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Chaos in an exact relativistic three-body self-gravitating system
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We consider the problem of three-body motion for a relativistic one-dimensional self-gravitating system.
After describing the canonical decomposition of the action, we find an exact expression for the three-body
Hamiltonian, implicitly determined in terms of the four coordinates and momentum degrees of freedom in the
system. Nonrelativistically these degrees of freedom can be rewritten in terms of a single particle moving in a
two-dimensional hexagonal well. We find the exact relativistic generalization of this potential, along with its
post-Newtonian approximation. We then specialize to the equal-mass case and numerically solve the equations
of motion that follow from the Hamiltonian. Working in hexagonal-well coordinates, we obtain orbits in both
the hexagonal and three-body representations of the system, and plot the Poincare´ sections as a function of the
relativistic energy parameterh. We find two broad categories of periodic and quasiperiodic motions that we
refer to as the annulus and pretzel patterns, as well as a set of chaotic motions that appear in the region of phase
space between these two types. Despite the high degree of nonlinearity in the relativistic system, we find that
the global structure of its phase space remains qualitatively the same as its nonrelativistic counterpart for all
values ofh that we could study. However, the relativistic system has a weaker symmetry and so its Poincare
section develops an asymmetric distortion that increases with increasingh. For the post-Newtonian system we
find that it experiences a chaotic transition in the interval 0.21,h,0.26, above which some of the near-
integrable regions degenerate into chaos.
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I. INTRODUCTION

TheN-body problem, that of determining the motion of
system ofN particles mutually interacting through specifie
forces, is one of the oldest problems in physics. It contin
to be of key importance over a variety of distinct subfield
including nuclear physics, atomic physics, stellar dynam
and cosmology. When the interactions are purely grav
tional the problem is particularly challenging. While an exa
solution is known for pure Newtonian gravity in three spat
dimensions in theN52 case, there is no corresponding s
lution in the general-relativistic case. This is due to dissi
tion of energy in the form of gravitational radiation, which s
far has necessitated recourse to various approxima
schemes.

Considerable progress has been made in recent yea
reducing the number of spatial dimensions. Indeed, nonr
tivistic one-dimensional self-gravitating systems~OGS! of N
particles have played an important role in astrophysics
cosmology for more than 30 years@1#. While used primarily
as prototypes for studying the behavior of gravity in high
dimensions, they also approximate the behavior of so
physical systems in three spatial dimensions. For exam
very long-lived core-halo configurations, reminiscent
structures observed in globular clusters, are known to exis
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the OGS phase space@2#. These model a dense massive co
in near-equilibrium, surrounded by a halo of high kine
energy stars that interact only weakly with the core. Furt
examples include collisions of flat parallel domain wa
moving in directions perpendicular to their surfaces and
dynamics of stars in a direction orthogonal to the plane o
highly flattened galaxy. In addition to this, a number of op
questions remain concerning the statistical properties of
OGS, including its ergodic behavior@3#, the circumstances
~if any! under which equipartition of energy can be attaine
whether or not it can reach a true equilibrium state fro
arbitrary initial conditions, and the appearance of fractal
havior @4#.

In a relativistic context, reduction of the number of spat
dimensions results in an absence of gravitational radia
whilst retaining most~if not all! of the remaining conceptua
features of relativistic gravity. Consequently one might ho
to obtain insight into the nature of relativistic classical a
quantum gravitation in a wide variety of physical situatio
by studying the relativistic OGS, or ROGS.

Comparatively little was known about the ROGS~even
for N52) until quite recently, when a prescription for ob
taining its Hamiltonian from a generally covariant minimal
coupled action was obtained@5#. In the nonrelativistic limit
(c→`), the Hamiltonian reduces to that of the OGS. Th
opened up the possibility of extending the insights of t
OGS into the relativistic regime, and indeed, considera
progress has been made. Exact closed-form solutions to
two-body problem have been obtained@6#. These have been
extended to include both a cosmological constant@7,8# and
electromagnetic interactions@9#, and a new exact solution to
©2004 The American Physical Society14-1
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the static-balance problem has been obtained@10#. In the
N-body case the Hamiltonian can be obtained as a se
expansion in inverse powers of the speed of lightc to arbi-
trary order, and a complete derivation of the partition a
single-particle distribution functions in both the canonic
and microcanonical ensembles@11#, providing interesting in-
formation concerning the influence of relativistic effects
self-gravitating systems. Very recently, formulation of t
ROGS has been extended to circular topologies@12# ~forbid-
den for the OGS!, and a newN-body dynamic equilibrium
solution has been found@13#.

In this paper we consider the three-body problem fo
relativistic self-gravitating system in lineal gravity. Its no
relativistic counterpart models several interesting phys
systems, including perfectly elastic collisions of a partic
with a wedge in a uniform gravitational field@14#, two elas-
tically colliding billiard balls in a uniform gravitational field
@15#, and a bound state of three quarks to form a ‘‘line
baryon’’ @16#. These systems have recently been shown to
subject to experimental test@17#. To our knowledge, ours is
the first study of three-body motion in a fully relativist
context.

We work with a two-dimensional~2D! theory of gravity
on a line~lineal gravity! that models 4D general relativity in
that it sets the Ricci scalarR equal to the trace of the stres
energy of prescribed matter fields and sources. Hence, a
(311) dimensions, the evolution of space-time curvature
governed by the matter distribution, which in turn is go
erned by the dynamics of space-time@18#. Sometimes re-
ferred to asR5T theory, it is a particular member of a broa
class of dilation gravity theories formulated on a line. Wh
singles it out for consideration is its consistent nonrelativis
~i.e., c→`) limit @18#, in general a problematic limit for a
generic ~111!-dimensional theory of gravity@19#. Conse-
quently it contains each of the aforementioned nonrelativi
self-gravitating systems as special cases. Furthermore,
duces to Jackiw-Teitelboim theory@20# when the stress en
ergy is that of a cosmological constant.

We have found that the most effective means by which
extract and study the dynamics of the ROGS is to work
the canonical formalism@5#. We formulate the three-bod
problem in relativistic gravity by taking the matter action
be that of three point-particles minimally coupled to gravi
We obtain an exact expression for the Hamiltonian in ter
of the four physical degrees of freedom of the system~the
two proper separations and their conjugate momenta!, given
as a transcendental equation. Under a simple coordi
transformation the nonrelativistic system is equivalent to t
of a single particle moving in a hexagonal-well potential
two spatial dimensions. The system we study is an ex
relativistic generalization of the hexagonal-well problem,
fording insight into intrinsically nonperturbative relativist
effects, as well as allowing a controlled study into its slo
motion, weak field limit so as to determine its relativist
corrections to leading order. When the masses of all parti
are equal the cross-sectional shape of the well in the non
ativistic case is that of a regular hexagon; unequal ma
distort this symmetry to that of a hexagon with sides of d
fering length. Relativistic effects maintain this symmetry
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both cases, but curve the sides of the hexagon outward.
The action principle underlying the dynamics of the sy

tem must include a scalar~dilaton! field @21# since the Ein-
stein action is a topological invariant in (111) dimensions.
We find upon canonical reduction that the Hamiltonian
given in terms of a spatial integral of the second derivative
the dilaton field, regarded as a function of the canonical v
ables of the particles~coordinates and momenta! and is de-
termined from the constraint equations. Solving these eq
tions matched across the particles yields a transcende
equation that determines the Hamiltonian in terms of
remaining degrees of freedom of the system whenN53.
Since we can determine from it the Hamiltonian in terms
the relative proper separations of the bodies and their co
gate momenta, we refer to this transcendental equation a
determining equation. From the determining equation we
derive the canonical equations of motion. The equations
considerably more complicated than their nonrelativis
counterparts, and we solve them numerically. We find
extremely rich and interesting dynamics dependent upon
initial conditions imposed on the system.

In order to have a controlled investigation and comparis
of the relativistic effects, we consider three distinct physi
systems: the nonrelativistic~N! system, whose Hamiltonian
has been considered previously@14–16# in a variety of con-
texts, its exact relativistic~R! counterpart Hamiltonian sys
tem, and the post-Newtonian~PN! expansion of the R sys
tem, truncated to leading order inc22, wherec is the speed
of light. Thec→` limit of both the R and PN systems is th
N system; consequently we have both an exact relativi
generalization of the OGS and a well-defined relativistic a
proximation to it. We find intriguing relationships and strik
ing differences between all three systems. For exam
tightly bound states of two bodies undergoing a lo
frequency oscillation with the third occur in both the N an
R systems~this has previously been seen in the N syste
@3#!. However, the motion in the R system for the bound p
and the third body take on features similar to that of tw
body ROGS motion studied previously@6,9,7#, whereas the
corresponding motions in the N system have the expec
parabolic behavior. In general, bound-state oscillations in
R system at a given energy have a higher frequency
cover a smaller region of the position part of the phase sp
than its N and PN counterparts do at the same energy.

The global structure of phase space can be probed u
Poincare sections. Remarkably, the Poincare´ plots of the R
system are qualitatively similar to those of the N system,
distorted toward the lower right of the phase plane. This
because there is a component to the gravitational momen
in the R case which is absent in the N case, continuou
transforming the basic structure of the Poincare´ plot. On the
other hand the PN system develops additional regions
chaos in phase space that neither the N nor R systems h
This suggests that there are limits to the reliability of a P
approximation to a R system.

In Sec. II we review the formalism of theN-body problem
in lineal gravity, discussing the canonical decomposition
the action and Hamiltonian. The technical details of solvi
the constraint equations and deriving the equations of mo
are relegated to Appendix A. Before solving the equations
4-2
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motion we first consider some of the general properties
each system~N, R, and PN! in Sec. III. We find its post-
Newtonian expansion and use this to study how
hexagonal-well potential is modified by relativistic corre
tions. In Sec. IV we describe our methods for numerica
solving the three-body system. Working in hexagonal-w
coordinates, we describe our methods for obtaining orb
Poincare´ maps, and graphs that illustrate the oscillation p
terns of the three particles. We then go on to numerica
solve the equations of motion of the system in Sec. V in
equal-mass case. We find two broad categories of peri
and quasiperiodic motions that we refer to as the annulus
pretzel patterns. We also find a set of chaotic motions
appear in the region of phase space between these two
types. To complete our investigation we present vario
Poincare maps in Sec. VI. Here we discuss the striking s
larities and differences in the global structure of phase sp
between the three systems. In Sec. VII we discuss the sa
features of our solutions and make some conjectures reg
ing their general properties. We close our paper with so
concluding remarks and directions for further work, inclu
ing an appendix containing the transformation to hexago
coordinates.

II. CANONICAL REDUCTION OF THE N-BODY
PROBLEM IN LINEAL GRAVITY

The general procedure for the derivation of the Ham
tonian via canonical reduction@22# has been given previ
ously @6,8#, and so here we briefly review this work, high
lighting those aspects that are peculiar to the three-b
case.

We begin with an action that describes the minimal co
pling of N point masses to gravity,

I 5E d2xF 1

2k
A2ggmnH CRmn1

1

2
“mC“nCJ

1 (
a51

N E dtaH 2maS 2gmn~x!
dza

m

dta

dza
n

dta
D 1/2J

3d ~2!@x2za~ta!#G , ~1!

whereC is the dilaton field,gmn andg are the metric and its
determinant,R is the Ricci scalar, andta is the proper time
of ath particle, respectively, withk58pG/c4. We denote by
“m the covariant derivative associated withgmn .

From the action~1! the field equations are

R2gmn
“m“nC50, ~2!

1
2“mC“nC2 1

4 gmn“
lC“lC1gmn“

l
“lC2“m“nC

5kTmn , ~3!

maF d

dta
H gmn~za!

dza
n

dta
J 2

1

2
gnl,m~za!

dza
n

dta

dza
l

dta
G50, ~4!
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Tmn5(
a

maE dta

1

A2g
gmsgnr

dza
s

dta

dza
r

dta
d ~2!@x2za~ta!#

~5!

is the stress energy of theN-body system. Equation~3! guar-
antees the conservation ofTmn . By inserting the trace of Eq
~3! into Eq. ~2! we obtain

R5kTm
m . ~6!

Equations~4! and ~6! form a closed system of equations fo
the N-body system coupled to gravity.

In the canonical formalism the action~1! is written in the
form

I 5E d2xH (
a51

N

pażad@x2za~x0!#

1pġ1PĊ1N0R01N1R1J , ~7!

where the metric is

ds252N0
2~x,t !dt21gS dx1

N1

g
dtD 2

~8!

and p and P are conjugate momenta tog and C, respec-
tively. The quantitiesR0 andR1 are given by

R052kAggp212kAgpP1
1

4kAg
~C8!22

1

k S C8

Ag
D 8

2 (
a51

N Apa
2

g
1ma

2d@x2za~x0!#, ~9!

R15
g8

g
p2

1

g
PC812p81 (

a51

N
pa

g
d@x2za~x0!#,

~10!

and describe the constraints of the system, with the sym
dot and prime denoting]0 and ]1 , respectively. SettingR0

50 yields an energy-balance equation, in which the to
energy of the particles is offset by the energy of the grav
tional field. SettingR150 yields an equation in which the
total momenta of the particles is balanced by the momen
of the gravitational field.

The transformation from Eq.~1! to Eq. ~7! is carried out
by rewriting the particle Lagrangian into first-order form u
ing the decomposition of the scalar curvature in terms of
extrinsic curvatureK via

A2gR522]0~AgK !12]1@Ag~N1K2g21]1N0!#,

whereK5(2N0g)21(2]1N12g21N1]1g2]0g).
The action~7! leads to the following system of field equa

tions:
4-3
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ṗ1N0H 3k

2
Agp22

k

Ag
pP1

1

8kAgg
~C8!2

2(
a

pa
2

2g2Apa
2

g
1ma

2

d@x2z0~x0!#J
1N1H 2

1

g2 PC81
p8

g
1(

a

pa

g2 d@x2za~x0!#J
1N08

1

2kAgg
C81N18

p

g
50, ~11!

ġ2N0~2kAggp22kAgP!1N1

g8

g
22N1850, ~12!

R050, ~13!

R150, ~14!

Ṗ1]1S 2
1

g
N1P1

1

2kAg
N0C81

1

kAg
N08D 50, ~15!

Ċ1N0~2kAgp!2N1S 1

g
C8D50, ~16!

ṗa1
]N0

]za

Apa
2

g
1ma

22
N0

2Apa
2

g
1ma

2

pa
2

g2

]g

]za

2
]N1

]za

pa

g
1N1

pa

g2

]g

]za
50, ~17!

ża2N0

pa

g

Apa
2

g
1ma

2

1
N1

g
50, ~18!

where all metric components (N0 ,N1 ,g) are evaluated at the
point x5za in Eqs.~17! and ~18!, with

] f

]za
[

] f ~x!

]x U
x5za

.

The quantitiesN0 and N1 are Lagrange multipliers which
yield the constraint Eqs.~13! and ~14!. It is straightforward
to show@5# that this system of equations is equivalent to t
set of equations~3!, ~4!, and~6!.

Full canonical reduction of the action~1! involves elimi-
nation of the redundant variables by employing the c
straint equations to fix the coordinate conditions. The c
01621
-
-

straint Eqs.~13! and ~14! may be solved for the quantitie
(C8/Ag)8 and p8, since they are the only linear term
present. We then transform the total generator obtained f
the end point variation into an appropriate form to fix t
coordinate conditions. These conditions can consistently
chosen to be@5,6#

g51 and P50, ~19!

and, upon elimination of the constraints, yield

I 5E d2xH(
a

pażad~x2za!1
1

k
DCJ ~20!

for the action~7!. From this we read off the reduced Hami
tonian for the system ofN particles,

H5E dxH52
1

k E dx~DC!, ~21!

whereC is understood to be a function ofza and pa deter-
mined by solving the constraints~13! and ~14!. Under the
coordinate conditions~19! these become

DC2
1

4
~C8!21k2p21k(

a
Apa

21ma
2d~x2za!50,

~22!

2p81(
a

pad~x2za!50. ~23!

The consistency of this canonical reduction can be dem
strated by showing that the canonical equations of mot
derived from the reduced Hamiltonian~21! are identical with
Eqs.~17! and ~18! @6,8#.

Due to their technical nature, the details of solving E
~22! and~23! and then Eq.~21! are described in Appendix A
The HamiltonianH is given implicitly by

L1L2L35M12M21L3* e~k/4!s12@~L11M12!z132~L21M21!z23#

1M23M32L1* e~k/4!s23@~L21M23!z212~L31M32!z31#

1M31M13L2* e~k/4!s31@~L31M31!z322~L11M13!z12#,

~24!

where

Mi j 5Mi2episi j , Mi5Api
21mi

2, ~25!

Li5H2Mi2eS (
j

pjsji D ,

Li* 5S 12 )
j ,kÞ i

si j sikD Mi1Li , ~26!

with zi j 5(zi2zj ) andsi j 5sgn(zij).
The equations of motion are determined from the cano

cal equations@5#
4-4
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ża5
]H

]pa
, ~27!

ṗa52
]H

]za
~28!

~where the dot denotes a derivative with respect to the c
dinate time t! by implicitly differentiating Eq. ~24!. The
equations of motion are highly cumbersome and will not
reproduced here. Examples are given in Eqs.~A38! and
~A39!.

III. GENERAL PROPERTIES OF THE EQUATIONS
OF MOTION

In this section we undertake a general analysis of the
termining equation for the Hamiltonian~24! and the equa-
tions of motion~27! and ~28! before proceeding to~numeri-
cally! solve them.

Consider first the determining equation~24!. Its solution
yields the Hamiltonian, which is a function of only four in
dependent variables: the two separations between the
ticles and their conjugate momenta. Hence a simpler desc
tion can be given by employing the change of coordinate

z12z25&r, ~29!

z11z222z35A6l, ~30!

which in turn implies

z125&r, z135
1

&
~)l1r!, z235

1

&
~)l2r!.

~31!

The coordinatesr and l describe the motions of the thre
particles about their center of mass. Their conjugate m
menta can be straightforwardly obtained by imposing
requirement

$A,pB%5dAB , ~32!

whereA,B5r,l,Z. This yields

pr5
1

&
~p12p2!, ~33!

pl5
1

A6
~p11p222p3!, ~34!

pZ5
1

3
~p11p21p3!, ~35!

whereZ5z11z21z3 is the remaining irrelevant coordinat
degree of freedom; the Hamiltonian is independent ofZ and
pZ . In the nonrelativistic limit (Z,pZ) corresponds to the
center of mass and its conjugate momenta. While it is
possible to fix the value ofZ relativistically, it is possible to
01621
r-

e

e-

ar-
ip-
,

-
e

t

fix the center of inertia; in other words we can setpZ50
without loss of generality. In this case we obtain

p15
1

A6
pl1

1

&
pr , ~36!

p25
1

A6
pl2

1

&
pr , ~37!

p352A2

3
pl ~38!

upon inversion of the preceding relations.
The relativistic Hamiltonian can then be regarded as

function H5H(r,l,pr ,pl), determined by replacing the
variables (z1 ,z2 ,z3 ,p1 ,p2 ,p3) with (r,l,pr ,pl) from Eqs.
~31! and ~36!–~38!. The resultant expression is rather cum
bersome, but can be written compactly@Eq. ~B5!# using a
judicious choice of notation, as shown in Appendix B.

A post-Newtonian expansion@5# of Eq. ~24! @or equiva-
lently Eq. ~B5!# in these variables in the equal-mass ca
yields

H53mc21
pr

21pl
2

2m
1

km2c4

A8
F uru1

)

2 S Ul1
r

)
U

1Ul2
r

)
U D G2

~pr
21pl

2!2

16m3c2 1
kc2

A8
urupr

21
kc2

16&

3F3S Ul1
r

)
U1Ul2

r

)
U D ~)pl

21pr
2!16S Ul1

r

)
U

2Ul2
r

)
U D prplG1

k2m3c6

16 F uru)
2 S Ul1

r

)
U

1Ul2
r

)
U D 1

3

4 Ul1
r

)
UUl2

r

)
U2

3

4
~l21r2!G ,

~39!

where factors of the speed of lightc have been restored~re-
call thatk58pG/c4). The first three terms on the right-han
side of Eq.~39! are

H53mc21
pr

21pl
2

2m
1

km2c4

A8

3F uru1
)

2 S Ul1
r

)
U1Ul2

r

)
U D G ~40!

and are equivalent to the hexagonal-well Hamiltonian o
single particle studied in Ref.@16#, the first term being the
total rest mass of the system. The rest mass is irrelev
nonrelativistically, but we shall retain it so that we ca
straightforwardly compare the motions and energies of
relativistic and nonrelativistic systems. The Hamiltonian~40!
describes the motion of a single particle of massm ~which
4-5
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we shall refer to as the hex-particle! in a linearly increasing
potential well in the~r, l! plane whose cross-sectional sha
is that of a regular hexagon.

If we regard the potential as being defined by the relat
V(r,l)5H(pr50,pl50), we can make a comparison o
the nonrelativistic, post-Newtonian, and exact relativis
cases at any given value of the conserved Hamiltonian.
PN potential takes the form

VPN53mc21km2c4
R&

4 F usinuu1UsinS u1
p

3 D U
2UsinS u2

p

3 D U D1
k2m3R2c6

16 S Usinu sinS u1
p

3 D U
1sinu sinS u1

p

3 D1Usinu sinS u2
p

3 D U
2sinu sinS u2

p

3 D1UsinS u2
p

3 D sinS u1
p

3 D U
1sinS u2

p

3 D sinS u1
p

3 D G , ~41!

where we have made the hexagonal symmetry manifes
writing

r5R sinu, l5R cosu. ~42!

As c→`, k→0 and the potential of the hexagonal well
the N system is recovered. The R version of the potentia
straightforwardly calculated from Eq.~24!,

~VR2m1c2!~VR2m2c2!~VR2m3c2!

5~VR2s31s32m3c2!m1m2c4 expF&kR

4
VRusinuuG

1~VR2s12s13m1c2!m2m3c4

3expF&kR

4
VRUsinS u2

p

3 D UG1~VR2s21s23m2c2!

3m3m1c4 expF&kR

4
VRUsinS u1

p

3 D UG , ~43!

and also retains the hexagonal symmetry of the N system
well as the appropriatec→` limit.

At very low energies these cases are indistinguisha
However, striking differences between them develop qu
rapidly with increasing energy, as Figs. 1 and 2 illustrate
the R and N systems. For all energies the Newtonian po
tial takes the form of the hexagonal-well potential noted e
lier: equipotential lines form the shape of a regular hexag
in the ~r, l! plane, with the sides rising linearly in all direc
tions. The post-Newtonian potential retains this basic h
agonal symmetry, but distorts the sides to be parabolic
concave. The growth of the potential is more rapid, with
sides of the potential growing quadratically with~r,l!.

The exact potential differs substantively from both
these cases. It retains the hexagonal symmetry, but the
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of the hexagon become convex, even at energies o
slightly larger than the rest mass. See Fig. 3 for a compar
of the three potentials. The growth of the relativistic potent
VRwith increasingr and l is extremely rapid compared t
the other two cases, and so the overall size of the hexago
a given value ofVR is considerably smaller. The size of th
cross-sectional hexagon reaches a maximum atVR5VRc
56.711 968 022mc2, after which it decreases in diamete
like ln(VR)/VR with increasingVR.

The part of the potential on the branch withVR.VRc is in
an intrinsically nonperturbative relativistic regime. The m
tion for values ofVR larger than this cannot be understood
a perturbation from some classical limit of the motion. T
nonrelativistic hexagonal cone becomes a hexagonal ca
in the relativistic case, with a neck that narrows asVR in-
creases.

Of course in both the PN and R systems the potential d
not fully govern the motion since there are couplings b
tween the momentum and position of the hex-particle. In
post-Newtonian case we see that to leading order inc22

there is a momentum-dependent steepening of the wall
the hexagon.

For unequal masses the hexagon becomes squashed
two opposite corners moving inward, changing both t
slopes of the straight edges and their relative lengths; r
tivistic corrections maintain this basic distortion, but with th
straight edges becoming parabolic. We shall not discuss
unequal mass case any further.

FIG. 1. The shape of the relativistic potentialV in the equal-
mass case. The coordinates~r, l! are on the horizontal axes.

FIG. 2. The shape of the nonrelativistic potentialV in the equal-
mass case. The coordinates~r, l! are on the horizontal axes.
4-6
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CHAOS IN AN EXACT RELATIVISTIC THREE-BODY . . . PHYSICAL REVIEW E69, 016214 ~2004!
IV. METHODS FOR SOLVING THE EQUATIONS
OF MOTION

We begin our analysis of the three-body system by stu
ing the motion of the hex-particle in the~r,l! plane. We shall
consider this motion in the nonrelativistic~N!, post-
Newtonian~PN!, and exact relativistic~R! cases described in
the preceding section. In all three cases the bisectors joi
opposite vertices of the hexagon correspond to particle cr
ings in the full three-particle system, and denote a disc
tinuous change in the hex-particle’s acceleration. Thus
hex-particle’s motion, in the Hamiltonian formalism, is d
scribed by a pair of differential equations that are continu
everywhere except across the three hexagonal bisector
50, r2)l50, andr1)l50. These bisectors divide th
hexagon into sextants and correspond to the crossing
particles 1 and 2, 2 and 3, or 1 and 3, respectively.

An analogous system has been studied in the N cas
Miller and Lehtihet, who considered the motions of a b
under a constant gravitational force elastically colliding w
a wedge@14#. They established that such motions can
analyzed using a discrete mapping that describes the p
cle’s angular and radial velocities each time it collides w
the edges of the wedge, which corresponds in our cas
crossing one of the three hexagonal bisectors. The two
tems differ in that in the wedge system the hex-particle c
lides elastically with the wedge~equivalent to an elastic col
lision between a pair of particles in the three-body syste!,
whereas in our system the particle crosses the hexagon’
sectors, equivalent to a pair of particles passing through e
other in the three-particle system. In the equal-mass case
systems are nearly identical, since an elastic collision
tween two equal-mass particles cannot be distinguished f
a crossing between two equal-mass particles. We do, h
ever, observe a distinction between the two systems i
certain class of orbits that we shall discuss later.

It is the nonsmoothness of the potential along these bi
tors which in all three cases yields interesting dynamics

FIG. 3. ~Color online! Equipotential lines atV.4mc2 for each
of the N ~solid/black!, PN ~dot/red!, and R~dash-dot/blue! systems
in the equal-mass case.
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the system. In our subsequent analysis we shall disting
between two distinct types of motion@14#: A motion, corre-
sponding to the same pair of particles crossing twice in a r
~the hex-particle crossing a single bisector twice in succ
sion!, andB motion, in which one particle crosses each of
compatriots in succession~the hex-particle crossing two suc
cessive sextant boundaries!. We can characterize a given mo
tion by a sequence of lettersA and B ~called a symbol se-
quence!, with a finite exponentn denotingn repeats and an
overbar denoting an infinite repeated sequence. For exam
the expressionA4B3 denotes fourA motions ~two adjacent
particles cross twice in a row four times in succession! fol-
lowed by threeB motions~one particle crosses the other tw
in succession, which then cross each other!. In the ~r,l!
plane this will correspond to a curve that crosses~for ex-
ample! the r50 axis four times before crossing one of th
other sextant boundaries, after which it crosses two m
sextant boundaries in succession, ending up in a sextant
opposite to the one in which it began. The express
(AnBm)p denotesp repeats in succession of the motio
AnBm, and (AnBm) denotes infinitely many repeats of th
motion. Note that the classification of a crossing motion aA
or B is contingent upon the previous crossing, and so ther
an ambiguity in classification of either the final or the initi
crossing. We shall resolve this ambiguity by taking the init
crossing of any sequence of motions as being unlabeled
we are considering arbitrarily large sequences of motio
this ambiguity in practice causes no difficulties.

We have carried out three methods of analysis to study
motions of this system. First, we plot trajectories of the he
particle in ther-l plane, comparing the motions of the N
PN, and R systems for a variety of initial conditions. Seco
we plot the motions of the three particles as a function
time for each case. This provides an alternate means o
sualizing the difference between the various types of mot
that can arise in the system. Third, we construct Poinc
sections by recording the radial momentum (pR , labeled as
x! and the square of the angular momentum (pu

2, labeled asz!
of the hex-particle each time it crosses one of the bisect
When all three particles have the same mass, all bisector
equivalent, so that all the crossings may be plotted on
same surface of section. This allows us to find regions
periodicity, quasiperiodicity, and chaos, and we shall disc
these features in turn.

One issue that arises upon comparison between the t
systems is that the same initial conditions do not yield
same conserved energy. There is therefore some ambigu
comparing trajectories between each of these three cases
can either compare at fixed values of the energy, modify
the initial conditions as appropriate~as required by the con
servation laws for each system!, or else fix the initial condi-
tions, comparing trajectories at differing values ofH. We
shall consider both methods of comparison. In the form
case we fix the initial values ofH, r, l, andpr , adjustingpl

so that the Hamiltonian constraint~24! is satisfied. We shall
refer to these conditions as fixed-energy~FE! conditions. In
the latter situation we set the initial values of all four phas
space coordinates (r,l,pr ,pl) in each system, allowing the
energy to differ for each of the N, PN, and R systems
4-7
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BURNELL et al. PHYSICAL REVIEW E 69, 016214 ~2004!
cording to their respective constraints~40!, ~39!, and ~24!.
We shall refer to these conditions as the fixed-momenta~FM!
conditions.

There is no closed-form solution to either the determin
equation~24! or to the equations of motion~27! and ~28!,
and so to analyze the motion we must solve these equa
numerically. We did this by numerically integrating the equ
tions of motion using aMATLAB ODE routine ~ODE45, or for
the exact solutions,ODE113!. To generate Poincare´ sections,
we stopped the integration each time the hex-particle cros
one of the bisectors by using an ‘‘events’’ function, savi
the values of the radial and angular momentum for plotti
Ideally, for each chaotic trajectory the Poincare´ section
should be allowed to run for a very long time in order
determine as accurately as possible which regions of
plane it may visit, and which are off limits.

As a control over errors, we imposed absolute and rela
error tolerances of 1028 for the numericalODE solvers. For
the values ofh we studied@h is a dimensionless energ
parameter defined in the text preceding Eq.~45#, this yielded
numerically stable solutions. We tested this by checking t
the energy remained a constant of the motion for all th
systems to within a value no larger than 1026; for nearly all
of our runs it was comparable to the error tolerances (1028)
that we imposed.

However, we found that forh*1 the ODE solver was
unable to carry out the integration for more than a few ti
steps for the R system before exceeding the allowed e
tolerances~this problem remains even if the error toleranc
are lowered significantly!. This value ofh is approximately
the valueVRc at which the equipotential hexagon reaches
maximal size. We were unable to find an algorithm capa
of handling the numerical instabilities, which theODE solvers
we employed could not deal with, for these larger values
h. A full numerical solution in this largerh regime remains
an open problem.

We also found that the PN system had diverging trajec
ries for values ofh larger than 0.3. We believe that this
due to an intrinsic instability in the PN system, but we ha
not confirmed this.

In addition to plots, a few other routines were used
record information. While running Poincare´ sections, the
name of the edge crossed at each collision~corresponding to
the pair of particles that pass through each other along
edge! can be recorded in addition to the velocity. From th
information, the symbol sequence of the trajectory can
extracted. In addition, we recorded a frequency of return:
function measures the time interval separating the h
particle’s successive returns to within some small distanc
its original location, and takes its inverse to find a ‘‘fr
quency’’ at each time. The value of frequency depen
strongly on how small the specified area is; nonethele
these frequencies give us an approximate idea of how l
the hex-particle takes to complete one full cycle in its ‘‘o
bit.’’

In performing our numerical analysis we rescale the va
ables,
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pi5M totcp̂i , zi5
4

kM totc
2 ẑi , ~44!

whereM tot53m is the total mass of the system andp̂i andẑi
are the dimensionless momenta and positions, respecti
Writing h115H/M totc

2, m̂i5(mi /M tot), we have

Mi5M totc
2~Ap̂i

21m̂i
21 p̂i !5M totc

2M̂ i , ~45!

Li5M totc
2Fh112Ap̂i

21m̂i
22eS (

j
p̂ jsj i D G5M totc

2L̂ i ,

~46!

which in turn yields

L̂1L̂2L̂35M̂12M̂21L̂3* es12@~ L̂11M̂12!ẑ132~ L̂21M̂21!ẑ23#

1M̂23M̂32L̂1* es23@~ L̂21M̂23!ẑ212~ L̂31M̂32!ẑ31#

1M̂31M̂13L̂2* es31@~ L̂31M̂31!ẑ322~ L̂11M̂13!ẑ12#

~47!

for the rescaled determining equation. Similarly the eq
tions of motion become

]h

] p̂i

5
1

c

]H

]pi

5
4

kM totc
3

dẑi

dt
5

dẑi

d t̂
, ~48!

]h

] ẑi

5S 4

kM tot
2 c4D ]H

]zi

52
4

kM totc
3

dp̂i

dt
52

dp̂i

d t̂
, ~49!

wheret5(4/kM totc
3)t̂. A time step in the numerical code ha

a valuet̂51. All diagrams will be shown using the rescale
coordinates~44! unless otherwise stated.

We close this section with some final comments regard
the time variablet. This parameter is a coordinate time and
would be desirable to describe the trajectories of the parti
in terms of some invariant parameter. The natural candid
is the proper timeta of each particle. From Eq.~18!, the
proper time is

dta
25dt2$N0~za!22@N1~za!1 ża#2%

5dt2N0~za!2
ma

2

pa
21ma

2 ~a51,2,3! ~50!

for theath particle. Unfortunately this is in general differen
for each particle, even in the equal-mass case. This is q
unlike the two-body situation, in which the symmetry of th
system yields the same proper time for each particle in
equal-mass case~though not for the unequal-mass case! @8#.

There are several different choices available at this sta
One could choose to work with the proper time of a sing
particle in the system, in which case invariance is recove
but the manifest permutation symmetry between particle
lost. Another possibility is to construct a ‘‘fictitious’’ fourth
particle that does not couple to the other three, but mo
along a geodesic of the system, and make use of its pro
time. Rather than consider these or other possible opti
we shall postpone their consideration for future research
work with t, keeping in mind that it is a coordinate time.
4-8
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CHAOS IN AN EXACT RELATIVISTIC THREE-BODY . . . PHYSICAL REVIEW E69, 016214 ~2004!
V. EQUAL-MASS TRAJECTORIES

The three systems~N, PN, and R! we consider here con
stitute a family of related systems whose dynamics o
would expect to be similar~but not identical! at small ener-
gies, with increasingly different behavior emerging as
energy increases. However, our examination of the symb
sequence of various equal-mass trajectories reveals a s
set of similarities, in that certain types of sequences are c
mon to all three systems over the energy range we con
ered. We find that the types of motion exhibited by this fa
ily of systems may thus be divided into three princip
classes, which we denote by the names annuli, pretzel,
chaotic. These depart from other systems of nomencla
present in the literature, particularly in the field of dynamic
astronomy~see, for instance, Ref.@23# for a general catego
rization of trajectories, and Ref.@24# for an example of a
more detailed naming system!. As will be seen, the above
labels are used to distinguish motion relevant to the thr
body system and are independent of other naming sche

Before discussing each of these classes in detail, we m
a few general remarks. First, within each class a further
tinction must be made between those orbits which eventu
densely cover the portion of~r,l! space they occupy, an
those which do not. The latter situation corresponds to re
lar orbits in which the symbol sequence consists of a fin
sequence repeated infinitely many times. The former si
tion corresponds to orbits that are quasiregular: the sym
sequence consists of repeats of the same finite sequenc
with an A motion added or removed at irregular intervals

These two types of orbits are separated in phase spac
separatrixes~trajectories joining a pair of hyperbolic fixe
points!. Regular orbits lie inside the ‘‘elliptical’’ region sur
rounding an elliptical fixed point; the quasiregular orbits
outside such a region.

It is useful to further distinguish between the quasipe
odic and periodic regular orbits. Quasiperiodic trajector
closely resemble the related periodic trajectories, except
the orbit fails to exactly repeat itself and hence eventua
densely covers some region of phase space. Thus a q
periodic trajectory displays a high degree of regularity. In
system we study, this regularity is manifested by its perio
symbol sequence. The classic example of this is a par
moving on a torusS13S1. The motion is characterized by it
angular velocity around each copy ofS1: if the ratio of these
is rational, the motion will be periodic; if it is irrational, th
motion will be quasiperiodic. For the system consider
here, nonperiodic orbits with fixed symbol sequences
quasiperiodic. They appear as a collection of closed circ
ovals, or crescents in the Poincare´ section. Orbits with sym-
bol sequences that are not fixed, however, are distinctly
regular; we shall refer to them as quasiregular as no
above.

We also note that although the orbits of the nonrelativis
and relativistic systems realize the same symbol sequen
important qualitative differences exist between these or
for both the trajectories and the Poincare´ sections. Consider a
comparison between each system at identical values of
total energyH5ET and the initial values of (r,l,pr), with
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the remaining initial value ofpl chosen to satisfy Eqs.~24!,
~39!, and ~40! in each case, respectively. Ash5H/(3mc2)
21 increases, distinctions between the exact relativistic
nonrelativistic cases become substantive, both qualitativ
and quantitatively. The relativistic trajectories have high
frequencies and extend over a smaller region of the~r,l!
plane than their nonrelativistic counterparts. Their traject
patterns in the pretzel class also develop a slight ‘‘hourgla
shape~narrowing with increasingh in the small-l region! in
comparison to the cylindrical shapes of their nonrelativis
counterparts.

At FM initial conditions, we find in general that the R
system has greater energy than its corresponding N and
counterparts. Hence in these cases we find that the R o
cover a correspondingly larger region of the~r,l! plane and
have a higher frequency.

A. Annulus orbits

The annuli are orbits in which the hex-particle never
crosses the same bisector twice. All such orbits have
symbol sequenceB̄, and describe an annulus encircling th
origin in ther-l plane.

As noted above, we see that some annulus orbits are
siperiodic and fill in the entire ring~generating one of the
closed trianglelike shapes in the middle of the Poincare´ sec-
tion! while a choice few apparently repeat themselves a
some number of rotations about the origin. This latter sit
tion is illustrated in Figs. 4 and 5 for the N and R cas
respectively. In both of these cases a wide variety of patte
emerge contingent upon the initial conditions but indep
dent of the system in question. Both these orbits and th
that fill in the ring~not illustrated! are ‘‘close to’’ an elliptic
fixed point; the difference between them is that in some ca
the normally quasiperiodic orbits have commensurate wi
ing numbers, producing an eventually periodic orbit. As p
riodic orbits are difficult to find numerically, the orbits in th
figures are actually orbits that are very close to periodic
bits, so that the pattern of the periodic orbit is still visible.
fact they are quasiperiodic orbits about these higher-pe
fixed points, which means that they will not cover the ent
annulus, only bands of phase space.

We find no qualitative distinctions between the N and P
annuli up to the values ofh that we can attain numerically
However we do find that the R cases appear to underg
slight rotation relative to their N counterparts ash increases.
This is noticeable in the right-hand diagrams of Fig. 5,
h50.75 andh50.9.

In Figs. 6 and 7 we plot the positions of each of the thr
bodies as a function of time in conjunction with their corr
sponding trajectories in the~r,l! plane for FE conditions in
both the N and R cases. We see that at similar energi
three-body system experiencing relativistic gravitation co
ers the~r,l! plane in the hex-particle representation mo
densely than its nonrelativistic counterpart, and induce
higher frequency of oscillation. This higher frequency is a
characteristic of the two-body system@6,9#, and we have
observed it to be a general phenomenon for all FE conditi
we have studied. The increased trajectory density for FE c
4-9
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FIG. 4. Examples of almost-periodic annuli for the N system; trajectories do not cover the entire annulus band~run for 200 time units!.
A wide variety of complex patterns can be found. The square indicates the intial values of~r,l!; FM initial conditions were employed.
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ditions is also a phenomenon we observe to generally o
for the three-body R system, presumably because both
tems were run for the same number of time steps, and
relativistic one has a higher frequency.

A comparison of orbits using FM initial conditions is als
instructive; Fig. 8 provides an example. At FM conditio
the R system typically has slightly higher energy, and
covers a considerably larger region of the~r,l! plane more
densely than its nonrelativistic counterpart, venturing sligh
closer to the origin. This effect increases with increasingh,
provided that the R energy remains larger than its N co
terpart. However ash gets larger it becomes increasing
more difficult to find initial conditions such that both the
and R annuli are close to periodic orbits. The bottom d
gram in Fig. 8 is an example ath.0.5; the N system has
about 14% more energy than its R counterpart, and so it n
covers a larger region.

B. Pretzel orbits

Pretzel orbits are those in which the hex-particle ess
tially oscillates back and forth about one of the three bis
tors, corresponding to a stable or quasistable bound
system of two particles. The existence of a two-parti
bound subsystem has already been discovered in the N
tonian case@3#. Symbolically such orbits can be written a
P i jk(AniB3mj) l k, whereni ,mj ,l kPZ1, with somel k possi-
bly infinite. The resulting collection of trajectories is e
tremely diverse. Many families of regular orbits exist. Su
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families contain one base element~for example,AB3) and a
sequence of elements formed by appending anA to each
existing sequence of A’s ~for example,
$AB3,A2B3,A3B3,...%). The result is that the phase spa
has an extremely complex structure that we shall disc
further in Sec. VI. It is differences in this structure and t
shapes of the corresponding orbits that show the most
markable distinctions between the R, PN, and N systems

In the above sequences, theB3 sequence corresponds to
180° swing of the hex-particle around the origin, and t
resultant figures in the~r,l! plane comprise a broad variet
of twisted, pretzel-like figures, from whence their name. T
situation is a key distinction between the systems we st
and the wedge system@14# discussed earlier. In the wedg
systemB and B2 sequences are observed in addition toB3

sequences; we observe only the latter in all pretzel orbits
Before proceeding to a detailed description of this cla

we summarize the main results of our investigation. Ag
we have both regular orbits~with the symbol sequence abov
repeatingad infinitum! and nonregular orbits that densely fi
a cylindrical tube in the~r,l! plane. The periodic and quas
periodic orbits we find in the N system appear for the m
part to have counterparts with the same symbol sequenc
the R system~though not in the PN system!. In general,
orbits in the R system have kinks about thel50 line relative
to their N and PN counterparts; for example, a cylindric
shaped trajectory in the N system looks like an hourglas
the R system. The PN system exhibits chaotic behavior
4-10
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FIG. 5. A sampling of densely filled annuli for the R solution. All orbits were run for 200 time steps using FE initial conditions. De
filled annuli can be found for all values ofh. As h increases, the R annuli rotate with increasing angle relative to their N counterpart
orientation~clockwise or anticlockwise! depends upon the initial conditions.
in

or
es

is

-
h
re
o

ly
N

s R

re
e-

am
of
th
ci
s
ic

FE
th

ving
en
w-
a-
ble
s a
ear
pe

ion

ies
R

r-
n
R

ex-
r,
ily

by
of

R
ass
seen in the N and R systems, a point we shall discuss
subsequent section.

Figures 9 and 10 illustrate the development of a traject
in the ~r,l! plane for FE conditions at small and large valu
of h. As expected we see that for smallh ~h50.05! there is
very little distinction between the N and R motions, cons
tent with the smooth nonrelativistic limit of Eq.~24!. How-
ever at largerh ~h50.85! the hex-particle traces out signifi
cantly different trajectories in the N and R systems. T
oscillation frequency is higher and the trajectory is mo
tightly confined, features commensurate with two-body m
tion in the R system@6,9,7#. We also see a considerab
different weave pattern in Fig. 10 for each case, with the
pattern exhibiting a near-cylindrical shape in contrast to it
counterpart with oscillating sides.

In Fig. 11 we compare the positions of each of the th
bodies as a function of time in conjunction with their corr
sponding trajectories in the~r,l! plane for two slightly dif-
ferent FE conditions in the R system. The fishlike diagr
corresponds to anAB6 symbol sequence: we see that two
the particles oscillate quasiregularly about each other,
pair undergoing larger-amplitude and lower-frequency os
lations with the third. A slight change of initial condition
yields the strudel-like figure; here we see that one part
alternates its oscillations with the other two, maintaining
near-constant amplitude throughout.

We compare in Fig. 12 pretzel orbits with the same
conditions in the R and N cases plotted as trajectories in
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three-body system. These orbits are distinguished by ha
a very high-frequency low-amplitude oscillation betwe
two of the particles; this pair in turn undergoes a lo
frequency high-amplitude oscillation with the third. The tr
jectories for two of the particles are nearly indistinguisha
due to their close proximity; the inset in the figure provide
closeup of the oscillations in this two-body subsystem n
one of its extrema. The N oscillations are parabolic in sha
whereas the R oscillations have the shoulderlike distort
seen previously in the two-body system@6#. These diagrams
illustrate that under appropriate initial conditions two bod
can tightly and stably bind together in both the N and
systems~even at substantively largeh!, behaving like a
single body relative to the third. Note that the highe
frequency oscillations in the R case~at the same energy as i
the N case! is a general characteristic distinguishing the
and N systems.

We can obtain interesting sequences of orbits of the h
particle by controlling the FM initial conditions. Conside
for example, Fig. 13, which consists of members of a fam
of quasiregular orbits given by$AiB3% for the N case. These
snakelike orbits have two sharp turning points separated
some numbern of bumps, and correspond to sequences
2(n12) circles in the lower portion of the Poincare´ section.
Such orbits have been shown to exist for arbitraryn in the N
system@14#. The corresponding situation also occurs in the
case where the outline of the ‘‘snake’’ takes on an hourgl
4-11
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BURNELL et al. PHYSICAL REVIEW E 69, 016214 ~2004!
FIG. 6. ~Color online! Annulus orbits~N, lower left; and R, upper right! which are close to the chaotic region separating annu
trajectories from pretzel trajectories are shown in conjunction with their corresponding three-particle trajectories, where the vertic
the displacement from the origin in units ofkM tot c

2/4. These orbits have been run for 200 time steps using FE initial conditions. We
truncated the three-particle trajectory plot after 80 time steps. The R trajectory is closer to the chaotic boundary than the N trajec
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uli
in all
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shape, indented along thel50 axis towards the origin. We
have found such orbits up ton515 and conjecture that the
also exist for arbitraryn in the R and PN systems below th
threshold of chaos. In the PN system, orbits of highern are
gradually destroyed by chaos ash increases, with more an
more of the pretzel region becoming chaotic. We have fou
some evidence~see the following section! that this may also
occur in the R system; if so, the onset of chaos will be mu
less dramatic than in the PN case.

In Fig. 14 we compare orbits with the symbol sequen
AB3. Here we see another example of how relativistic effe
induce qualitatively different features not seen in the N s
tem. As h increases, orbits in the R system develop t
distinct turning points at different distances from ther50
axis. This is particularly evident forh50.75. There is also
the development of a kink at the right-hand side of the b
merang figure that becomes increasingly more pronoun
with increasingh.

We suspect that the additional turning points in the
system are due to the momentum dependence of the rel
istic potential that is not present in the Newtonian syste
Thel50 axis corresponds to particle 3 being at the midpo
between particles 1 and 2. In the N case, the gravitatio
force on particle 3 is exactly balanced and the relative ve
ity of particle 1 with respect to particle 2 will continue th
01621
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pretzel pattern. However, in the R case, the force on 3 isnot
balanced at the midpoint between 1 and 2 unless 1 an
have zero momentum. The velocity dependence of the po
tial will cause the balance point to be offset and, by symm
try, we must have two such points. The departure from
Newtonian system, and, hence, the distinction between
different turning points, is more prominent ash increases.

Overall the variety of orbits that appear in the R syste
appears to have a richer and more detailed structure than
of the N system; for example, there are indentations in
bowtie patterns, the cylindrical shapes in the N system
come hourglass shapes in the R system and so on, as c
seen in Fig. 15.

C. Chaotic orbits

The chaotic orbits are those in which the hex-parti
wanders betweenA motions andB motions in an apparently
irregular fashion. These orbits appear as densely filled
gions on a surface of section as will be discussed in Sec.
Such orbits eventually wander into all areas of ther-l plane
allowed by the energy constraint—a trait neither the ann
nor the pretzels possess. The major area of chaos found
three systems occurs at the transition between annulus
pretzel orbits, where the hex-particle passes very close to
origin.
4-12
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FIG. 7. ~Color online! Annulus orbits~N, lower left; and R, upper right! shown in conjunction with their corresponding three-partic
trajectories. These quasiregular orbits have been run for 200 time steps using FE initial conditions. We have truncated the thre
trajectory plot after 30 time steps.
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The most striking feature of this class of motions is t
distinction between the PN system and its N and R coun
parts. We find that the PN system possesses an addit
area of chaos in the pretzel region, a phenomenon we s
discuss in more detail in the following section.

We can observe the transition to chaos in the pretzel
gion of the PN system by slowly adjusting the value ofh for
FE initial conditions. Figure 16 illustrates an example. W
begin with a pretzel diagram ath50.1. As h increases, the
trajectory changes shape but remains regular untilh.0.22
where the diagram appears slightly less ordered. Ath.0.28
the hex-particle begins to irregularly traverse increasin
larger regions of the~r, l! plane, signifying the onset o
chaos.

We plot in Fig. 17 the transition in the R system withh
50.5 from an annulus to a pretzel orbit. The transitio
which goes from left to right and from top to bottom wit
decreasinginitial angular momentum, passes through a c
otic set of orbits. The chaotic trajectories pass very close
or through the origin, a characteristic feature for this reg
of chaos in all three systems.

The relation between chaotic orbits in ther-l plane and
the corresponding motion in the three-body system is sho
in Fig. 18 for the R and N systems. Note that different
initial conditions were used to show a chaotic orbit in bo
01621
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cases. That is, at a fixed energy, initial conditions that p
duce a chaotic trajectory in the R system will not, necess
ily, give a chaotic trajectory in the N system, andvice versa.

In all three systems there is a region of chaos~R1! be-
tween the pretzel and annulus type orbits, though in the
system it appears to shrink ash increases. Second, in the P
system, chaotic pretzel orbits are also observed, becom
wilder and more prevalent with increasingh. These chaotic
pretzel orbits, unlike their R counterparts, do not cover
entire ~r, l! plane, as can be seen from Fig. 16.

VI. POINCARÉ PLOTS

We turn now to consider the Poincare´ sections for the
three systems N, PN, and R. These are constructed by
ting the square of the angular momentum (pu

2, labeled asz!
of the hex-particle against its radial momentum (pR , labeled
asx! each time it crosses one of the bisectors. Our conv
tions for these quantities are the same as in Ref.@14#, apart
from an overall normalization for each section that we pl
All bisectors are equivalent since all three particles have
same mass, and we can plot all crossings on the same su
of section. This allows us to find regions of quasiperiodic
and chaos as well as giving us a good estimate of the lo
tion of points of periodicity.
4-13
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FIG. 8. ~Color online! A comparison of annulus orbits at identical FM conditions, for three similar values ofh. With identical initial
conditions, the relativistic trajectories typically have greater energy and so cover a larger region of the~r,l! plane. However, for some initia
conditions the N system has a larger energy and so covers a correspondingly larger region. All orbits were run for 200 time step
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Each of these systems is governed by a time-indepen
Hamiltonian with four degrees of freedom. Hence the to
energy is a constant of the motion, and the phase spac
each system is a three-dimensional hypersurface in four
mensions. If an additional constant of the motion exists,
system is said to be integrable, and its trajectories are
stricted to two-dimensional surfaces in the available ph
space. Since trajectories may never intersect, such a
straint imposes severe limitations on the types of motion
integrable systems can exhibit: trajectories may be perio
repeating themselves after a finite interval of time, or qua
periodic. The trajectories of an integrable system always
pear as lines or dots for quasiperiodic and periodic orb
respectively, on the Poincare´ section, as they comprise b
definition the intersection of two two-dimensional surfac
This contrasts sharply with the case when a system is c
pletely nonintegrable, so that all orbits move freely in thr
dimensions. The extra degree of freedom permits orbits
visit all regions of phase space, and the system typic
displays strongly chaotic behavior. Such trajectories app
as filled-in areas on the Poincare´ map.

When an integrable system is given a sufficiently sm
perturbation, most of its orbits remain confined to tw
dimensional surfaces. However, small areas of chaos ap
sandwiched between the remaining two-dimensional s
faces. As the magnitude of the perturbation is increased,
chaotic regions grow, and eventually become connected
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eas on the Poincare´ section. This phenomenon is called
Kolmogorov, Arnold, and Moser~KAM ! transition@25#. Is-
lands of regularity may remain for quite some time, and g
erally have an intricate fractal structure. For sufficiently lar
perturbations, however, systems typically become alm
fully ergodic @26#.

The structure of the Poincare´ section in the N system ha
already been studied to a certain extent in the wedge p
lem. In the equal-mass case three-body motion in the N s
tem corresponds to motion of a body falling toward a wed
whose sides are each at angles 30° relative to the ver
axis @14#. The outer boundary of the plot is determined
the energy conservation relation~40!, which is

x2<12z, ~51!

where the energyH23mc2 has been normalized to unit
~more generally,x2<2/3h2z for the unconstrained normal
izations we employ!. Equality in Eq. ~51! holds when the
hex-particle is at the origin, and yields the phase-space li
since any departure from the origin will reduce the values
~x,z! relative to this bound. Another relevant boundary is th
given by

~x22A3z!2<12z, ~52!
4-14
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CHAOS IN AN EXACT RELATIVISTIC THREE-BODY . . . PHYSICAL REVIEW E69, 016214 ~2004!
FIG. 9. ~Color online! A time series evolution for a pretzel orbit shown simultaneously in the N~solid/red! and R~dotted/blue! systems
at t53, 6, 11, 16, 25, and 35 units forh50.05 at FE conditions. The trajectories in the two systems are very similar at such low ene
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which is the energy constraint after anA collision has taken
place. Equality corresponds to the point at which all th
particles are coincident~the hex-particle is at the origin!. All
points in phase space satisfying Eq.~52! will undergo anA
collision ~theA region! whereas those violating this inequa
ity will undergo a B collision ~the B-region!. Inevitably a
point in theA region will venture into theB region since the
interaction is gravitational and collisions with the third pa
ticle cannot be avoided. Hence theA region has no fixed
points. However theB region has a subregion containing
fixed point in which theB collisions are infinitely repeated
~the B̄ motion!, corresponding to the annulus orbits.

The Poincare section for the N system is shown in F
19. There is a fixed point at the center of the plot surroun
by a subregion of near-integrable curves. All of the ann
are contained within the large triangle surrounding this
gion; its boundary contains a thin region of chaos, beyo
which is the pretzel region.

The structure of the lower part and upper corners of F
19 is extremely complicated and intricate, as illustrated
the insets. The chaotic regions are confined and not sim
connected. Though not integrable, the N system show
high degree of regularity. There is a self-similarity within th
pretzel region as illustrated in Fig. 20, with the circl
bounding the quasiperiodic near-integrable regions repea
themselves on increasingly small scales. We find that m
tions in the N system are completely regular, as evidence
the absence of dark areas in the Poincare´ section~except for
the one region of chaos mentioned previously!. These results
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are all commensurate with those of the wedge system@14#
wherein it is shown that the phase-space topology is in
pendent of the total energy. Hence, the structure of the P
carémap ~i.e., the separation into three regions: annuli a
pretzel separated by a region of chaos! is the same for allh
in the N system. This is not necessarily true in the R syst
and certainly not true in the PN system.

We pause here to comment on the symbol sequences
responding to particular patterns. For example, the two la
circles observed just below the annulus region correspon
the boomerang-shaped orbits (AB3). The next set of circles
will be A2B3, and so on. The collections of crescents b
tween these sets of circles correspond to sequen
AB3A2B3, AB3AB3A2B3, and so on. Of course, for eac
circle in the Poincare plot there is in fact a continuum
possible circles, whose diameter depends on the initial c
ditions. At the center of this family of circles is a dot corr
sponding to the periodic orbit in question.

Another observable feature in the Poincare´ plot is a series
of closed circles that lies in a triangular pattern in the an
lus region. These correspond to quasiperiodic orbits ab
the periodic annuli with higher period, for example, Figs.
and 5.

Turning next to the R system we find the result that all
the features of its Poincare´ plot are qualitatively similar to
the N system over the range ofh that we were able to inves
tigate. This is remarkable considering the high degree
nonlinearity of the relativistic Hamiltonian given by Eq
4-15
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BURNELL et al. PHYSICAL REVIEW E 69, 016214 ~2004!
FIG. 10. ~Color online! N and R pretzel orbits evolving simultaneously att53, 6, 11, 16, 26, and 36 units forh50.85 with FE
conditions. The N trajectory~solid/red! extends considerably further from the origin, while the R orbit~dotted/blue! evolves with a higher
collision frequency. The R orbit has stabilized into a quasiperiodic pattern, whereas the N orbit will eventually form a densely filled c
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~24!. The annulus, pretzel, and chaotic regions all retain th
same basic structure, as seen in Fig. 21, including the s
similar structure in the lower pretzel region as in Fig. 20.

However, we find that the plot is no longer symmet
with respect topR50, and that the Poincare plot is asym
metrically deformed relative to its counterpart in the N sy
tem, the deformation increasing with increasingh, as Figs.
21 and 22 illustrate. Superficially this deformation is som
what puzzling: the trajectories of a subset of the annulus-t
orbits always have positive radial velocities when they int
sect one of the hexagon’s edges~and the tendency of al
annulus orbits is to havepR.0 at the bisectors!. However, it
occurs because the Hamiltonian given by Eq.~24! is not
invariant under the discrete symmetrypi→2pi , but rather
is invariant only under the weaker discrete symme
(pi ,e)→(2pi ,2e). The parametere561 is a discrete con-
stant of integration that is a measure of the flow of time
the gravitational field relative to the particle momenta. W
have chosene511 throughout, which has the effect of ma
ing the principal features of the Poincare´ plot ‘‘squashed’’
towards the lower right-hand side of the figure relative to
counterpart in the N system. This deformation would be
ward the lower left had we chosene521. It is reminiscent of
the situation for two particles, in which the gravitational co
pling to the kinetic energy of the particles causes a distor
of the trajectory from an otherwise symmetric pattern@6,9#,
becoming more pronounced ash increases.

Remarkably we do not find a breakdown from regular
chaotic motion ash increases in the R case. The lower r
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gions of the Poincare´ map clearly display the same patter
of series of circles as occurring in the nonrelativistic case
no sizeable connected areas of chaos are present. Th
clear from Fig. 23, which shows a sequence of succes
closeups of the pretzel region for theh50.75 case. Howeve
we do find that ath50.75 the thickness of the lines betwee
the near-integrable elliptic regions increases, suggesting
ther the eventual onset of KAM breakdown or a relativis
generalization of the fractal pattern seen in the N system.
define KAM breakdown as the merging of two separa
chaotic regions, such as the behavior seen in the pretze
gion of the PN system ash increases. Unfortunately we hav
not been able to investigate whether or not KAM breakdo
occurs for higherh values in the R system due to a lack
computer resources.

The PN system has a considerably different Poincare p
shown in Fig. 24. While it retains thepi→2pi symmetry of
its N-system predecessor, it appears to undergo a KAM tr
sition from relatively orderly behavior in the N system
highly chaotic behavior ath50.3, as the series of Poincar
sections in Fig. 25 demonstrates. Ath50.21, the lines across
the bottom of the figure have widened slightly, though t
overall behavior is still quite regular. Ash increases to 0.26
larger regions of chaos become evident around the edge
the groups of ellipses that traverse the lower regions of
figure. At h50.3, most of the lower section of the Poinca´
section has been engulfed by a chaotic sea; only a few n
connected islands of regular motion remain. This contra
sharply with the behavior of the R system at similar valu
of h.
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CHAOS IN AN EXACT RELATIVISTIC THREE-BODY . . . PHYSICAL REVIEW E69, 016214 ~2004!
FIG. 11. ~Color online! Pretzel orbits of the relativistic system~h50.75! with the corresponding three-particle time evolution: a regu
AB6 orbit pattern~top/upper right!, and similar irregular orbit pattern, at slightly different initial conditions~bottom/lower left!. The vertical
axis is the displacement from the origin in units ofkM totc

2/4. Both cases were run for 200 time steps, with the three-particle trajectory
truncated after 80 time steps.

FIG. 12. ~Color online! A pret-
zel orbit with a large number of A
collisions before theB3 collision
sequence, run with FE initial con
ditions. Particles 1 and 2~inter-
weaving small-amplitude lines!
remain very close together, collid
ing frequently. They act much like
a single body from the viewpoin
of particle 3 ~large amplitude
line!; the above trajectory bears
strong resemblance to the traject
ries found in the two-body case
The inset shows detail near one o
the peaks in the R system.
016214-17
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BURNELL et al. PHYSICAL REVIEW E 69, 016214 ~2004!
FIG. 13. A family of quasi-
regular snakelike orbits for the N
system, each with two sharp turn
ing points separated by som
numbern of bumps. All were run
for 200 time steps with FM initial
conditions; the square indicate
the starting point in the~r, l!
plane. These orbits have the sym
bol sequenceAmB3 for m odd, and
correspond to sequences of eve
number @2(n12)# of circles in
the lower portion of the Poincare´
section. The value ofn increases
with decreasing initial angular
momentum. It appears that suc
orbits exist for arbitraryn; we
have found them up ton515.
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The differences between the R and PN cases are not
facts of the difference in scalings; when trajectories with
same energy are compared, the PN ones are visibly m
chaotic than both the N ones and the R ones. The appa
dearth of chaos in the R system is somewhat surprising,
indicates that most trajectories are effectively restricted
move on two-dimensional surfaces in phase space, as in
N case. This occurs despite the fact that the R system app
not to be integrable~chaotic orbits separating the annul
and pretzel regions do seem to exist! for any h within the
range investigated. Nonetheless, clearly some underl
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feature enforces considerable structure on the ph
space—a feature that is absent from the PN system.

VII. DISCUSSION

We consider in this section some general features of
motion of the three systems we have studied.

We find for each system that theB̄ symbol sequence al
ways occurs for all values ofh that we were able to inves
tigate. This leads to a rich variety of annulus diagrams, sy
metric about ther50 axis for the N and PN systems, bu
n

FIG. 14. An orbit with the
symbol sequenceAB3, shown for
the N system~plot 1! and the R
system at differenth values~plots
2–4!. All figures were run for 200
time steps with FM initial condi-
tions. Note that ash increases, the
R trajectories develop a kink
along thel50 axis, and begin to
display a double-banding patter
with two turning points at two dis-
tinct distances from ther axis
aboutl50.
4-18



.
n

e

e
-

t

r

CHAOS IN AN EXACT RELATIVISTIC THREE-BODY . . . PHYSICAL REVIEW E69, 016214 ~2004!
FIG. 15. Densely filled orbits in the pretzel class for the R system at varying values ofh, run for 200 time steps with FE initial conditions
A diagram for the N system ath50.2 is included in the upper left figure for comparative purposes. Ash increases, the R orbits take on a
increasingly pronounced hourglass shape. In the R system, we do not observe the breakdown to chaos seen in the PN case~Fig. 16!.

FIG. 16. Transition to chaos
for pretzel-type orbits in the PN
case. All four trajectories were run
for 200 time steps with the sam
FE initial conditions~with varying
h!. As h increases, we see th
densely filled pretzel regions be
come less ordered. Ath50.28
~lower-right plot! we see the onse
of chaos signified by an erratic
trajectory exploring a much large
area in ther-l plane.
016214-19
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BURNELL et al. PHYSICAL REVIEW E 69, 016214 ~2004!
FIG. 17. Transition from an
annulus to a pretzel orbit throug
a chaotic region in the R system
for h50.5 as initial angular mo-
mentum in the~r, l! plane de-
creases. All diagrams were run fo
450 time steps. Note that the cha
otic trajectories pass very close t
or through the origin.

FIG. 18. ~Color online! Cha-
otic orbits in the region of phase
space separating annulus and pr
zel trajectories. Shown here ar
trajectories for R~upper right! and
N ~lower left! systems in the~r,l!
plane~run for 300 time steps! and
for the three-body system~trun-
cated at 120 time steps!. FE initial
conditions were employed, but th
initial values of (r,l,pr) differ
for the R and N trajectories
shown. In the three-body system
the particles spend most of the
time in a configuration where one
middle~m! particle remains essen
tially motionless~the vertical axis
is the displacement from the ori
gin in units of kM totc

2/4). The
motion appears very close to regu
lar, its erraticity apparent in sligh
irregularities between the numbe
of crossings for which one particle
remains almost stationary. Thi
causes them particle to alternate
in an irregular fashion.
016214-20
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CHAOS IN AN EXACT RELATIVISTIC THREE-BODY . . . PHYSICAL REVIEW E69, 016214 ~2004!
FIG. 19. The Poincare´ plot of
the N system. The squares deno
the parts of the plot magnified in
the insets.
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with the axis of symmetry rotated slightly for the R syste
the rotation increasing with increasingh. We conjecture that
B̄ motion takes place for arbitrarily largeh in each of the PN
and R systems. It would be interesting to test t
conjecture—were it not to hold it would mean that a high
relativistic system must either experience a full KAM brea
down or else repeatedly develop temporary quasibound t
body subsystems. One thing substantiating this conjectu
that there is no evidence that the annulus region is shrink
01621
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with increasingh in either the PN or R systems. Howeve
proving this would require a relativistic equivalent of th
discrete mappings for the N case constructed in Ref.@14#.

We found that the pretzel-type orbits display a remarka
richness of dynamics for all three systems. As the angu
momentum of the trajectory in question decreases, the n
ber of successiveA collisions increases before the he
particle sweeps around the origin in theB3 sequence. For
example, the trajectoryAB3 ~the simplest sequence afterB̄)
e
f

t
ll

-

FIG. 20. A series of successiv
closeups of the lower section o
the Poincare´ plot of the N system.
This illustrates the self-similar
structure in the pretzel region tha
repeats at increasingly sma
scales. The limiting factor at very
small scales is the number of tra
jectories that we included in the
plot.
4-21
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FIG. 21. The Poincare´ plot of
the R system ath50.1. The left
inset provides a closeup of th
chaotic region at the top of the
diagram; note that it is similar to
the N system, but distorted in
shape. The right inset is a closeu
of the structure in a pretzel regio
in the lower right of the diagram;
it is similarly distorted relative to
the N system.
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corresponds to a boomerang-type orbit and appears as
closed loops~invariant curves! on the Poincare section. Th
next simplest sequence isA2B3, which corresponds to a
bowtielike orbit, and generates three slightly smaller loo
on the Poincare´ section.

Even in the small region of phase space between th
two simple orbits a complex tangle of periodic and quas
eriodic orbits exists. For each of the patterns above, a fam
of orbits exists corresponding to different widths of t
01621
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‘‘bands’’ of phase space that the trajectory covers, and c
respondingly, different radii of circles in the Poincare´ sec-
tion. Between these regions, the orbits’ sequences are
tures ofAB3 and A2B3. This reasoning can be extended
more generalAnB3m motions. We conjecture that the onl
allowed nonchaotic orbits—relativistic and nonrelativistic
are of the formP i , j ,k(A

niB3mj) l k with ni ,mj finite, corre-
sponding to increasingly complex weaving patterns. We
pect this conjecture to hold—at least for the range ofh that
-
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FIG. 22. The Poincare´ plot of
the R system ath50.75. The
upper-right inset provides a clo
seup of the chaotic region at th
top of the diagram; it is now con-
siderably narrower than that fo
lower values ofh. The lower-right
inset is a closeup of the structur
in a pretzel region in the lower
right of the diagram. The lines be
tween the various ellipses hav
slightly thickened, possibly sug
gesting the preliminary stages o
KAM breakdown.
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CHAOS IN AN EXACT RELATIVISTIC THREE-BODY . . . PHYSICAL REVIEW E69, 016214 ~2004!
FIG. 23. A series of successiv
closeups of the lower-right sectio
~pretzel region! of the Poincare´
plot of the R system ath50.75.
While this region is still highly
regular, the lines joining the el-
lipses and the waviness in th
solid lines are suggestive of th
early stages of KAM breakdown.
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we could access numerically—for both the R and N syste
@so that the pretzel class can be divided into countably m
distinct subclasses: one for each set$ni ,mj ,l k%, wherei, j, k
run from 1 to some positive integer#, but not for the PN
system, as it experiences KAM breakdown.

If the set of integersl k is finite, then the sequence
regular, leaving bands of phase space untraveled, and ap
ing as a series of closed crescents or ellipsoids on the P
carésection. If, however, the sequence of integersl k never
repeats itself, then the trajectory will fill the available pha
space densely, appearing as a wavy line on the surfac
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section. We conjecture that there is a 1-1 corresponde
between rational numbers and periodic orbits in this reg
of phase space, both for the N and R systems. This wo
give the lower section of the Poincare´ plot a fractal structure
as the patterns of circles, ellipses, and lines is repeated
arbitrarily small scales as the hex-particle’s angular mom
tum approaches zero.

VIII. CONCLUSIONS

In ~111! dimensions the degrees of freedom of the gra
tational field are frozen. One therefore expects the motion
f
c
,

FIG. 24. The Poincare´ plot for
the PN system ath50.21. Unlike
the R system, it is qualitatively
similar to the N system in terms o
symmetry. However, the chaoti
regions have increased in size
with the pretzel region being on
the threshold of KAM breakdown.
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FIG. 25. A closeup of the
Poincare´ plots for the PN system
for increasing values ofh. The
diagrams are all of the same lowe
part of the section. We see clea
evidence of KAM breakdown ash
gets larger.
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a set ofN particles in curved space-time to be described b
conservative Hamiltonian. We find this to be the case for
three-body system we have studied. By canonically reduc
theN-body action~1! to first-order form we derived an exac
determining equation of the Hamiltonian from the matchi
conditions. To our knowledge this is the first such derivat
for a relativistic self-gravitating system. The canonical eq
tions of motion given by the Hamiltonian can be explicit
derived from this equation and then numerically solved.

We recapitulate the main results of this paper.
~1! We obtained the post-Newtonian expansion of the s

tem we studied, along with its nonrelativistic limit. By com
paring these two systems~PN and N, respectively! with their
relativistic ~R! counterpart we were able to study quanti
tively the distinctions between each of these systems. Th
are two spatial degrees of freedom and two conjugate
menta in each, and so the systems are most easily studie
making the transformations~29!–~31!. This yields the hex-
particle representation of the system: the three-body N
tem is equivalent to that of a single particle moving in
hexagonal linear well. The PN and R systems distort t
well by making the sides concave and convex, respectiv
with the latter system inducing momentum-depend
changes to its shape.

~2! We found that in the equal-mass case each sys
exhibited the same three qualitative types of motion that
classified in the hex-particle representation as annulus, p
zel, and chaotic. Annulus orbits correspond to motions
which no two particles ever cross one another twice in s
cession. Annuli can be either periodic, quasiperiodic,
densely filled. Pretzel orbits correspond to motions in wh
a pair of particles cross each other at least twice before e
crosses the third. This yields a very broad variety of incre
ingly intricate patterns for each system, dependent upon
01621
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initial conditions. Stable bound subsystems of two partic
exist for each system. Chaotic orbits have no regular patt
and correspond to the case when the hex-particle crosse
origin. For energies close to the total rest energy we find t
all of these types of orbits are virtually indistinguishable f
each of the N, PN, and R systems.

~3! We find that differences between each system beco
more pronounced ash increases. In general, orbits in the
system are of higher frequency and cover a smaller regio
the ~r,l! plane than those of its N system counterparts at
same energy. If the same initial conditions are posed for e
system, the motions differ considerably, with the R syst
having more energy and covering a larger region of the~r,l!
plane. Annulus orbits in the R system have a symmetry a
that is rotated slightly relative to their N and PN counte
parts. Pretzel orbits develop an hourglass shape in th
system that is not seen in the N system, and additional tu
ing points appear for these orbits that are absent in th
system.

~4! We find that the qualitative features of the Poinca
sections for the R and N systems remain the same for
values ofh that we were able to study. This is remarkab
given the high degree of nonlinearity in the former. Howev
the R system has a weaker symmetry than its N counter
and so its Poincare section develops an asymmetric dis
tion that increases with increasingh.

~5! We find that the PN system experiences a KAM brea
down that is not seen in the R and N systems. This ta
place for someh5hcr in the range 0.21,hcr,0.26: lines
separating distinct near-integrable regions become incr
ingly wider ash increases, degenerating into chaos.

A number of interesting questions arise from this wo
First, it would be of considerable interest to explore the
system in the large-h regime. This will require considerably
4-24
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more sophisticated numerical algorithms than we have b
using which avoid the numerical instabilities we encou
tered, as well as perhaps employing a time parameter th
not the coordinate time. Second, an investigation of
unequal-mass case should be carried out to see if the c
mon features between the N, R, and PN systems are reta
In the N system, when masses are unequal, simply conne
regions of global chaos appear; the relationship of these
gions to their PN and R counterparts remains a subject
future consideration. Work on the unequal-mass case i
progress@27#.
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APPENDIX A: SOLVING THE THREE-BODY
CONSTRAINT EQUATIONS

The standard approach for investigating the dynamics
particles is to get first an explicit expression of the Ham
tonian and to derive the equations of motion, from which
solution of trajectories are obtained. In this appendix
show how to derive the Hamiltonian from the solution to t
constraint Eqs.~22! and ~23! and get an exact equation e
pressing the Hamiltonian as a function of the phase-sp
degrees of freedom for a system of three particles.

Defining f andx by

C524 lnufu, p5x8, ~A1!

the constraints~22! and~23! for a three-body system becom

Df2
k2

4
~x8!2f5

k

4
$Ap1

21m1
2f~z1!d~x2z1!

1Ap2
21m2

2f~z2!d~x2z2!

1Ap3
21m3

2f~z3!d~x2z3!%, ~A2!

Dx52 1
2 $p1d~x2z1!1p2d~x2z2!1p3d~x2z3!%.

~A3!

The general solution to Eq.~A3! is

x52 1
4 $p1ux2z1u1p2ux2z2u1p3ux2z3u%2eXx1eCx .

~A4!

The factore (e251) flips sign under time reversalT, and has
been introduced in the constantsX andCx so that this prop-
erty of x is explicitly manifested.

Our next task is to solve Eq.~A2!. Consider first the case
z3,z2,z1 , for which we may divide space-time into fou
regions,

z1,x ~1 ! region,

z2,x,z1 ~1! region,

z3,x,z2 ~2! region,
01621
en
-
is

e
m-
ed.
ted
e-
or
in

d

f
-
e
e

ce

x,z3 ~2 ! region,

within each of whichx8 is constant:

x855
2eX2 1

4 ~p11p21p3! ~1 ! region

2eX1 1
4 ~p12p22p3! ~1! region

2eX1 1
4 ~p11p22p3! ~2! region

2eX1 1
4 ~p11p21p3! ~2 ! region.

~A5!

It is straightforward to solve the homogeneous equat
Df2(k2/4)(x8)2f50 in each region:

f1~x!5A1e~k/2!K1x1B1e2~k/2!K1x ,

f1~x!5A1e~k/2!K1x1B1e2~k/2!K1x ,

f2~x!5A2e~k/2!K2x1B2e2~k/2!K2x ,

f2~x!5A2e~k/2!K2x1B2e2~k/2!K2x,

~A6!

where

K1[X1
e

4
~p11p21p3!, K1[X2

e

4
~p12p22p3!,

K2[X2
e

4
~p11p22p3!,

K2[X2
e

4
~p11p21p3!. ~A7!

For these solutions to be the actual solutions to Eq.~A2! with
d function source terms, they must satisfy the followin
matching conditions at the locations of the particlesx
5z1 ,z2 ,z3 :

f1~z1!5f1~z1!5f~z1!, ~A8a!

f1~z2!5f2~z2!5f~z2!, ~A8b!

f2~z3!5f2~z3!5f~z3!, ~A8c!

f18 ~z1!2f18~z1!5
k

4
Ap1

21m1
2f~z1!, ~A8d!

f18~z2!2f28~z2!5
k

4
Ap2

21m2
2f~z2!, ~A8e!

f28~z3!2f28 ~z3!5
k

4
Ap3

21m3
2f~z3!. ~A8f!

The conditions~A8a! and ~A8d! lead to

e~k/2!K1z1A11e2~k/2!K1z1B15e~k/2!K1z1A11e2~k/2!K1z1B1
~A9!

and
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e~k/2!K1z1A12e2~k/2!K1z1B1

5
Ap1

21m1
212K1

2K1
e~k/2!K1z1A1

1
Ap1

21m1
222K1

2K1
e2~k/2!K1z1B1 . ~A10!

Then

A15
Ap1

21m1
212~K11K1!

4K1
e2~k/2!~K12K1!z1A1

1
Ap1

21m1
212~K12K1!

4K1
e2~k/2!~K11K1!z1B1 ,

~A11a!

B152
Ap1

21m1
222~K12K1!

4K1
e~k/2!~K11K1!z1A1

2
Ap1

21m1
222~K11K1!

4K1
e~k/2!~K12K1!z1B1 .

~A11b!

Similarly, from Eqs.~A8b! and ~A8e! we obtain

e~k/2!K1z2A11e2~k/2!K1z2B15e~k/2!K2z2A21e2~k/2!K2z2B2
~A12!

and

e~k/2!K1z2A12e2~k/2!K1z2B1

5
Ap2

21m2
212K2

2K1
e~k/2!K2z2A2

1
Ap2

21m2
222K2

2K1
e2~k/2!K2z2B2 . ~A13!

Then

A15
Ap2

21m2
212~K11K2!

4K1
e2~k/2!~K12K2!z2A2

1
Ap2

21m2
212~K12K2!

4K1
e2~k/2!~K11K2!z2B2 ,

~A14a!
01621
B152
Ap2

21m2
222~K12K2!

4K1
e~k/2!~K11K2!z2A2

2
Ap2

21m2
222~K11K2!

4K1
e~k/2!~K12K2!z2B2 .

~A14b!

Finally, from Eqs.~A8c! and ~A8f! we get

e~k/2!K2z3A21e2~k/2!K2z3B25e~k/2!K2z3A21e2~k/2!K2z3B2
~A15!

and

e~k/2!K2z3A22e2~k/2!K2z3B2

52
Ap3

21m3
222K2

2K2
e~k/2!K2z3A2

2
Ap3

21m3
212K2

2K2
e2~k/2!K2z3B2 . ~A16!

Then

A252
Ap3

21m3
222~K21K2!

4K2
e~k/2!~K22K2!z3A2

2
Ap3

21m3
212~K22K2!

4K2
e2~k/2!~K21K2!z3B2 ,

~A17a!

B25
Ap3

21m3
222~K22K2!

4K2
e~k/2!~K21K2!z3A2

1
Ap3

21m3
212~K21K2!

4K2
e2~k/2!~K22K2!z3B2 .

~A17b!

Since the magnitudes of bothf and x increase with in-
creasinguxu, we must impose a boundary condition that e
sures that the surface terms which arise in transforming
action vanish and simultaneously preserves the finitenes
the Hamiltonian. This condition can be shown to be@5,6#

C224k2x250 in ~6 ! region. ~A18!

Since
x5H 2$eX1 1
4 ~p11p21p3!%x1eCx1 1

4 ~p1z11p2z21p3z3! ~1 ! region

2$eX2 1
4 ~p11p21p3!%x1eCx2 1

4 ~p1z11p2z21p3z3! ~2 ! region,
~A19!
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the boundary condition implies

A25B150, ~A20!

2 ln A12
ke

8
~p1z11p2z21p3z3!

5 ln B21
ke

8
~p1z11p2z21p3z3!5

k

2
Cx . ~A21!

The condition~A20! leads to

A1

B1
52

Ap1
21m1

222~K11K1!

Ap1
21m1

222~K12K1!
e2kK1z1 ~A22!
01621
and

A2

B2
52

Ap3
21m3

212~K22K2!

Ap3
21m3

222~K21K2!
e2kK2z3. ~A23!

Continuing, from Eqs.~A14a!, ~A14b!, ~A22!, and~A23!, we
get

Ap1
21m1

222~K11K1!

Ap1
21m1

222~K12K1!
e2kK1z15

N

D
, ~A24!

where
ng the
N5@Ap2
21m2

212~K11K2!#@Ap3
21m3

212~K22K2!#e2~k/2!~K12K2!z22kK2z3

2@Ap2
21m2

212~K12K2!#@Ap3
21m3

222~K21K2!#e2~k/2!~K11K2!z2,

D5@Ap2
21m2

222~K12K2!#@Ap3
21m3

212~K22K2!#e~k/2!~K11K2!z22kK2z3

2@Ap2
21m2

222~K11K2!#@Ap3
21m3

222~K21K2!#e~k/2!~K12K2!z2,

and so Eq.~A24! leads to

@Ap1
21m1

222~K11K1!#@Ap2
21m2

222~K11K2!#@Ap3
21m3

222~K21K2!#2@Ap1
21m1

222~K12K1!#

3@Ap2
21m2

212~K12K2!#@Ap3
21m3

222~K21K2!#ekK1z121@Ap1
21m1

222~K12K1!#@Ap2
21m2

212~K11K2!#

3@Ap3
21m3

212~K22K2!#ek~K1z121K2z23!2@Ap1
21m1

222~K11K1!#@Ap2
21m2

222~K12K2!#

3@Ap3
21m3

212~K22K2!#ekK2z2350. ~A25!

Insertion of Eq.~A6! into Eq. ~21! implies thatH54X. We can rewrite Eq.~A25! in terms ofH as

@H2Ap1
21m1

21e~p21p3!#@H2Ap2
21m2

22e~p12p3!#@H2Ap3
21m3

22e~p11p2!#2@Ap1
21m1

22ep1#

3@Ap2
21m2

21ep2#@H2Ap3
21m3

22e~p11p2!#e~k/4!$H2e~p12p22p3!%z122@Ap1
21m1

22ep1#

3@H1Ap2
21m2

22e~p12p3!#@Ap3
21m3

21ep3#e~k/4!$H2e~p12p22p3!%z121~k/4!$H2e~p11p22p3!%z23

2@H2Ap1
21m1

21e~p21p3!#@Ap2
21m2

22ep2#@Ap3
21m3

21ep3#e~k/4!$H2e~p11p22p3!%z2350, ~A26!

which is the determining equation of the Hamiltonian for the system of three particles in the case ofz3,z2,z1 .
The full determining equation is obtained with the permutation of suffixes 1, 2, and 3. To find it, we begin be rewriti

somewhat cumbersome expression~A26! as

L1L2L35@M12ep1#@M21ep2#L3* e~k/4!@~L11M12ep1!z132~L21M21ep2!z23#

1@M12ep1#@M31ep3#@L2* #e~k/4!@~L11M12ep1!z121~L31M31ep3!z23#1L1* @M22ep2#@M31ep3#

3e~k/4!@~L31M31ep3!z132~L21M22ep2!z12#, ~A27!
4-27
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where

L15H2Ap1
21m1

21e~p21p3!,

L25H2Ap2
21m2

22e~p12p3!, ~A28!

L35H2Ap3
21m3

22e~p11p2!, L1* 5L1 L3* 5L3 ,
~A29!

L2* 5H1Ap2
21m2

22e~p12p3!, Mi5Api
21mi

2.
~A30!

We obtain solutions when the particles are in a differ
order by permuting the indices in the solution show
above. This leaves the solution essentially the same, ex
for a number of sign interchanges. First, consider what h
pens to theLi terms after the particles cross. Their gene
form is

Li5H2Api
21mi

22e~6pk6pj ! ~A31!

with j Þk. To determine the signs in the third term, note th
the L’s above obey the following pattern: forLi , we have
2epj if j , i ~that is, if zj2zi.0) and 2e(2pj ) if j . i
~that is, if zj2zi,0). Careful inspection then shows th
Li5H2Mi2e(( j pjsji ), wheresi j 5sgn(zi2zj).

TheL* ’s are the same, except for the middle particle,
which theMi term flips sign. This means that we can wri
Li* 5(12P j ,kÞ isi j sik)Mi1Li , where the first term van
ishes unless thei th particle is in the middle.

Finally, consider what happens to terms of the formMi
6epi when the particles are permuted. Note that the sign
the second term is always negative for the particle on
right, and always positive for the particle on the left. For t
particle in the middle, the sign is positive when it is added
or multiplied by terms relating to the particle on its right~in
which case it plays the role of the leftmost particle!, and
negative when it is added to or multiplied by terms relati
to the particle on its left~when it plays the role of the right
most particle!. We can summarize this information by wri
ing Mi j 5Mi2episi j .

Putting this information together, we obtain
01621
t

pt
p-
l

t

r

f
e

o

L1L2L35M12M21L3* e~k/4!s12@~L11M12!z132~L21M21!z23#

1M23M32L1* e~k/4!s23@~L21M23!z212~L31M32!z31#

1M31M13L2* e~k/4!s31@~L31M31!z322~L11M13!z12#,

~A32!

or more compactly

2L1L2L3

5(
i jk

ue i jk uMi j Mj i Lk* e~k/4!si j @~Li1Mi j !zik2~L j 1Mj i !zjk#

~A33!

for the full determining equation, where

Mi j 5Mi2episi j , Mi5Api
21mi

2, ~A34!

Li5H2Mi2eS (
j

pjsji D ,

Li* 5S 12 )
j ,kÞ i

si j sikD Mi1Li , ~A35!

with zi j 5(zi2zj ), si j 5sgn(zij), and e i jk is the three-
dimensional Levi-Civita tensor. It is straightforward~but
somewhat tedious! to check that Eq.~A33! indeed repro-
duces the correct determining equation for any permuta
of the particles.

The next task is to obtain the equations of motion fro
the Hamiltonian. For theN-body case we can use the canon
cal equations@5#

ża5
]H

]pa
, ~A36!

ṗa52
]H

]za
, ~A37!

where as previously mentioned the overdot denotes a de
tive with respect tot. Although we do not have a closed-form
expression forH, we can nevertheless obtain explicit expre
sions for (ża ,ṗa) by implicit differentiation of both sides of
Eq. ~A33!.

For example, after differentiation of Eq.~A32! with re-
spect top1 we find after some algebra,
ż1H L2L31L1L31L1L22@M22ep2s21#@M12ep1s12#F11
k

4
L3* uz12uGe~k/4!s12@~L11M12!z132~L21M21!z23#

2@M32ep3s31#@M12ep1s13#F11
k

4
L2* uz13uGe~k/4!s13@~L11M13!z121~L31M31!z23#

2@M22ep2s23#@M32ep3s32#F11
k

4
L1* uz23uGe~k/4!s23@~L31M32!z132~L21M23!z12#J
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5@M22ep2s21#F S ]M1

]p1
2es12DL3* 2~M12ep1s12!S es131

k

4
L3* ~ez12! D Ge~k/4!s12@~L11M12!z132~L21M21!z23#

1@M32ep3s31#F S ]M1

]p1
2es13DL2* 2~M12ep1s13!H es121

k

4
L2* ~ez13!J Ge~k/4!s13@~L11M13!z121~L31M31!z23#

1@M22ep2s23#@M32ep3s32#F2s12s13

]M1

]p1
1

k

4
s23L1* @euz12u2euz13u#Ge~k/4!s23@~L31M32!z132~L21M23!z12#

1
]M1

]p1
L2L31e~s12L1L31s13L2L1!. ~A38!

The expressions forż2 and ż3 are extremely similar and we shall not reproduce them here. Similarly, differentiating
~A32! with respect toz1 gives after some algebra,

2 ṗ1H L2L31L1L31L1L22@M22ep2s21#@M12ep1s12#F11
k

4
L3* uz12uGe~k/4!s12@~L11M12!z132~L21M21!z23#2@M32ep3s31#

3@M12ep1s13#F11
k

4
L2* uz13uGe~k/4!s13@~L11M13!z121~L31M31!z23#2@M22ep2s23#@M32ep3s32#

3F11
k

4
L1* @z23#Ge~k/4!s23@~L31M32ep3s32!z132~L21M22ep2s23!z12#J

5@M22ep2s21#@M12ep1s12#Fk4 s12L3* @H1e~p22p1!s121ep3s13#Ge~k/4!s12@~L11M12!z132~L21M21!z23#

1@M32ep3s31#@M12ep1s13#Fk4 s13L2* @H1ep2s121e~p32p1!s13#Ge~k/4!s13@~L11M13!z121~L31M31!z23#

1@M22ep2s23#@M32ep3s32#Fk4 s23L1* p1~s122s13!Ge~k/4!s23@~L31M32!z132~L21M23!z12#. ~A39!
e

q
s
-

cl

q
n-

me
The other expressions are similar and we shall omit th
here.

The components of the metric are determined from E
~11!, ~12!, ~15!, and ~16! under the coordinate condition
~19!. It is straightforward to verify that insertion of the solu
tions of the metric and dilaton fields also solve the parti
equations~17! and ~18!, as in the two-body case@5#.

APPENDIX B: THE DETERMINING EQUATION IN
HEXAGONAL COORDINATES

The form of the determining equation is given by E
~24!, and we wish to rewrite it in terms of the four indepe
dent degrees of freedom (r,l,pr ,pl), using the relations
~31! and ~36!–~38!.
01621
m

s.

e

.

Consider first the expressions in the exponentials. So
algebra shows that

H0[~L11M12!z132~L21M21!z23

5&Hr2eS 2urupr1FUl1
r

)
U2Ul2

r

)
UGplD ,

~B1!

H2[~L21M23!z212~L31M32!z31

5HS l2
r

)
D 2eS F uru2

)

2 Ul1
r

)
UG S pl

)
1prD

1
3

2 S pl2
pr

)
D Ul2

r

)
U D , ~B2!
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H1[~L31M31!z322~L11M13!z12

52HS l1
r

)
D 2eXF uru2

)

2 Ul2
r

)
UG S pl

)
2prD

2
3

2 S pl1
pr

)
D Ul1

r

)
U C. ~B3!

Writing

m15m1 , m25m2 , m05m3 ,

s65

Ul6
r

)
U

l6
r

)

, s05
uru
r

, ~B4!

we obtain

L1L2L05M12M21L0* e~k/4!s0H01M20M01L1* e~k/4!s2H2

1M01M10L2* e~k/4!s1H1, ~B5!

where
v
i-

B

ev

01621
M05A2

3
Apl

21m0
2, M 65

1

&
AS pl

)
6prD 2

12m6
2 ,

~B6!

L65H2M 66
e

&
F S pl

)
7prD s06

2

)
pls6G , ~B7!

L05H2M02
e

&
F S pl

)
1prD s11S pl

)
2prD s2G ,

~B8!

M675M 67
e

&
S pl

)
6prD s0 ,

M605M 62
e

&
S pl

)
6prD s6 , ~B9!

M065M01
e&

)
pls6 , L0* 5~12s1s2!M01L0 ,

~B10!

L6* 5~17s0s6!M 61L6 . ~B11!
n,

y

-
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