
with increasingg. irregular fashion. These orbits appear as densely filled re-

We suspect that the additional turning points in the Rgions on a surface of section as will be discussed in Sec. VI.
system are due to the momentum dependence of the relatiGuch orbits eventually wander into all areas of the plane
istic potential that is not present in the Newtonian systemallowed by the energy constraint—a trait neither the annuli
The\=0 axis corresponds to particle 3 being at the midpointnor the pretzels possess. The major area of chaos found in all
between particles 1 and 2. In the N case, the gravitationahree systems occurs at the transition between annulus and
force on particle 3 is exactly balanced and the relative velocpretzel orbits, where the hex-particle passes very close to the
ity of particle 1 with respect to particle 2 will continue the origin.
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FIG. 7. (Color online Annulus orbits(N, lower left; and R, upper rightshown in conjunction with their corresponding three-particle
trajectories. These quasiregular orbits have been run for 200 time steps using FE initial conditions. We have truncated the three-particle
trajectory plot after 30 time steps.

The most striking feature of this class of motions is thecases. That is, at a fixed energy, initial conditions that pro-
distinction between the PN system and its N and R counterduce a chaotic trajectory in the R system will not, necessar-
parts. We find that the PN system possesses an addition@), give a chaotic trajectory in the N system, avide versa
area of chaos in the pretzel region, a phenomenon we shall |n all three systems there is a region of ch&B4) be-
discuss in more detail in the following section. tween the pretzel and annulus type orbits, though in the R

We can observe the transition to chaos in the pretzel resystem it appears to shrink agincreases. Second, in the PN
gion of the PN system by slowly adjusting the valuesdbr  system, chaotic pretzel orbits are also observed, becoming
FE initial conditions. Figure 16 illustrates an example. Weilder and more prevalent with increasing These chaotic
begin with a pretzel diagram aj=0.1. As 7 increases, the pretzel orbits, unlike their R counterparts, do not cover the
trajectory changes shape but remains regular uptiD.22  entire(p, \) plane, as can be seen from Fig. 16.
where the diagram appears slightly less orderedy#A0.28

the hex—particle begins to irregular'ly traverse increasingly VI. POINCARE PLOTS
larger regions of the€p, N\) plane, signifying the onset of )
chaos. We turn now to consider the Poincasections for the

We plot in Fig. 17 the transition in the R system with ~ three systems N, PN, and R. These are constructed by plot-
=0.5 from an annulus to a pretzel orbit. The transition,ting the square of the angular momentupﬁ,( labeled as)
which goes from left to right and from top to bottom with of the hex-particle against its radial momentupg ( labeled
decreasingnitial angular momentum, passes through a chaasx) each time it crosses one of the bisectors. Our conven-
otic set of orbits. The chaotic trajectories pass very close ttions for these quantities are the same as in Ref], apart
or through the origin, a characteristic feature for this regionfrom an overall normalization for each section that we plot.
of chaos in all three systems. All bisectors are equivalent since all three particles have the

The relation between chaotic orbits in thex plane and same mass, and we can plot all crossings on the same surface
the corresponding motion in the three-body system is shownf section. This allows us to find regions of quasiperiodicity
in Fig. 18 for the R and N systems. Note that different FEand chaos as well as giving us a good estimate of the loca-
initial conditions were used to show a chaotic orbit in bothtion of points of periodicity.
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0.1 0.032664 (R—outer)
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1n=0.11223 (R-outer) M=0.093567 (N—inner)
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FIG. 8. (Color onlineg A comparison of annulus orbits at identical FM conditions, for three similar values Wfith identical initial
conditions, the relativistic trajectories typically have greater energy and so cover a larger regiofppf)théane. However, for some initial
conditions the N system has a larger energy and so covers a correspondingly larger region. All orbits were run for 200 time steps.

Each of these systems is governed by a time-independestis on the Poincarsection. This phenomenon is called a
Hamiltonian with four degrees of freedom. Hence the totalkolmogorov, Arnold, and MosetKAM ) transition[25]. Is-
energy is a constant of the motion, and the phase space ftands of regularity may remain for quite some time, and gen-
each system is a three-dimensional hypersurface in four dierally have an intricate fractal structure. For sufficiently large
mensions. If an additional constant of the motion exists, theerturbations, however, systems typically become almost
system is said to be integrable, and its trajectories are reully ergodic[26].
stricted to two-dimensional surfaces in the available phase The structure of the Poincasection in the N system has
space. Since trajectories may never intersect, such a coalready been studied to a certain extent in the wedge prob-
straint imposes severe limitations on the types of motion thalem. In the equal-mass case three-body motion in the N sys-
integrable systems can exhibit: trajectories may be periodidem corresponds to motion of a body falling toward a wedge
repeating themselves after a finite interval of time, or quasiwhose sides are each at angles 30° relative to the vertical
periodic. The trajectories of an integrable system always apaxis [14]. The outer boundary of the plot is determined by
pear as lines or dots for quasiperiodic and periodic orbitsthe energy conservation relatidf0), which is
respectively, on the Poincamection, as they comprise by
definition the intersection of two two-dimensional surfaces.
This contrasts sharply with the case when a system is com-
pletely nonintegrable, so that all orbits move freely in three

dimensions. The extra degree of freedom permits orbits tQyhere the energy —3mc? has been normalized to unity
visit all regions of phase space, and the system typicallymore generallyx?<2/35— z for the unconstrained normal-
displays strongly chaotic behavior. Such trajectories appeggations we employ Equality in Eq.(51) holds when the
as filled-in areas on the Poincameap. o hex-particle is at the origin, and yields the phase-space limit,
When an integrable system is given a sufficiently smallsince any departure from the origin will reduce the values of

perturbation, most of its orbits remain confined to two-(x 7 relative to this bound. Another relevant boundary is that
dimensional surfaces. However, small areas of chaos appegiven by

sandwiched between the remaining two-dimensional sur-
faces. As the magnitude of the perturbation is increased, the
chaotic regions grow, and eventually become connected ar- (x—2\/§)2$1—z, (52

x°<1-z, (51)

016214-14



CHAOS IN AN EXACT RELATIVISTIC THREE-BODY . .. PHYSICAL REVIEW E69, 016214 (2004

0.2
015}
0.1 0.1}
0.05
A 0 0
-0.05
-0.1 -0.1
-0.15
'9’5 01 . -0.01
0.15 0.15
0.1 H 0.1
0.05 0.05
Ao 0
-0.05 -0.05
-0.1 -0.1
—0.15} -0.15
-0.01 -0.01

FIG. 9. (Color onling A time series evolution for a pretzel orbit shown simultaneously in tHedlid/red and R(dotted/blug systems
att=3, 6, 11, 16, 25, and 35 units foy=0.05 at FE conditions. The trajectories in the two systems are very similar at such low energies.

which is the energy constraint after &ncollision has taken are all commensurate with those of the wedge sydtefh
place. Equality corresponds to the point at which all threewherein it is shown that the phase-space topology is inde-
particles are coinciderithe hex-particle is at the originAll - pendent of the total energy. Hence, the structure of the Poin-
points in phase space satisfying E§2) will undergo anA  caremap (i.e., the separation into three regions: annuli and
collision (the A region) whereas those violating this inequal- pretzel separated by a region of chaissthe same for al
ity will undergo aB collision (the B-region. Inevitably a in the N system. This is not necessarily true in the R system
point in theA region will venture into théB region since the g certainly not true in the PN system.
interaction is gravitational and collisions with the third par-  \ye pause here to comment on the symbol sequences cor-
ticle cannot be a\;]mded._Herr]]ce the rebglon_ has no fixed regnonding to particular patterns. For example, the two large
points. Hovyever L & region has a subregion containing a q;cje5 ohserved just below the annulus region correspond to
fixed point in which theB collisions are infinitely repeated o= .
— i _ _ the boomerang-shaped orbita B*). The next set of circles

(the B motion), corresponding to the annulus orbits. . 553 .

) . ; .. will be A°B*, and so on. The collections of crescents be-

The Poincare section for the N system is shown in Fig, .
tween these sets of circles correspond to sequences

19. There is a fixed point at the center of the plot surrounded—; P
by a subregion of near-integrable curves. All of the annuli*B"A°B”, AB°AB°A°B®, and so on. Of course, for each

are contained within the large triangle surrounding this recircle in the Poincare plot there is in fact a continuum of
gion; its boundary contains a thin region of chaos, beyond0ssible circles, whose diameter depends on the initial con-
which is the pretzel region. ditions. At the center of this family of circles is a dot corre-
The structure of the lower part and upper corners of Figsponding to the periodic orbit in question.
19 is extremely complicated and intricate, as illustrated by Another observable feature in the Poincplet is a series
the insets. The chaotic regions are confined and not simplgf closed circles that lies in a triangular pattern in the annu-
connected. Though not integrable, the N system shows ks region. These correspond to quasiperiodic orbits about
high degree of regularity. There is a self-similarity within the the periodic annuli with higher period, for example, Figs. 4
pretzel region as illustrated in Fig. 20, with the circlesand 5.
bounding the quasiperiodic near-integrable regions repeating Turning next to the R system we find the result that all of
themselves on increasingly small scales. We find that mothe features of its Poincangot are qualitatively similar to
tions in the N system are completely regular, as evidenced bthe N system over the range gfthat we were able to inves-
the absence of dark areas in the Poincaetion(except for  tigate. This is remarkable considering the high degree of
the one region of chaos mentioned previolsihese results nonlinearity of the relativistic Hamiltonian given by Eg.
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FIG. 10. (Color online N and R pretzel orbits evolving simultaneouslytat3, 6, 11, 16, 26, and 36 units foy=0.85 with FE
conditions. The N trajectorysolid/red extends considerably further from the origin, while the R oftitted/blue evolves with a higher
collision frequency. The R orbit has stabilized into a quasiperiodic pattern, whereas the N orbit will eventually form a densely filled cylinder.

(24). The annulus, pretzel, and chaotic regions all retain theigions of the Poincarenap clearly display the same patterns
same basic structure, as seen in Fig. 21, including the selbf series of circles as occurring in the nonrelativistic case and
similar structure in the lower pretzel region as in Fig. 20. no sizeable connected areas of chaos are present. This is
However, we find that the plot is no longer symmetric clear from Fig. 23, which shows a sequence of successive
with respect topz=0, and that the Poincare plot is asym- closeups of the pretzel region for the=0.75 case. However
metrically deformed relative to its counterpart in the N sys-We do find that aty=0.75 the thickness of the lines between
tem, the deformation increasing with increasingas Figs. the near-integrable elliptic regions increases, suggesting ei-
21 and 22 illustrate. Superficially this deformation is some-IN€r the eventual onset of KAM breakdown or a relativistic
what puzzling: the trajectories of a subset of the annu|us_typgeneral|zat|0n of the fractal pattern seen in the N system. We

orbits always have positive radial velocities when they inter- efine KAM breakdown as the merging of two separated
sect one of the hexagon's edgénd the tendency of all c_haotlc regions, such as _the behavior seen in the pretzel re-
annulus orbits is to havag>0 at the bisectojs However, it gion of the PN system agincreases. Unfortunately we have
occurs because the Ha?niltonian given by E2d) is n,ot not been able to investigate whether or not KAM breakdown

. . der the di b h occurs for higherp values in the R system due to a lack of
Invariant under the discrete symmefoy— —p;, but rather computer resources.

is invariant only under the weaker discrete symmetry The pN system has a considerably different Poincare plot,
(pi,€)—(—pi,—€). The parametee=*1 s a discreté CON-  ghown in Fig. 24. While it retains the— — p; symmetry of
stant of |ntegrat|0n that is a measure of the flow of time Ofits N_System predecessor, |t appears to undergo a KAM tran-
the gravitational field relative to the particle momenta. Wesition from re|ative|y 0rder|y behavior in the N System to
have choser= +1 throughout, which has the effect of mak- highly chaotic behavior ay=0.3, as the series of Poincare
ing the principal features of the Poincaptot “squashed”  sections in Fig. 25 demonstrates. A+0.21, the lines across
towards the lower right-hand side of the figure relative to itsthe bottom of the figure have widened slightly, though the
counterpart in the N system. This deformation would be to-overall behavior is still quite regular. Agincreases to 0.26,
ward the lower left had we choses —1. It is reminiscent of  larger regions of chaos become evident around the edges of
the situation for two particles, in which the gravitational cou-the groups of ellipses that traverse the lower regions of the
pling to the kinetic energy of the particles causes a distortiorfigure. At 7=0.3, most of the lower section of the Poincare
of the trajectory from an otherwise symmetric pattgsro], section has been engulfed by a chaotic sea; only a few non-
becoming more pronounced gsincreases. connected islands of regular motion remain. This contrasts

Remarkably we do not find a breakdown from regular tosharply with the behavior of the R system at similar values
chaotic motion asy increases in the R case. The lower re-of 7.
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FIG. 11. (Color online Pretzel orbits of the relativistic systety=0.75 with the corresponding three-particle time evolution: a regular
AB® orbit pattern(top/upper right, and similar irregular orbit pattern, at slightly different initial conditigbsttom/lower lefi. The vertical

axis is the displacement from the origin in units«¥l,,c%/4. Both cases were run for 200 time steps, with the three-particle trajectory plot
truncated after 80 time steps.

FIG. 12. (Color online A pret-

n=075 zel orbit with a large number of A
collisions before theB® collision
sequence, run with FE initial con-
ditions. Particles 1 and Zinter-
weaving small-amplitude lings
remain very close together, collid-
ing frequently. They act much like
a single body from the viewpoint
of particle 3 (large amplitude
line); the above trajectory bears a
Balele Foslilens s_trong rese_mblance to the trajecto-

’ ries found in the two-body case.
The inset shows detail near one of
the peaks in the R system.

Particle Positions, R

-5 I 1 I 1 I 1 I )
0 10 20 30 40 50 60 70 80
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FIG. 13. A family of quasi-
regular snakelike orbits for the N
system, each with two sharp turn-
ing points separated by some
numbern of bumps. All were run
for 200 time steps with FM initial
conditions; the square indicates
: : : -3 : : : . o
-0.01 -0.005 0 0.005 0.01 -0.02 -0.01 0 0.01 0.02 the starting point in the(p, \)

P P plane. These orbits have the sym-

3 bol sequenc&™B? for modd, and

) correspond to sequences of even
number [2(n+2)] of circles in
the lower portion of the Poincare
section. The value oh increases
with decreasing initial angular
momentum. It appears that such
orbits exist for arbitraryn; we
have found them up ta=15.

-3
2005 0 005  -0.04  -0.02 0 0.02 0.04

The differences between the R and PN cases are not arfieature enforces considerable structure on the phase
facts of the difference in scalings; when trajectories with thespace—a feature that is absent from the PN system.
same energy are compared, the PN ones are visibly more
chaotic than both the N ones and the R ones. The apparent VIl. DISCUSSION
dearth of chaos in the R system is somewhat surprising, as it
indicates that most trajectories are effectively restricted to We consider in this section some general features of the
move on two-dimensional surfaces in phase space, as in tHgotion of the three systems we have studied.
N case. This occurs despite the fact that the R system appearsWe find for each system that th& symbol sequence al-
not to be integrabldchaotic orbits separating the annulus ways occurs for all values of that we were able to inves-
and pretzel regions do seem to ekifdr any » within the tigate. This leads to a rich variety of annulus diagrams, sym-
range investigated. Nonetheless, clearly some underlyingnetric about thep=0 axis for the N and PN systems, but

1 1
05
= 0} y FIG. 14. An orbit with the
symbol sequencAB?2, shown for
05 the N system(plot 1) and the R
system at differenty values(plots
-1 . . . - -1 2-4). All figures were run for 200
-0.2 0.1 0 0.1 02 0.2 -0 0 0.1 0.2 time steps with FM initial condi-
3 tions. Note that ag increases, the
5 5 R trajectories develop a kink
along then=0 axis, and begin to
| 1 display a double-banding pattern
with two turning points at two dis-
< 0 <0 tinct distances from thep axis
aboutA=0.
1 _1
-2 -2
-3 ! -3
-0.4 -0.2 0 0.2 0.4 -0.4 -0.2 0 0.2 0.4
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n=0.1
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0 p0.005 0.01 0.015

FIG. 15. Densely filled orbits in the pretzel class for the R system at varying valugswif for 200 time steps with FE initial conditions.
A diagram for the N system a$=0.2 is included in the upper left figure for comparative purposesyfgreases, the R orbits take on an
increasingly pronounced hourglass shape. In the R system, we do not observe the breakdown to chaos seen in tliEigPN.@ase
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FIG. 16. Transition to chaos
for pretzel-type orbits in the PN
case. All four trajectories were run
for 200 time steps with the same

FE initial conditions(with varying
7). As 7 increases, we see the
densely filled pretzel regions be-
come less ordered. Aty=0.28
(lower-right ploy we see the onset
of chaos signified by an erratic
trajectory exploring a much larger
area in thep-\ plane.
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1. Wide annulus 2. Chaos
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FIG. 17. Transition from an
annulus to a pretzel orbit through
a chaotic region in the R system
for »=0.5 as initial angular mo-
mentum in the(p, \) plane de-
creases. All diagrams were run for
450 time steps. Note that the cha-
otic trajectories pass very close to
or through the origin.

FIG. 18. (Color online Cha-
otic orbits in the region of phase
space separating annulus and pret-
zel trajectories. Shown here are
trajectories for Rupper righj and
N (lower left) systems in thép,\)
plane(run for 300 time stepsand
for the three-body systentrun-
cated at 120 time step<E initial
conditions were employed, but the
initial values of ,\,p,) differ
for the R and N trajectories
shown. In the three-body system,
the particles spend most of their
time in a configuration where one
middle (m) particle remains essen-
tially motionless(the vertical axis
is the displacement from the ori-
gin in units of kMc%4). The
motion appears very close to regu-
lar, its erraticity apparent in slight
irregularities between the number
of crossings for which one particle
remains almost stationary. This
causes then particle to alternate
in an irregular fashion.
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(a) Lower-left Pretzel Orbit region

FIG. 19. The Poincarelot of
the N system. The squares denote
the parts of the plot magnified in
the insets.

(b) Upper Chaotic Region

with the axis of symmetry rotated slightly for the R system,with increasingz in either the PN or R systems. However
the rotation increasing with increasing We conjecture that proving this would require a relativistic equivalent of the

B motion takes place for arbitrarily larggin each of the PN  discrete mappings for the N case constructed in Ref|

and R systems. It would be interesting to test this We found that the pretzel-type orbits display a remarkable
conjecture—were it not to hold it would mean that a highly fichness of dynamics for all three systems. As the angular
relativistic system must either experience a full KAM break-momentum of the trajectory in question decreases, the num-
down or else repeatedly develop temporary quasibound twd2er of successiveA collisions increases before the hex-
body subsystems. One thing substantiating this conjecture article sweeps around the origin in tB¢ sequence. For
that there is no evidence that the annulus region is shrinkingxample, the trajectorfB® (the simplest sequence aftB}

042} ve v o o oo
0.1
N0.06|
0.04f; FIG. 20. A series of successive
closeups of the lower section of

the Poincareglot of the N system.
This illustrates the self-similar

X ' structure in the pretzel region that
AT repeats at increasingly small
0.035} N
.. - 0.033 . scales. The limiting factor at very
I TR ey » : . Ny small scales is the number of tra-
0.03r <. T 0.032 e - i ; i i
L jectories that we included in the
e plot.
0.025 i B R N N0.031
N <l .
— 0.03
0.02f —
S - 0.029
0.015}
e i - 0.028
1.7 1.8 1.9 2 1.9 1.95 2
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0.08

0.07

006! Ly ) FIG. 21. The Poincarelot of

: YR the R system aty=0.1. The left
inset provides a closeup of the
chaotic region at the top of the
diagram; note that it is similar to
the N system, but distorted in
shape. The right inset is a closeup
of the structure in a pretzel region
in the lower right of the diagram;
it is similarly distorted relative to
the N system.

0.05

Nn0.04

0.03

0.02

0.01

corresponds to a boomerang-type orbit and appears as twbands” of phase space that the trajectory covers, and cor-
closed loopginvariant curveson the Poincare section. The respondingly, different radii of circles in the Poincasec-
next simplest sequence i&°B3, which corresponds to a tion. Between these regions, the orbits’ sequences are mix-
bowtielike orbit, and generates three slightly smaller loopsures of AB® and A2B3. This reasoning can be extended to
on the Poincarsection. more generaA"B®™ motions. We conjecture that the only

Even in the small region of phase space between thesalowed nonchaotic orbits—relativistic and nonrelativistic—
two simple orbits a complex tangle of periodic and quasip-are of the formHi,j’k(A”iBmJ‘)'k with n;,m; finite, corre-
eriodic orbits exists. For each of the patterns above, a familgponding to increasingly complex weaving patterns. We ex-
of orbits exists corresponding to different widths of the pect this conjecture to hold—at least for the rangeydhat

FIG. 22. The Poincarelot of
the R system atyp=0.75. The
upper-right inset provides a clo-
seup of the chaotic region at the
top of the diagram; it is now con-
siderably narrower than that for
lower values ofy. The lower-right
inset is a closeup of the structure
in a pretzel region in the lower
right of the diagram. The lines be-
tween the various ellipses have
slightly thickened, possibly sug-
gesting the preliminary stages of
KAM breakdown.

(a) upper chaotic region

(b) lower right pretzel region

1 1.2
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n=0.75

FIG. 23. A series of successive
closeups of the lower-right section
(pretzel regioh of the Poincare
plot of the R system at=0.75.
While this region is still highly
regular, the lines joining the el-
lipses and the waviness in the
solid lines are suggestive of the
..... e > P early stages of KAM breakdown.

we could access numerically—for both the R and N systemsection. We conjecture that there is a 1-1 correspondence
[so that the pretzel class can be divided into countably manpetween rational numbers and periodic orbits in this region
distinct subclasses: one for each &gt,m; I}, wherei, j, k of phase space, both for the N and R systems. This would
run from 1 to some positive integerbut not for the PN  give the lower section of the Poincapéot a fractal structure
System, as it experiences KAM breakdown. as the _patterns of circles, eIIipseS, and lines is repeatEd on
If the set of integerd, is finite, then the sequence is arbitrarily small scales as the hex-particle’s angular momen-
regular, leaving bands of phase space untraveled, and appefif™ approaches zero.
ing as a series of closed crescents or ellipsoids on the Poin-
caresection. If, however, the sequence of integgrsiever
repeats itself, then the trajectory will fill the available phase In (14+1) dimensions the degrees of freedom of the gravi-
space densely, appearing as a wavy line on the surface ddtional field are frozen. One therefore expects the motion of

VIIl. CONCLUSIONS

FIG. 24. The Poincarplot for
the PN system ay=0.21. Unlike
the R system, it is qualitatively
similar to the N system in terms of
symmetry. However, the chaotic
regions have increased in size,
with the pretzel region being on
the threshold of KAM breakdown.
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FIG. 25. A closeup of the
Poincareplots for the PN system
for increasing values ofy. The
diagrams are all of the same lower
part of the section. We see clear
evidence of KAM breakdown ag
gets larger.

-0.15 -01

a set ofN particles in curved space-time to be described by anitial conditions. Stable bound subsystems of two particles
conservative Hamiltonian. We find this to be the case for thexist for each system. Chaotic orbits have no regular pattern,
three-body system we have studied. By canonically reducingnd correspond to the case when the hex-particle crosses the
the N-body action(1) to first-order form we derived an exact origin. For energies close to the total rest energy we find that
determining equation of the Hamiltonian from the matchingall of these types of orbits are virtually indistinguishable for
conditions. To our knowledge this is the first such derivationeach of the N, PN, and R systems.
for a relativistic self-gravitating system. The canonical equa- (3) We find that differences between each system become
tions of motion given by the Hamiltonian can be explicitly more pronounced ag increases. In general, orbits in the R
derived from this equation and then numerically solved.  system are of higher frequency and cover a smaller region of
We recapitulate the main results of this paper. the (p,\) plane than those of its N system counterparts at the
(1) We obtained the post-Newtonian expansion of the syssame energy. If the same initial conditions are posed for each
tem we studied, along with its nonrelativistic limit. By com- system, the motions differ considerably, with the R system
paring these two systentBN and N, respectivelywith their ~ having more energy and covering a larger region of(ghe)
relativistic (R) counterpart we were able to study quantita- plane. Annulus orbits in the R system have a symmetry axis
tively the distinctions between each of these systems. Therhat is rotated slightly relative to their N and PN counter-
are two spatial degrees of freedom and two conjugate magparts. Pretzel orbits develop an hourglass shape in the R
menta in each, and so the systems are most easily studied bystem that is not seen in the N system, and additional turn-
making the transformation®9)—(31). This yields the hex- ing points appear for these orbits that are absent in the N
particle representation of the system: the three-body N syssystem.
tem is equivalent to that of a single particle moving in a (4) We find that the qualitative features of the Poincare
hexagonal linear well. The PN and R systems distort thisections for the R and N systems remain the same for all
well by making the sides concave and convex, respectivelyalues of  that we were able to study. This is remarkable
with the latter system inducing momentum-dependengiven the high degree of nonlinearity in the former. However,
changes to its shape. the R system has a weaker symmetry than its N counterpart
(2) We found that in the equal-mass case each systerand so its Poincare section develops an asymmetric distor-
exhibited the same three qualitative types of motion that weion that increases with increasing
classified in the hex-particle representation as annulus, pret- (5) We find that the PN system experiences a KAM break-
zel, and chaotic. Annulus orbits correspond to motions indown that is not seen in the R and N systems. This takes
which no two particles ever cross one another twice in sucplace for somen= 7., in the range 0.2& 7.,<0.26: lines
cession. Annuli can be either periodic, quasiperiodic, orseparating distinct near-integrable regions become increas-
densely filled. Pretzel orbits correspond to motions in whichingly wider asy increases, degenerating into chaos.
a pair of particles cross each other at least twice before either A number of interesting questions arise from this work.
crosses the third. This yields a very broad variety of increasFirst, it would be of considerable interest to explore the R
ingly intricate patterns for each system, dependent upon thgystem in the largey regime. This will require considerably
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more sophisticated numerical algorithms than we have been X<z (—) region,
using which avoid the numerical instabilities we encoun-

tered, as well as perhaps employing a time parameter that igithin each of whichy’ is constant:
not the coordinate time. Second, an investigation of the

unequal-mass case should be carried out to see if the com- —eX—Y(py+pyt+ps) (+) region
mon features between the N, R, and PN systems are retained.
In the N system, when masses are unequal, simply connected , —eX+(p1—p—ps) (1) region
regions of global chaos appear; the relationship of these re- X = 1 > . (A5)
gions to their PN and R counterparts remains a subject for —eX+a(pitp,—pg)  (2) region
future consideration. Work on the unequal-mass case is in — eX+1(py+po+ps) (—) region.
progresq 27].
It is straightforward to solve the homogeneous equation
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¢1(X):A1e("/2)K1X+ Ble—(K/Z)Kl)(,

APPENDIX A: SOLVING THE THREE-BODY ¢2(X):A26(K/2)K2X+ Bze—(K/Z)Kz)('
CONSTRAINT EQUATIONS

(A6)

(l),(X):A,e(K/Z)K_X'F B,ei(K/Z)K_X,
The standard approach for investigating the dynamics of
particles is to get first an explicit expression of the Hamil-where
tonian and to derive the equations of motion, from which the
solution of trajectories are obtained. In this appendix we € €
show how to derive the Hamiltonian from the solution to the <+=X+ 7(P1+P2+Pa),  Ki=X—=7(p1=P2~Pa),
constraint Eqs(22) and (23) and get an exact equation ex-
pressing the Hamiltonian as a function of the phase-space €
degrees of freedom for a system of three particles. Ky=X— Z(p1+ P>—P3),
Defining ¢ and y by

V=—4]| , =x', Al €
n|¢| mT=X (A1) K_EX—Z(p1+p2+p3). (A7)
the constraint$22) and(23) for a three-body system become
5 For these solutions to be the actual solutions to(Bg) with
Koo, Ky o= 6 function source terms, they must satisfy the following
_— e + —
Ad 4 x)°¢ 4{ Pitmyh(zy)6(x~2,) matching conditions at the locations of the particbes
=21,2p,23"
+\p3+ m3h(2) (X~ 2,) nee
Z)=d(z)=d(z7), A8a)
I (ze) 8(x—29)}, (A2) b(21) = ¢1(z1) = ¢(z1) (
Z5)=o(25)= P(2,), A8b
Ax= = HP18(x=22) + Podlx—2,) + Padlx—2)]. )= bl 2)= 02 (A8D)
A3
A3 b (25)=$al29)= B(25), (A80)

The general solution to EGA3) is

$L(20) = di(2)= 7T MEb(z), (A8

x =~ #{P1/X— 24|+ Po|X—2Z,| + pa|x—z3|} — eXx+ €C

(A4)

The factore (e2=1) flips sign under time reversdl and has , Y _kK o2+ m2 A8
been introduced in the constanXsandC,, so that this prop- $1(22)~ $2(2) 4 P2+ Md(2o), (Age)

erty of y is explicitly manifested.

Our next task is to solve EqA2). Consider first the case , , K ——
23<2,<z;, for which we may divide space-time into four b2(23) = ¢~(23) = 7 VP3+ M3h(Z3). (A8f)
regions,

i The conditiong A8a) and(A8d) lead to
z;<x (+) region,

_ e(K/Z)K+ZlA++e*(K/2)K+ZlB+:e(K/Z)KlzlAl+e*(K/Z)Kllel
72,<x<z; (1) region, (A9)
z3<x<z, (2) region, and
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e(K/Z)KJerA\+ _ e—(l(/Z)KJFZlBJr

\/p§1+mzl+2Kl

_ (kI2)Kq24
e A
2K, !

vp1t 1_2Kle,(K,2

m Kizig Al10
+ 141B, .
T 1- (A10)

Then

Vpi+mi+2(K, +K;)

A= 2K, e*(K/Z)(KrKi)ZlAl
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Similarly, from Eqgs.(A8b) and (A8e) we obtain
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Finally, from Eqgs.(A8c) and (A8f) we get
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Since the magnitudes of both and y increase with in-

creasing x|, we must impose a boundary condition that en-
sures that the surface terms which arise in transforming the
action vanish and simultaneously preserves the finiteness of

the Hamiltonian. This condition can be shown to[be5]
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Since
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the boundary condition implies and
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Continuing, from Eqs(Al14a), (Al4b), (A22), and(A23), we
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and so Eq(A24) leads to
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Insertion of Eq.(A6) into Eq.(21) implies thatH=4X. We can rewrite Eq(A25) in terms ofH as
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which is the determining equation of the Hamiltonian for the system of three particles in the cagezgk z;.
The full determining equation is obtained with the permutation of suffixes 1, 2, and 3. To find it, we begin be rewriting the
somewhat cumbersome expressi@26) as
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or more compaCtIy
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_ . for the full determining equation, where
We obtain solutions when the particles are in a different

order by permuting the indices in the solution shown M =M;—€p;s;j , M= pi2+ miz, (A34)
above. This leaves the solution essentially the same, except

for a number of sign interchanges. First, consider what hap-

pens to thel; terms after the particles cross. Their general Li=H-M;— E( EJ: Piji),

form is

M, +L,, (A35)

Li*:<1_, H _ SijSik
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o _ o _ with z;=(z-12), s;=sgng;), and €* is the three-
with j #Kk. To determine the signs in the third term, note thatdimensional Levi-Civita tensor. It is straightforwar@ut
the L's above obey the following pattern: fdr;, we have somewhat tedioysto check that Eq(A33) indeed repro-

—ep; if j<i (thatis, if zj—z>0) and —e(—p;) if j>i  duces the correct determining equation for any permutation
(that is, if z;—z;<0). Careful inspection then shows that of the particles.
Li=H—M;—€(Zp;sji), wheres;j=sgng—z). The next task is to obtain the equations of motion from

TheL*’s are the same, except for the middle particle, forthe Hamiltonian. For th&l-body case we can use the canoni-
which theM; term flips sign. This means that we can write cal equationg5]
L =(1-TI;x+isijsik)Mi+L;, where the first term van-

ishes unless thith particle is in the middle. 'za=ﬁ, (A36)
Finally, consider what happens to terms of the favin JPa

+ ep; when the particles are permuted. Note that the sign of

the second term is always negative for the particle on the = — ﬁ (A37)

right, and always positive for the particle on the left. For the 2 9z’

particle in the middle, the sign is positive when it is added to

or multiplied by terms relating to the particle on its rigiht ~ where as previously mentioned the overdot denotes a deriva-

which case it plays the role of the leftmost partjcland  tive with respect td. Although we do not have a closed-form

negative when it is added to or multiplied by terms relatingexpression foH, we can nevertheless obtain explicit expres-

to the particle on its leftwhen it plays the role of the right- sions for ¢,,p,) by implicit differentiation of both sides of

most particlg. We can summarize this information by writ- Eq. (A33).

ing My; =M, — ep;s;; - For example, after differentiation of EgA32) with re-
Putting this information together, we obtain spect top; we find after some algebra,
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The expressions faz, and z; are extremely similar and we shall not reproduce them here. Similarly, differentiating Eq.
(A32) with respect taz; gives after some algebra,
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The other expressions are similar and we shall omit them Consider first the expressions in the exponentials. Some
here. algebra shows that
The components of the metric are determined from Egs.
(12), (12), (15), and (16) under the coordinate conditions Ho=(L1+9M19)Z13— (Lo+ M) 23
(19). It is straightforward to verify that insertion of the solu-

tions of the metric and dilaton fields also solve the particle _ _ PP
equationg17) and(18), as in the two-body cag®]. V2Hp E( 2|p|p"+ A V3 A V3 p*)'
(B1)
H_=(Lo+9MMr3) 25— (L3+ M3z
APPENDIX B: THE DETERMINING EQUATION IN A
3
HEXAGONAL COORDINATES —Hl = ﬂ) —e( |p|— - Nt iH &_{_pp
The form of the determining equation is given by Eq. V3 V3| J\v3
(24), and we wish to rewrite it in terms of the four indepen- 3
dent degrees of freedonp\,p,,p,), using the relations +=| py— &) N— L ) (B2)
(31) and (36)—(38). 2 V3 V3
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