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Transition to space-time chaos in an optical loop with translational transport
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We describe the transition from regular patterns to space-time chaos in an optical system with nonlocal
feedback. The nonlocality introduced breaks the rotational symmetry of the system, resulting in a scenario for
the transition from regular patterns to a disordered dynamics. The different regimes are characterized both in
terms of spatial and temporal correlation functions, and by means of a Kahrunen-Loeve decomposition. This
allows the determination of the structures participating in the dynamics, and an estimation of the active degrees
of freedom versus the control parameter.
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I. INTRODUCTION fluctuations upon an otherwise regular stripe pattern, which
contains most of the energy.

In the context of the research about disordered dynamical The number of active areas and defects increases when
states in extended systeifrld, several nonlinear optical sys- increasing the control parameter, and ultimately all signa-
tems have recently attracted attentigh-5]. In particular, tures of regularity are lost in the signal. In the fully devel-
nonlinear media or devices inserted in optical logps7] ~ oped chaotic regime, the isotropy of the spatial correlation
offer a powerful framework for the study of pattern forma- function is, at I_east partla_\lly, recovered. Fgrthermore, we will
tion, both in ordered and in disordered dynamical regimes. S€& how the signal manifests a fully multimode nature, con-

Among such devices, liquid crystal light valvésCLV’s) ~ rary to what happens at lower pump values.
have become popular because of their large nonlinearity and I.n Sec. lTwe b_nefly describe our experimental setup, con-
slow time scale, which allow the study of large aspect ratio,s"s't'r?g of an optical feedback' Iopp closeq trough a LCLV.

. . Section Il is devoted to a qualitative description of the route
space-time dependent signals. ;
Indeed, optical valves act over a wide range of opticalfrom regular patterns to space-time chéS_iC)_observed. In
. . ) . N . . ~Sec. IV we give a quantitative characterization of the above
|nteq3|tlgs as Kerr-!|ke media, transforming mput IntenS'tytrr:msition, in terms of spatial and temporal correlation func-
distributions u(r,t) into output phase modulations(r,t)  ions. Section V is dedicated to an analysis of the signals in
proportional tou. In a diffractive feedback configuration, (ems of the Kahrunen-Loeve decomposition. This technique
phase modulations transform by free propagation into ampliz|iows an identification of the modes participating to the dy-
tude distributions, producing at the rear side of the valve amamics, and a quantitative evaluation of the number of active
intensity pattern that will in turn generate phase modulationsgegrees of freedom.
hence closing the feedback loop. Such a nonlinear optical

system can therefore enhgnce spatiotemporal- perturbations, Il. EXPERIMENTAL FEATURES
and lead to pattern formation, beyond some critical vajue ) ) o o
of the input light intensity. The experimental setup is shown in Fig. 1. Aliquid crystal

If nonlocal interactions are introduced by means of alight valve is illuminated by an expanded spatially uniform
translationAx in the feedback beam, a particularly rich sce- i oy
nario of instabilities is observed; in particular, transitions A, BS, ’ E:

from hexagons to stripes, and then to bimodal states, non°—-l <+
equilateral hexagons or zig-zag patterns can of8LiThese o) / !
situations have been characterized close to threshold; th A—l— + f I, ‘
transition from regular patterns to space-time chaos, on the L

other side, has been so far studied only in the cige0 I FB

[9-11]. = \
In this paper, we are interested in the scenario of transi- -

tion toward space-time chaos in an optical loop of this kind L, BS,
for a nonzero value aAx. The control parameter is the light
intensityl at the input of the LCLV, and the spatial offs&k CCD
is set at a value such that stripes are selected at thresholu.
When the pump parameter is increased, the initially complete 1. 1. Experimental setup. An extended laser beam is closed
order of the structures is first broken by the appearance Qfirough a nonlinear Kerr-like mediutfiquid crystal optical valve

local bursts of activity, which can give rise to dislocations. |nstabilities develop in the transverse plane of the beam. O: micro-

These appears at random positions in the system and detetope objective; A, A,: apertures; BS, BS,: beam splitters;
mine an anisotropic behavior of the spatial correlation func{.CLV: liquid crystal light valve; Ly, L,: lenses of focal len§ FB:

tion at intermediate pump values. In this “weakly chaotic” fiber bundle, twisted of 180° in order to compensate the image
situation, the signal displays a limited amount of irregularspatial inversion introduced by the lenses.
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laser beam generated by an’Alaser at 514 nm. The valve
operates like a defocusing medium working in reflection.
Over a broad range of parameters, a proportionality relation
holds between the intensity of the writing light, that reaches
the back of the valve, and the phase retardation induced o,
the reading beam on the front valve face. We will operate
within this range, referred to as “Kerr-like regime,” in the x (a) (b)
experiments here reported.

Two lensesL; andL, realize a one-to-one image of the
LCLV front side in a plane that can be placed before or after
the input of a fiber bundle. This one relays the image from its
input planeP to the back face of the LCLV. The supply
voltage applied to the LCLV i8/=8.5V, the frequency
=2 kHz.

The control parameter is the input light intensity
=|E,|?; in the following, we make use of the reduced con- (d)
trol parameter, defined as=1/1.,—1, wherel . is the thresh-
old intensity for pattern formation.
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FIG. 2. Patterns observed for increasirg (a) stripes €

. - =0.6); (b) varicose state with defectse€3.1); (c) developed
Beam splitter BS deviates a part of the beam onto aspace-time chaosE&6.1). Upper raw: near field intensity distribu-

charge-coupled device camera. Time serie$ 200 snap- tions: lower row: Far field intensities.
shotsu(r,t) of the beam transverse section in a plane conju- '
gated toP, are acquired, and stored as 8-bits X556 pix-
els pictures. The variabbewill denote the coordinate in the
direction of the translatioal, y the coordinate perpendicu-
lar to it. The sampling time depends dndecreasing from
200 ms atl ~1. to 40 ms in space-time chaos. This depen-
dence follows the natural scale of the dynamics, as will bé . . .
seen in Sec. IV. We study thel transition from regulgr stnpgs to space-time
The spatial frequencies at which the system destabilizeGn20S keeping fixedx=180 um, and increasing The pat-
are those for which the phase distribution is most efficienty!€™ formation threshold is at.=10 pWicn?. Slightly
converted to intensity distribution, due to the propagation@POVe this value, a set of stripes of the kind shown in Fig.
over the effective diffractive length =(1,+1,)—2f (L= 2(a) forms. Figure ?_d).repres'ents the_ far field distribution of
—80 mm in the experiment here reported@he values of Fig. 2(a), corresponding to its Fourier spectrum. It can be

iese frequencies o, k(20 /L, wih n even. SN AL e patler s essentaly o s snle soae, wih 2
How many of these scales are actually excited, will depencY ry ) K

on both the input intensity, and the diffusion length of thespor)ding o th? first unstaple bang iS. A=285pm. .
LCLV. In our case, this length is of the order of 40m. Figure 3a) displays the time evolution of the central line

Furthermore, any of these frequencies can generate ha?]c Fig. 2a). Clearly, the pattern is stationary, and hence fully

monics, due to the nonlinearity which inherently relates thecorrelated In space arjd time. At higher pump intensities, the
electric field to its phase. Given, e.g., a phase distribution a§ymmetry of these stripes is first broken by the appearance of

; - ; ; a varicose mode, a¢=2. The features of this instability
a single spatial frequendyp, and having an amplitude, the ’ . : : S .
corresponding electric field is depend om\x, and we are not discussing this point in detail

consists of stationary hexagons. Whkx is increased, hexa-
gons lose stability to the benefit of stripes that are parallel to
X. Increasing furtheAl up to =220 um, a transition from
stripes to a bimodal patteitmorizontal-vertical stripes oc-
ur[8].

here.
o _ The varicose pattern, initially stationary, becomes time
Ege' 7SNk =, > J,(y)emox, (1)  dependent at=3. A snapshot of such kind of structure is
n
which in principle contains all the harmonics k. In prac- Pt

tical cases, only the harmonics up to a certain maximum
order will contain a relevant amount of energy. The number
of these excited frequencies increases for increaging

Due to these mechanisms of frequency destabilization and
generation it is possible, in this system to obtain very broad-
band, “turbulentlike” signals.

<

I

IIl. TRANSITION TO SPACE-TIME CHAOS ' (a

When the feedback is local, i.e., when no translation is FIG. 3. Space-time diagrams fer=0.6 (a), 3.1(b), 6.1(c). The
applied to the pattern before feeding it back to the valveduration of the time series is 20, 12, and 5 secan (b), and(c),
(Ax=0), the selected pattern at the onigetf the instability  respectively.
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shown in Fig. 2Zb), and its power spectrum in Fig(€. In Cfar)
these conditions, localized areas in the pattern become temi.
porally active. In some cases the activity is limited to a phase,,
fluctuation that remains localized on a single stripe: in oth-0
ers, defects are created in the form of dislocations, which"
then propagate in the direction afx (towards the right in ~ **
our figures. The time evolution of a line oriented aloygn 02
this regime is visible in Fig. ®). ool
The number of these active areas and their occurrenct
frequency increases for increasiag until, at e=5, a fully
space-time chaotic state is reached. In this regime, the instar
taneous pattern still displays a visible residual of striped®
symmetry[Fig. 2(c)]. However, the spectral broadening ob- °#
served in Fig. &) indicates a loss of spatial correlation over os
each single frame. The time evolution of a line oriented ,,
alongy, shown in Fig. &), displays clearly how space-time
defects invades now the whole system, leading to a fast tlme
decorrelation at any spatial location. %o

-

P T Ll dniahy

e

IV. CORRELATION FUNCTIONS

) o N FIG. 4. Spatial correlation functions aloxgsolid lines andy
In order to characterize quantitatively the transition from(dashed lines e=0.6 (a), 3.1 (b), 5.0(c), 6.1(d).

regular patterns to space-time chaos, we evaluated the spatial
and temporal correlation function for several valueseof dephased in an irregular way. Also, at these pump values the
The spatial correlation function is defined as undulations are not extended uniformly over the system size
along x, but rather appear from time to time in some pre-
(v(r,t)v(r+Ar,1)), ferred regions. In these areas, some extra segment of stripes
Cs(An)= ) : (2} can appear. These structures are clearly visible in Fig), 2
T t and are responsible for the power contained in the second
harmonic peaks in Fig.(8). These features lead to a rather
strong symmetry breaking of the pattern algnélong x, on
_ _ the other side, the dominant aspect of the structure is a long
o(r,H=u(r,H=(ulr,n), @ wavelength modulation, which affects the correlation loss to
is the dc filtered pattern. No demodulation is performed orf* 1ESSer extent.
the pattern before computing the correlation functions, since 1€ Symmetry of the correlation function is partially re-
more than one spectral mode develops when increasing covered in the fully developed space-time chaotic regime
The information on the characteristic length along and per[F'g' ?](d,)]’ dqe to lthe fact that n(l)W the St”,pﬁs appear brohken
pendicular to the stripes will therefore be contained in the?nd their residuals are randomly bent with respect toxthe
envelope of the spatial correlation function. axis. However, at short scaleAi(<0.3 mr_n) the correlation
Sections ofC(Ar) alongx andy are shown in Fig. 4 for decreases faster alomxgthan alongy also in th|s.case. _
four increasing values of. The correlation decreases along we t.hen evaluated the' global time correlation of the sig-
both directions, and more rapidly for higher values of pumpnal This represents the time coherence of the whole pattern

where

than for lower ones. This is of course to be expected. with respect to itself, and is defined as

The other information conveyed by Fig. 4 is that the spa-
tial correlation does not always decay symmetrically algng (AY) {o(r,.hu(r,t+AD), _ (4)
andy. This symmetry approximately exists close to the pat- (v (r,H?)(u(rt+AH?) )2

tern formation threshold, and, partially, in the fully devel-
oped space-time chaos regime. In the first case, actually, it is This quantity is plot for several values ofin Fig. 5. The
expected that, in the absence of experimental imperfectionsime scale over which the pattern loses correlation varies
the correlation length be infinite along any direction. At in- from tens of seconds, close to threshold, to a fraction of a
termediate values of, corresponding to the partially devel- second in the STC regime. Interestingly, at intermediate val-
oped chaos, the signal systematically decorrelates fasteres ofe (3.1,4.0) the time correlation does not decay to zero
alongy than alongx. This behavior is particularly visible at even at long times.

long range Ar=0.5 mm) in Figs. 4b) and 4c). Here, the The reason for this can be understood with reference to
correlation function along is higher than that along by  Fig. 6, showing the time averaged patterns in the regular,
30-50%. partially developed and fully developed STC regimes. The

The qualitative origin of this asymmetry can be under-relevant fact here is that, in the partially developed chaos
stood by inspection of Fig.(B). Here we see that the vari- [Fig. 6b), ¢e=3.1], the average structure is still strongly
cose undulations occurring on different stripes are mutuallyegular. The presence of regularities in the average signal
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FIG. 5. Time correlation function at several valuessof The
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the aim of getting out relevant information from turbulent
fields [15]. Its success encouraged to extend the method to
other physical situations, among which is the study of space-
time chao§16-23.

The data used in this section are, for each value, @ set
of T=120 frames, ofN=512x512 pixels per frame. We
rearrange these data in a matigz,,,,t,) such as its columns
are thev(x;,y; ,t) [m=(N—1)i+j] patterns, ranked in a
time-increasing order. The matriA is therefore of size
NXT.

Let us briefly recall how the Karhunen-Dee technique
works. Given a time series of imagegr,t), the aim is to
find two sets of orthonormal functiong,(t), #,(r) such
that

v(r,t>=n§l ndn(D) gn(r), (5)

curves ak = 0.6 and 3.1 are to be referred to the top time axis. The
curves at: = 4.0 and 6.1 are to be referred to the lower time axis.where the functiong,(r)} describe the data information

content in the spatial domain, and are therefore sometimes

resulting from space-time chaotic data series has been atalled the “topos.” Analogously, th¢¢,(t)} are named the

ready pointed out in fluid experimenit$2,13.

“chronos.” The set of functions),(t) are the solutions of

This symmetry in the averages means that the spatial flughe eigenvalue problem having as a kernel the space correla-
tuationsv (r,t) have a very strong time correlated compo-tion matrix:
nent, which manifests in the finite plateau of the correlation

functions shown in Fig. 5. The situation is different in the
well-developed STC regime; here the time averaged pattern
is the one shown in Fig.(6), i.e., gray with only some fluc-

K(z,z)=AT-A, (6)

whereT represents the transposition operator. Thg} are

tuations. These ones are probably due to imperfections in tH&"ther determined by projecting each data picture on the

LCLV homogeneity, and are responsible for the small,
though nonzero value of the time correlationtat-o ob-

served also in this case.

V. THE KAHRUNEN-LOEVE DECOMPOSITION

In this section, we apply the Kahrunen-Loe{dl) tech-
nigue for characterizing the space-time chaotic regime. Th
KL decomposition is a long used technigue in signal analysi
and processing14]. While other techniques of decomposi-
tion deal with fixed basis functiorf®.g., co§) and sirt) for

¥} and averaging on space:

1
¢n(t)=M—<v(f,t)-</fn(r)>r- )

The expansion coefficients,, in Eq. (5) are given by

|Mn|2:)\na (8)

5)\”} being the eigenvalues associated g, , /,}. Since the

ot and{¢,} are normalized, this amounts to say that the
eigenvalue associated to each function represents its “energy

the Fourier transforfh the KL technique is aimed to extract contnbytmn’;)to_theadﬁta SEries. —
from a pattern series the empirical eigenpictures that best fit Having o t?mhe the KL.spebctr_um(,j %” approx!matﬁ re-
the statistical set features. Furthermore, it is possible to orddenStruction of the pattern is obtained by truncating the ex-

these eigenpictures with respect to their “energy,

" meant a@@nsion(5) up to thength mode(Galerkin projectioix

their contribution to the image series dynamics. Doing so, it no
is often possible to identify a small set of modes which con- v(r,t)=v, (r,H)= z (D) (1) 9)
1 0 1 n:1 L

tains most of the relevant information.

This technique has been used in nonlinear dynamics with

Il

~
N

(b)

FIG. 6. Time-averaged patterns fe=0.6 (a), 3.1 (b), 6.1 (c).

whereny=<T.

Typical eigenvalues specttasually calledsingular spec-
tra) are reported in Fig. 7 for several values of the pump
parametee. For smalle, most of the energy is contained in
the first eigenpictur¢Fig. 8@a)]. As ¢ is increased, the spec-
trum tail level grows, while the energy of the first mode
decreases: the spectrum becomes flatter and flatter, indicating
a tendency towards equipartition of energy among all modes
in the developed STC regime.

Figure 8 shows examples of the spatial eigenmodes
Yn(r), evaluated close to threshold and in the space-time
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. FhlGé 1-(5'?3)‘“” spectra=0.6 (long dash, 2.3(do), 3.1(short  qyantify the quality of the reconstruction between the input
ash, 6.1 (solid).

patternv and the patterm, reconstructed using, eigen-

. . . . patterns:
chaotic regime. In agreement with Fig. 7, one can see that

the high order modepn= 15 in Fig. 8c)] have a relevant (W (V1)
amount of information in the case of STC signals, while they Clng)= Ung\ T DULT L) /e
represent just a small noise in the regular regime. 0 (o (r,H)1DY v, (r )22

We report on Fig. @) how the fraction of energyV, 0 t
contained in the first eigenmode variessvsV, is defined as

(11)

This quantity is plotted as a function af, in Fig. 10 for
three values ok. Even in the chaotic regime, a number of

N1 modes =20 appears sufficient to reconstruct a space-time
W= — . (10 series having a correlation larger than 90% with the original
> data set.
n
n=1

VI. CONCLUSION
This quantity exhibits a smooth transition in the region

o : 0 0 We have presented a scenario of transition from regular
2=#=6, passing from almost 100% to about 10%. patterns to space-time chaotic dynamics, occurring in the
Complementary, Fig.(®) shows the numberm, of modes

. . __presence of a translational transport introduced in an optical
needed to contain 75% of the total energy of the time seriegystem. The main aspects of the route to disorder are the

as a function ofe. Again, a large increase af, can be  resence of a varicose instability of the initial stripe pattern;
located at the smooth transition to STC. the appearance of localized bursts of activity as the first el-

ements destabilizing the ordered structures; the presence of

1,04

0,8+

C(n,)

0,6+

0,4

FIG. 10. Cross-correlation indicat@(ng) quantifying the level
of correlation between the pattern and its reconstruction using the

FIG. 8. Some eigenpatterns of the PQR;d first mode,(b,e

second mode(c,f) 15th mode. Upper rawe= 0.6, lower raw:e first ny eigenpatterns foe=0.6 (dotted ling, e=3.1 (deshed ling
=6.1.

€=6.1(solid line).
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an asymmetry in the spatial correlation function at interme-more spatial modes over a wide range of the control param-
diate values of the pump parameter, and the partial recovergter.
of the symmetry in the fully developed space-time chaos
regime. ACKNOWLEDGMENTS

An analysis of the signals based on the Kahrunen-Loeve This work was partly supported by EU Contract No.
decomposition shows that the transition to chaos is veryYdPRN-CT-2000-00158 and MIUR-FIRB Project No.
smooth, involving the successive activation of more andRBNEO1CW3M-001.

[1] See, for exampleSpace-Time Chaos: Characterization, Con- [11] G. Schliecker and R. Neubecker, Phys. Re61ER997(2000

trol and Syncronizationedited by S. Boccaletti, H.L. Mancini, and references therein.
W. Gonzalez-Vias, J. Burguete, and D.L. Valladaré/orld [12] B.J. Gluckman, P. Marcq, J. Bridger, and J.P. Gollub, Phys.
Scientific, Singapore, 2001 Rev. Lett.71, 2034(1993.

[2] J.V. Moloney, P. Jakobsen, J. Lega, S.G. Wenden, and A.d.13] L. Ning, Y. Hu, R.E. Ecke, and G. Ahlers, Phys. Rev. L&tt,
Newell, Physica D68, 127 (1993. 2216(1993.

[3] M.A. Vorontsov, J.C. Ricklin, and G.W. Carhart, Opt. Ei3d, [14] See, for example, R.C. Gonzales and P. Wiltigyital Image
3229(1995. Processing Addison-Wesley, New York, 1937

[4] F.T. Arecchi, S. Boccaletti, and P.L. Ramazza, Phys. R&B. [15] N. Aubry, P. Holmes, J.L. Lumley, and E. Stone, Physicam
1(1999. 1(1989.

[5] F. Encinas-Sanz, I. Leyva, and J.M. Guerra, Phys. Rev. Lett[16] L. Sirovich and J.D. Rodriguez, Phys. Lett180 211(1987.
84, 883(2000. [17] A.M. Fraser, Physica [34, 391(1989.

[6] S.A. Akhmanov, M.A. Vorontsov, and V.Y. lvanov, JETP Lett. [18] L. Sirovich, Physica D37, 126 (1989.
47, 707 (1988. [19] R. Vautard and M. Ghil, Physica B5, 395(1989.

[7] G.P. D'Alessandro and W.J. Firth, Phys. Rev. Lé#, 2597 [20] S. Ciliberto and B. Nicolaenko, Europhys. Lett4, 303
(199D. (199).

[8] P.L. Ramazza, S. Boccaletti, and F.T. Arecchi, Opt. Commun[21] S.M. Zoldi, J. Liu, K.M.S. Bajaj, H.S. Greenside, and G. Ahl-
136, 267 (1997). ers, Phys. Rev. 58, R6903(1998.

[9] G. D’'Alessandro and W.J. Firth, Phys. Rev4A, 537(1992. [22] S.M. Zoldi and H.S. Greenside, Phys. Rev. L&t 1687

[10] F. Castaldo, D. Paparo, and E. Santamato, Opt. Comf8). (1997).
57 (1997. [23] M.P. Chauve and P. Le Gal, PhysicadB, 407 (1992.

016210-6



