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Statistics of finite-time Lyapunov exponents in the Ulam map
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Centro Brasileiro de Pesquisas Fı´sicas, R. Dr. Xavier Sigaud 150, 22290-180, Rio de Janeiro, Brazil

~Received 19 August 2003; published 27 January 2004!

The statistical properties of finite-time Lyapunov exponents at the Ulam point of the logistic map are
investigated. The exact analytical expression for the autocorrelation function of one-step Lyapunov exponents
is obtained, allowing the calculation of the variance of exponents computed over time intervals of lengthn. The
variance anomalously decays as 1/n2. The probability density of finite-time exponents noticeably deviates from
the Gaussian shape, decaying with exponential tails and presenting 2n21 spikes that narrow and accumulate
close to the mean value with increasingn. The asymptotic expression for this probability distribution function
is derived. It provides an adequate smooth approximation to describe numerical histograms built for not too
small n, where the finiteness of bin size trims the sharp peaks.
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I. INTRODUCTION

In a dynamical system, Lyapunov exponents~LEs! quan-
tify the average exponential rate of expansion or contrac
of infinitesimal volume elements in each direction of pha
space. Negative exponents imply convergence of initia
nearby trajectories, while positive ones mean exponentia
vergence of neighboring orbits therefore signaling chao
behavior.

By the theorem of Oseledec@1,2#, assuming ergodicity
each exponential rate of growth converges to a ti
asymptotic limit,l` , independently of the particular trajec
tory chosen~for almost all initial conditions!. A useful gen-
eralization of asymptotic LEs are the local finite-time LEsln
calculated over a time interval of lengthn along a given
trajectory@3#. In contrast to asymptotic ones, exponents
fined for finite time depend on the initial conditions. Loc
finite-time exponents must be distinguished from other lo
exponents also considered in the literature such as the
called local finite-sample exponents@4#. The analysis of
finite-time LEs is particularly important as they are the qua
tities actually measured in computational studies, unavo
ably performed for finite time. Local LEs have proved to
useful in the characterization of a variety of phenome
ranging from two-dimensional turbulence@5# to the so-called
Loschmidt echo@6#. These local exponents are fluctuatin
quantities that may even change sign depending on the
gree of heterogeneity of the relevant subset of phase sp
Their fluctuations give rise to a nontrivial probability dens
P(ln) that asymptotically collapses to a Diracd function
centered atl` . The deviations from this limit and the con
vergence to it contain rich information on the underlyi
dynamics@3,7#.

A relevant question on the dynamics of chaotic system
the existence or not of true trajectories lying close to
numerically generated ones. It is known that finite-time L
fluctuating around zero cause the nonexistence of such s
owing trajectories@8#. Particularly, in the synchronizatio
transition of lattices of coupled chaotic one-dimensio
~1D! maps@9#, unshadowability of chaotic orbits is due t
unstable dimension variability, characterized by the sec
largest LE fluctuating about zero@10#. The connection be-
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tween the probability distribution function~PDF! of finite-
time LEs in the synchronized states and the PDF of the lo
exponents in the uncoupled map@11# motivates the study of
the statistical properties of finite-time LEs in chaotic map
Within this context, the numerical nature of the difficultie
involved makes analytical results specially relevant.

This work focuses on the statistical properties of fini
time LEs for the logistic map at a parameter value yieldi
fully developed chaos, namely, at the Ulam point, whe
x°4x(12x). This particular mapping allows exact calcul
tions that are expected to be useful for more general syst
belonging to the same class of chaotic behavior. We begin
calculating the autocorrelation function of one-step LEs. T
function allows to evaluate exactly the variance of local LE
Furthermore, we investigate thoroughly the PDF of fini
time LEs. Taking as a starting point the work by Prasad a
Ramaswamy@12#, we extend it by deriving a user-friendl
expression for the PDF of finite-time LEs, a very good a
proximation for not too smalln.

II. FINITE-TIME LYAPUNOV EXPONENTS

For a 1D mapx° f (x) with differentiablef, finite-time
LEs ln, computed over the interval of lengthn, are given by
@7#

ln5
1

n (
j 50

n21

lnu f 8~xj !u, ~1!

wherexj5 f j (x0) is the j th iterate of the initial conditionx0.
We will compute local LEs after a transient has elapsed,
that averages over different realizations can be calcula
with the weight given by the invariant densityp(x) of the
chaotic attractor.

Random initial conditions yield fluctuations in the valu
of ln around^ln&5l` , with variances2(n)5^ln

2&2l`
2 ,

which by means of Eq.~1! can be expressed as

s2~n!5
1

n2 (
j 50

n21

(
k50

n21

Cj ,k , ~2!

where
©2004 The American Physical Society07-1
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Cj ,k5^ lnu f 8~xj !u lnu f 8~xk!u&2^ lnu f 8~xj !u&^ lnu f 8~xk!u&
~3!

is the two-time autocorrelation function of one-step~unitary
time! LEs @13#.

Separating diagonal from off-diagonal terms, one gets

s2~n!5
1

n2 (
k50

n21

Ck,k1
2

n2 (
j 50

n21

(
k. j

n21

Cj ,k . ~4!

If stationarity can be attained, then temporal translatio
invariance holds. In such case, correlations depend on
two times only through their difference, so that

(
j 50

n21

(
k. j

n21

Cj ,k5 (
m51

n21

@n2m#C~m!, ~5!

where C(m)[C0,m , and additionallyC(0)[C0,05Cm,m ,
;m. Hence,

s2~n!5
1

n
C~0!1

2

n2 (
m51

n21

@n2m#C~m!. ~6!

Higher moments would require the calculation of correlat
functions involving several times.

In order to evaluate the variance explicitly, one must co
pute the autocorrelation functionC characteristic of the par
ticular mappingf considered. In what follows, we will per
form the explicit calculations for the logistic mapf (x)
5mx(12x) at m54, with xP@0,1# ~usually called Ulam
map!.

III. TIME CORRELATIONS IN THE ULAM MAP

For this logistic map the dynamics is exactly solvab
~see, for instance, Refs.@3,15#!. In fact, using the change o
variablesz52arcsin(Ax)/p, it is easy to find that thej th
iterate isxj5sin2(2j21pz0). The time evolution for the new
variable is given by thetent map z°122uz21/2u, with z
P@0,1# @3,15#. The invariant density p(x)
5@pAx(12x)#21 becomes uniform forzP@0,1#. In the z
representation, the required correlations can be straigh
wardly obtained by following the procedure of Nagashim
and Haken@16# to calculate the time autocorrelation functio
CH(m),

CH~m!5^H„gm~z!…H* ~z!&2^H„gm~z!…&^H* ~z!&, ~7!

of an arbitrary functionH(z) wherez evolves through the
mappingg(z) and * denotes complex conjugate. The ba
idea is to consider the Fourier expansion

H„gm~z!…5 (
k52`

`

ak
me2p ikz, m50,1,2, . . . , ~8!

where

ak
m5E

0

1

dzH„gm~z!…e22p ikz. ~9!
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In our caseH(z)5 lnu4 cos(pz)u, then it is indifferent if we
evolvez either with the tent map or with the Bernoulli shi
g(z)52z(mod1) that will generate the same sequen
H(gm(z)). We will consider the latter case in order to use t
results of@16#. Recursively, they arrive at

ak
m5H aj

0 if k52mj ; j PZ
0 otherwise.

~10!

Then, using Eqs.~7!, ~8!, ~10! and additionally considering
that ^H(z)&5^H„gm(z)…&5a0

0 ,; m, the correlation results

CH~m!5 (
kÞ0

ak
0a2mk

0* . ~11!

Now, for our particular case we have

al
05

2

pE0

p/2

dy ln~cosy!cos~2ly !, ~12!

which gives

al
05H 2 ln 2 if l 50

2
~21! l

2l
otherwise.

~13!

Substituting these coefficients into Eq.~11!, we obtain the
following exact expression for the stationary autocorrelat
of one-step LEs:

C~m!55
p2

12
if m50

2
p2

24

1

2m
otherwise.

~14!

The autocorrelation function decays exponentially fast w
time, with a characteristic time that is the inverse ofl`

5 ln2. Although the sequence$xj% generated by the Ulam
map is d correlated „more precisely,Cx(m)5^xjxj 1m&
2^xj&^xj 1m&51/8d0m @17#…, correlations of higher powers
of xj do not decay to zero immediately@18#, leading to the
exponential decay of the autocorrelation of one-step LEs

Once the autocorrelation~14! is known, from Eq.~6!, we
obtain

s2~n!5
p2

6n2 S 12
1

2nD . ~15!

This result valid for alln is in agreement with the outcome
of numerical experiments@12–14# as well as with an
asymptotic expression previously found@14#. It is notewor-
thy that the variance decays with time as 1/n2. Then the
quantity l̃n5n(ln2l`)5( j 50

n21lnuf8(xj)/2u does not evolve
diffusively, since its variance tends asymptotically to a co
stant value. If the terms of the sum in Eq.~1! were indepen-
dent, then the decay ofs2(n) should be as 1/n. However,
those terms are highly dependent: The sum can be expre
7-2
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as a function of the single variablex0 through the map suc
cessive iteratesf j (x0). This is a nice example illustrating
that linear correlation and dependence are quite different
tistical concepts. Although the correlations decay expon
tially fast, the central limit theorem will not hold in this cas

IV. PDF OF FINITE-TIME EXPONENTS IN THE ULAM
MAP

Given a PDFrX(x), the standard formula for the PD
rY(y), such thaty5f(x), is

rY~y!5E rX~x!d„y2f~x!…. ~16!

Prasad and Ramaswamy have already presented@12# the ex-
act although Hermetic expression for the PDFP(ln) of local
LEs on the Ulam map, which comes immediately from t
knowledge of the invariant measurep(x), using Eq.~16!. In
fact, from Eq. ~1!, one can writeln5 ln@Gn(x)#/n, with
Gn(x)54n) j >0

n21u122 f j (x)u. Then, one has

P~ln!5E
0

1

dx p~x!d„ln2 ln@Gn~x!#/n…, ~17!

giving

P~ln!5nexp~nln! (
roots

p~x!

uGn8~x!u
, ~18!

where the summation runs over all real roots of the (n

21)-order polynomialGn(x)2exp(nln). BecauseGn(x) is
odd order, there is always at least one real root. Forln below
the mean value, all roots are real. Asln increases above th
mean value, the roots leave the real axis by pairs. At e
point where this occurs,Gn8(x)50, then a new divergenc
appears in the PDF@12#. The shape of the exact PDF for th
scaled exponentl̃n5n(ln2l`) is illustrated in Fig. 1 for
different values ofn.

Prasad and Ramaswamy proposed a smooth ansatz fo
discontinuous expression~18!, which in terms of the scaled
variable reads

P~ l̃n!5
1

p

exp~2ul̃nu!

A12exp~22ul̃nu!
, ~19!

for l̃nP(2`,nln2#. They based their conjecture on th
analysis for smalln. Here we will show that it is possible to
advance further, developing expression~18! and evaluating it
explicitly, therefore, finding analytically a smooth expressi
valid for large enoughn.

Considering that( j 50
n21lnuf8(xj)u5lnu@fn(x0)#8u and making

the transformationx5sin2(pz/2), from Eq.~1!, one gets the
compact expression

l̃n52 ln@sin~pz!#1 lnusin~2npz!u[Fn~z!, ~20!
01620
ta-
n-

h

the

where the scaled exponent is expressed as a function o
state variablez ~from now on the subindex 0 will be omitted!
evaluated at the instant at which the trajectory segmen
time lengthn starts. The first logarithmic term is a smoo
function in@0,1# that does not depend onn, while the second
term is a periodic function with divergences atz5 j /2n, with
j PZ and 0< j <2n. Increasingn will increase the frequency
and the comb of divergences will become more compa
The shape ofFn(z) is illustrated in Fig. 2, forn55.

Since the invariant density of the attractor as a function
z is uniform, using Eq.~16!, the PDF forl̃n is given by

P~ l̃n!5E
0

1

dzd„l̃n2Fn~z!…5(
j

1

uFn8~zj* !u
, ~21!

wherezj* are such thatFn(zj* )5l̃n .
Let us separate the analysis into two cases accordin

the sign ofl̃n .

FIG. 1. Exact P(l̃n) as a function ofl̃n[n(ln2l`) ~full
lines!, obtained numerically from Eq.~21!, for different values ofn
indicated in the figure. Asn increases divergences become narrow
and cannot be appreciated unless one refines the mesh incre
the number of data exponentially withn. The dashed lines corre
spond to the smooth approximation given by Eq.~30!.
7-3
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~1! For l̃n,0, the exact PDF is smooth. There is symm

try aroundz5 1
2 . In the interval@0,1

2 # there are 2n21 inter-
sections atzj 6* 5 j /2n6d j such that 0,d j! j /2n. Taking into
account that the main contribution to the derivativeFn8
comes from the periodic component, thenuFn8(zj 6* )u
.p2nucos(2ndjp)/sin(2ndjp)u, where, from Eq. ~20!,
usin(2ndjp)u.exp(l̃n)usin(jp/2n)u. Substitution of the deriva-
tives in Eq.~21! leads to

P~ l̃n!.
4el̃n

p2n
(
j 51

2n21
usin~ j p/2n!u

A12e2l̃nsin2~ j p/2n!u
. ~22!

Replacing the summation by an integral by identifyingx
5 j /2n, we get

P~ l̃n!.
4el̃n

p
E

0

1/2

dx
sin~px!

A12e2l̃nsin2~px!
, ~23!

which gives

P~ l̃n!.
2

p2
ln@coth~2l̃n/2!#. ~24!

The approximations here performed are expected to be g
even for smalln, namelyn*2. In fact, a good agreemen
between the approximate and exact PDFs in this regio
observed already forn52 ~see Fig. 1!.

~2! The domain 0,l̃n<nln2 is more tricky. At each loca
maximum ofFn(z), a divergence in the PDF appears, as
follows from Eq. ~21!. Then, in this region, the PDF pos

FIG. 2. Scaled Lyapunov exponentl̃n[Fn(z) as a function ofz,
the value of the state variable when the computation of the ex
nent is initiated~full lines!. In this casen55. The dotted line cor-
responds to the smooth component2 ln@sin(pz)# that does not de-
pend onn. Increasingn by one will double the number of periods
There is symmetry aroundz51/2, then only half of the full abscis
sas interval has been represented.
01620
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sesses 2n21 spikes. Let us consider the interspike interva
(l̃2,l̃1# determined by two successive values ofz at which
Fn850. In each interspike interval the PDF monotonous

increases, becauseuFn8u decreases with increasingl̃n ~see

Fig. 2!, and diverges at the upper limit of the intervall̃1,
whereFn850. These behaviors can be observed in Fig. 1,
n52 and 5. Asn increases, although the cusps increase
ponentially in number, they get thinner, in such a way th
they will become invisible in numerical histograms due
the finiteness of bin size. Then, ifn is large enough, histo-
grams would look smooth although the exact PDF is n
unless one could make the bin size arbitrarily small. In su
case, the higher the resolution, the larger the height of
spikes. However, in practice, there are constraints to reac
arbitrarily fine resolution due to finiteness of numerical da
sets. This fact turns it useful to find a smooth expression
describe the histograms actually observed for not too sm
n. In order to do so, we have to calculate the probabi
*bindl̃P(l̃) associated with a finite bin of the order of~or
larger than! the interspike distanceDl̃5l̃12l̃2.

For each diffeomorphic branch ofFn one hasFn8(z)

5Fn8(Fn
21(l̃n))51/@dFn

21(l̃n)/dl̃n#, then, from Eq.~21!,

the probability thatl̃n belongs to the interval (l̃2,l̃1# is
given by

E
Dl̃

dl̃P~ l̃ !52(
i 51

m

uFi
21~ l̃1!2Fi

21~ l̃2!u52(
i 51

m

Dzi ,

~25!

whereDzi are the segments displayed in Fig. 3, correspo
ing to the inverse images ofDl̃. The summation runs up to
a valuem that depends on the particular interval chosen a
that is given by the smooth component ofFn .

This procedure will give rise to a discrete PDF where t
integrated probabilities~25! can be attributed, for instance, t
the midpointsl̃* of each intervalDl̃, such that

o-

FIG. 3. Schematic representation of the scaled Lyapunov ex

nent l̃n as a function ofz. The segments on the horizontal ax
represent the contributions to the probability associated with

interspike intervalDl̃[l̃12l̃2.
7-4
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P~ l̃* !.
E

Dl̃
dl̃P~ l̃ !

Dl̃
52(

i 51

m
Dzi

Dl̃
. ~26!

Now, Dl̃/Dzi.uFn8(zi* )u, where the derivative is evaluate
at the midpointzi* of the intervalDzi . As the derivativeFn8
is dominated by the periodic component in Eq.~20!, one can
perform an analysis analogous to that for case~1!, obtaining

P~ l̃* !.
4el̃*

p2n
(
j 51

j max usin~ j p/2n!u

A12e2l̃* sin2~ j p/2n!u
, ~27!

where j max.2narcsin@exp(2l̃* )#/p, for l̃* P(l̃2,l̃1). Re-
placing the summation by an integral as in case~1!, one
obtains

P~ l̃* !.
4el̃*

p
E

0

u(l̃* )
dx

sin~px!

A12e2l̃* sin2~px!
, ~28!

where u(l̃* )5arcsin@exp(2l̃* )#/p. After integration, one
arrives at

P~ l̃* !.
2

p2
ln@coth~ l̃* /2!#. ~29!

Let us recall that, in contrast to case~1!, here we have a
discrete PDF defined for the middle points of the intersp
intervals. However, since the interspike distanceDl̃ goes to
zero for increasingn and not too largel̃n , one can smooth
the staircase function~29! by extending it to every point o
the interval (0,n ln 2#. In that case, one gets the symmet
counterpart of expression~24!.

Expressions~24! and~29! can be gathered into the sing
expression

P~ l̃n!.
2

p2
ln~cothul̃n/2u!. ~30!

This result explains the apparent symmetry of numer
PDFs for largen despite the fact that left- and right-han
wings of the distribution have very different genealogies. F
large ul̃nu, the PDF decays exponentially, yielding straig
lines in the semilog representation displayed in Fig. 4. No
that the approximate distribution~30! for the scaled variable
l̃n does not depend onn. In particular, it is expected to b
exact in the limitn→`. That is, Eq.~30! is a good repre-
sentation of thed function to which the finite-time distribu
tion asymptotically collapses. Remarkably enough, the
proximations that led to Eq.~30! did not spoil the
normalization condition, i.e.,*2`

` dl̃ P(l̃)51 holds.
In Fig. 4 the approximation~30! is compared to a histo

gram obtained from numerical iterations of the mapping. T
analytical prediction is in very good accord with numeric
results and it describes the numerical data more accura
than the ansatz~19!. Notably, the variance of the scaled e
01620
e

l

r
t
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e
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ponent l̃n5n(ln2l`) calculated with our PDF iss̃2

5p2/6. Then for exponent ln one obtains s2(n)
5p2/(6n2) which coincides with the exact result~15!, if
neglecting the term of order 1/2n ~the order of the performed
approximations!. In contrast, the ansatz of Ref.@12# gives
s2(n)5(p2/121@ ln2#2)/n2.0.79p2/(6n2), i.e., more than
20% smaller than the true value.

As an aside comment, notice that in the exact distribut
the ordinate at the origin increases withn but is finite for
finite n. However, expression~30! diverges atl̃n50 @as also
Eq. ~19! does#. In the exact PDF, divergences appear
positive abscissas only and accumulate close to the origi
n increases. Therefore, strictly speaking, a divergence at
origin is expected in the limitn→` only.

V. SUMMARY AND FINAL REMARKS

We have derived analytical results for the statistics
finite-size exponents on the logistic map at the Ulam po
In particular, we have found the autocorrelation function
one-step LEs, which allows to obtain the exact analyti
expression~15! for the variance of local exponents, puttin
into evidence the origin of its anomalous time decay. Mo
over, we have found the smooth analytical PDF~30!, ex-
pected to be the exact one in the limitn→`. Therefore, we
have extended the work initiated by Prasad and Ramasw
@12#, providing a complete and consistent picture of the s
tistical properties of finite-time LEs at an outer crisis.

As the special shape of the distribution of finite-time e
ponents at the Ulam point is also seen in other systems
senting fully developed chaos@12#, our results are expecte
to be useful for more general systems falling into the sa

FIG. 4. P(l̃n) as a function ofl̃n for n510. Small symbols
correspond to the histogram accumulated over 106 histories ob-
tained through numerical iterations of the map, after a transien
103 time steps. The bin size is 0.02. Expressions~30! ~full line! and
~19! ~dotted line! are plotted for comparison. Inset: the same data
semilog representation allow to appreciate the tails. The spike

the right-hand tail of the histogram are visible for largel̃n where
they become more sparse and are amplified by the logarith
scale.
7-5
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class. In addition, these analytical results could give insig
on features occurring in the synchronization transition of
tices of coupled chaotic maps@9#, such as hyperbolicity
breakdown through unstable dimension variability@10#,
since the distribution of finite-time LEs in the synchroniz
states of such networks is related to the distribution of lo
exponents in the uncoupled map@11#.
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