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Statistics of finite-time Lyapunov exponents in the Ulam map
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The statistical properties of finite-time Lyapunov exponents at the Ulam point of the logistic map are
investigated. The exact analytical expression for the autocorrelation function of one-step Lyapunov exponents
is obtained, allowing the calculation of the variance of exponents computed over time intervals ohleFigth
variance anomalously decays as?/The probability density of finite-time exponents noticeably deviates from
the Gaussian shape, decaying with exponential tails and preserftifgspikes that narrow and accumulate
close to the mean value with increasimgThe asymptotic expression for this probability distribution function
is derived. It provides an adequate smooth approximation to describe numerical histograms built for not too
smalln, where the finiteness of bin size trims the sharp peaks.
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[. INTRODUCTION tween the probability distribution functioPDF) of finite-
time LEs in the synchronized states and the PDF of the local
In a dynamical system, Lyapunov exponefitEs) quan-  exponents in the uncoupled mghl] motivates the study of
tify the average exponential rate of expansion or contractioihe statistical properties of finite-time LEs in chaotic maps.
of infinitesimal volume elements in each direction of phaseWithin this context, the numerical nature of the difficulties
space. Negative exponents imply convergence of initiallyinvolved makes analytical results specially relevant.
nearby trajectories, while positive ones mean exponential di- This work focuses on the statistical properties of finite-
vergence of neighboring orbits therefore signaling chaotidime LEs for the logistic map at a parameter value yielding
behavior. fully developed chaos, namely, at the Ulam point, where
By the theorem of Oseleddd,2], assuming ergodicity, X—4x(1—x). This particular mapping allows exact calcula-
each exponential rate of growth converges to a timgions that are expected to be useful for more general systems
asymptotic limit,\.., independently of the particular trajec- belonging to the same class of chaotic behavior. We begin by
tory chosen(for almost all initial conditions A useful gen-  calculating the autocorrelation function of one-step LEs. This
eralization of asymptotic LEs are the local finite-time DEs ~ function allows to evaluate exactly the variance of local LEs.
calculated over a time interval of length along a given Furthermore, we investigate thoroughly the PDF of finite-
trajectory[3]. In contrast to asymptotic ones, exponents detime LEs. Taking as a starting point the work by Prasad and
fined for finite time depend on the initial conditions. Local Ramaswamy{12], we extend it by deriving a user-friendly
finite-time exponents must be distinguished from other locaexpression for the PDF of finite-time LEs, a very good ap-
exponents also considered in the literature such as the s@roximation for not too smaih.
called local finite-sample exponenid]. The analysis of
finite-time LEs is particularly important as they are the quan- Il. FINITE-TIME LYAPUNOV EXPONENTS
tities actually measured in computational studies, unavoid- . . . .
ably performed for finite time. Local LEs have proved to be For a 1D mapx—f(x) W.'th differentiablef, f|n|t'e-t|me
useful in the characterization of a variety of phenomenafES)‘n’ computed over the interval of lengthare given by
ranging from two-dimensional turbulenfg] to the so-called 7]
Loschmidt echd6]. These local exponents are fluctuating gt
quantities that may even change sign depending on the de- A== >, In| " (x;)], (1)
gree of heterogeneity of the relevant subset of phase space. nj=o
Their fluctuations give rise to a nontrivial probability density . ) o o -
P()\,) that asymptotically collapses to a Dirat function wherex;=1fl(xo) is thejth iterate of the initial conditiorx.

centered ah.. . The deviations from this limit and the con- W& will compute local LEs after a transient has elapsed, so
vergence to it contain rich information on the underlying that averages over different realizations can be calculated

dynamics[3,7]. with the weight given by the invariant densip(x) of the

A relevant question on the dynamics of chaotic systems i§haotic attractor. - , S
the existence or not of true trajectories lying close to the Random initial conditions yield ﬂ”CtUg‘t'O”S in the values
numerically generated ones. It is known that finite-time LEsOf A around(\p)=A\.., with variances=(n) =(\y) — A%,
fluctuating around zero cause the nonexistence of such shahich by means of Eq(1) can be expressed as

owing trajectories[8]. Particularly, in the synchronization n—1 n-1
transition of lattices of coupled chaotic one-dimensional Uz(n):i 2 2 C @)
(1D) maps[9], unshadowability of chaotic orbits is due to n2 56 &

unstable dimension variability, characterized by the second
largest LE fluctuating about zefd0]. The connection be- where
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Cj’k:<|n|f’(xj)||n|f’(xk)|>—<|n|f’(xj)|><|n|f’(xk)|> In our caseH(z)=In|4 cos@z)|, then it is indifferent if we
(3)  evolvez either with the tent map or with the Bernoulli shift

. ] . ) ) 0(z)=2z(mod1) that will generate the same sequence
is the two-time autocorrelation function of one-stepitary  H(g™(z)). We will consider the latter case in order to use the
time) LEs[13]. _ results of[16]. Recursively, they arrive at

Separating diagonal from off-diagonal terms, one gets

N1 o1 a) if k=2"j; jezZ
2 ay'= (10

n—1
02(n)=£2 > Cikt— 2 2 Cix- (4) 0 otherwise.
n< k=0 n< j=0 k>j
Then, using Egs(7), (8), (10) and additionally considering
If stationarity can be attained, then temporal translationa{hat<H(Z)>:<H(gm(z))>:ag,v m, the correlation results
invariance holds. In such case, correlations depend on the

two times only through their difference, so that

Ch(m)= 2, agagn,. (11)
n-1n-1 n—1 k#0
12’0 kE>j Ci'kzmzzl [n=m]C(m), © Now, for our particular case we have
where C(m)=Cy,, and additionallyC(0)=Cyo=Cym., 2 (w2
V¥m. Hence, o oo mm alc):; . dylIn(cosy)cog2ly), (12
-1
2 1 . which gives
o (n)=ﬁC(0)+FmE:1[n—m]C(m). (6)
—In2 if 1=0
Higher moments would require the calculation of correlation a|°= (—1)! ] (13
functions involving several times. T otherwise.

In order to evaluate the variance explicitly, one must com-

pute the autocorrelation functidd characteristic of the par- Substituting these coefficients into E@.1), we obtain the

ticular mappingf considered. In what follows, we will per-  folowing exact expression for the stationary autocorrelation
form the explicit calculations for the logistic maf(x)  of one-step LEs:
=ux(1—x) at u=4, with xe[0,1] (usually called Ulam
map. 2

P % if m=0

IIl. TIME CORRELATIONS IN THE ULAM MAP C(m)= ) (14)
a .

For this logistic map the dynamics is exactly solvable 54 om otherwise.
(see, for instance, Reff3,15)). In fact, using the change of 2
variablesz=2arcsi.n(\/§)/w, it is easy to find that thgth
iterate isx,—=sin2(21*11-rzo). The time evolution for the new

variable is given by théent mapz—1—2|z—1/2, with z

The autocorrelation function decays exponentially fast with
time, with a characteristic time that is the inverse Xof

. . ; =In2. Although the sequencfx;} generated by the Ulam
0] [3’15’]i The lnyar|ant density —p(x) map is & correlated (more prJeciser, C(M) = (XX + m)
=[mvx(1—-x)]"* becomes uniform foz<[0,1]. In the z — (X;)(Xj+m) = 180 [17]), correlations of higher powers
bf x; do not decay to zero immediatefy 8], leading to the
exponential decay of the autocorrelation of one-step LEs.
Once the autocorrelatiofi4) is known, from Eq.(6), we

wardly obtained by following the procedure of Nagashima
and Hakerj16] to calculate the time autocorrelation function

Cr(m), obtain
Cr(m)=(H(@"(2)H*(2)) —(H(@"(2))(H*(2)), (7) 2 1
. . az(n)=—<1——>. (15
of an arbitrary functionH(z) where z evolves through the 6n2 on

mappingg(z) and * denotes complex conjugate. The basic
idea is to consider the Fourier expansion This result valid for alln is in agreement with the outcomes
of numerical experiment§12—-14 as well as with an
asymptotic expression previously fouht#]. It is notewor-
thy that the variance decays with time a$?/Then the
quantity X,=n(\,—\..)==[_gIn|f'(x)/2| does not evolve
where diffusively, since its variance tends asymptotically to a con-

L stant value. If the terms of the sum in EG) were indepen-

aT=f dzH(g™(z))e 27Kz, (9  dent, then the decay af?(n) should be as b. However,
0 those terms are highly dependent: The sum can be expressed

H(gm(z))=k:§;xaﬂ“e2”ik2, m=012..., (8
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as a function of the single variablg through the map suc- L N L
cessive iterates!(xg). This is a nice example illustrating 14 (@ n=2
that linear correlation and dependence are quite differentsta |
tistical concepts. Although the correlations decay exponenP(K )

tially fast, the central limit theorem will not hold in this case. 'nt 1

IV. PDF OF FINITE-TIME EXPONENTS IN THE ULAM
MAP

Given a PDFpx(x), the standard formula for the PDF
py(Y), such thaty= ¢(x), is ]

o)1= | o008/~ 900 (16

Prasad and Ramaswamy have already presé¢tt8ddhe ex-
act although Hermetic expression for the PBR ;) of local
LEs on the Ulam map, which comes immediately from the 0
knowledge of the invariant measupéx), using Eq.(16). In
fact, from Eq. (1), one can write\,=In[G,(X)]/n, with
Gn(X)=4"}Z|1—2fi(x)|. Then, one has 17 (© n=10 i

P(An)= lex P(X) 6\ = IN[Gn(x)]/N), 7

giving

p(x) 19 -4

P<An>=nexp<nxn>r02m ol

where the summation runs over all real roots of thé (2

—1)-order polynomialGy,(x) —exp(in,). BecauseGy(x) is lines), obtained numerically from Eq21), for different values oh

odd order, there is always at least one.real root.Nrdoelow indicated in the figure. As increases divergences become narrower
the mean value, all roots are real. Ag increases above the ang cannot be appreciated unless one refines the mesh increasing
mean value, the roots leave the real axis by pairs. At eaCthe number of data exponentially with The dashed lines corre-
point where this occursG)(x)=0, then a new divergence spond to the smooth approximation given by E3p).

appears in the PDFL2]. The shape of the exact PDF for the

scaled exponent,=n(\,—A\.) is illustrated in Fig. 1 for where the scaled exponent is expressed as a function of the

different values of. state variable (from now on the subindex O will be omittgd
Prasad and Ramaswamy proposed a smooth ansatz for te@aluated at the instant at which the trajectory segment of

discontinuous expressidi8), which in terms of the scaled time lengthn starts. The first logarithmic term is a smooth

FIG. 1. ExactP(X,) as a function of\,=n(A,—\..) (full

variable reads function in[0,1] that does not depend am while the second
term is a periodic function with divergenceszt j/2", with
~ 1 exp(— |\ j € Zand 0<j<2". Increasingn will increase the frequency
P(\p)=— —, (19 and the comb of divergences will become more compact.
T N1—exp—2|\,)) The shape of,(2) is illustrated in Fig. 2, fom=5.

Since the invariant density of the attractor as a function of
for X, e (—,nIn2]. They based their conjecture on the zis uniform, using Eq(16), the PDF forx,, is given by
analysis for smalh. Here we will show that it is possible to
advance further, developing expressi@8) and evaluating it
explicitly, therefore, finding analytically a smooth expression
valid for large enoughn.

Considering tha@?;&ln|f’(xj)|=In|[f”(x0)]’| and making
the transformationx= sir’(wz/2), from Eq.(1), one gets the _
compact expression wherez are such thaF,(z)=X\,.

Let us separate the analysis into two cases according to

\n=—In[sin(72)]+In|sin(2"wz)|=F,(z), (20) the sign ofX,.

- jld - 1
P(Xn)= SXa-Fn(2)=2>, ————, (21
(\n) , 42 (Aq—Fn(2)) = TEl (21)
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FIG. 3. Schematic representation of the scaled Lyapunov expo-
nent\, as a function ofz. The segments on the horizontal axis
0.0 ' ' 05 represent the contributions to the probability associated with the

7 interspike intervahX=X"—X".

FIG. 2. Scaled Lyapunov exponey="F,(z) as af.unCt'on of, sesses 2! spikes. Let us consider the interspike intervals
the value of the state variable when the computation of the expo-—

nent is initiated(full lines). In this casen=>5. The dotted line cor- (7\,_1)\+] determined by two successive valueszait which
responds to the smooth componeninsin(m2)] that does not de- F,=0. In each interspike interval the PDF monotonously
pend qnn. Increasingn by one will double the number of periods. increases, becaus}érﬂ decreases with increasiﬁ% (see
There is symmetry aroung=1/2, then only half of the full abscis- Fig. 2), and diverges at the upper limit of the inter\TaT,

sas interval has been represented. whereF;=0. These behaviors can be observed in Fig. 1, for
~ . . n=2 and 5. Asn increases, although the cusps increase ex-
(1) ForA,<0, the exact PDF is smooth. There is Symme'ponentially in number, they get thinner, in such a way that
try aroundz=3. In the interval[0,;] there are 2—1 inter-  they will become invisible in numerical histograms due to
sections azj*izjlznt d; such that 8<§;<j/2". Taking into  the finiteness of bin size. Then, iifis large enough, histo-
account that the main contribution to the derivatiFé  grams would look smooth although the exact PDF is not,
comes from the periodic component, theliF(z".)|  unless one could make the bin size arbitrarily small. In such
:772”|cos(2‘5jq-r)/sin(2”5j7r)|, where, from Eq. (20), case, the higher the resolution, the larger the height of the

|sin(2's, w)|zexp()( )lsin@/2")|. Substitution of the deriva- spikes. However, in practice, there are constraints to reach an
; ) ; ' arbitrarily fine resolution due to finiteness of numerical data
tives in Eq.(21) leads to y

sets. This fact turns it useful to find a smooth expression to

dern 2n-1 |sin(j m/2")| describe the histograms actually observed for not too small
P(A,)= J _ (22) n. In order to do so, we have to calculate the probability
m2" =1 1 ePning(j /2" JbindXP(X) associated with a finite bin of the order (fr
_ . . ~larger than the interspike distancAX=X"—X".
Replacing the summation by an integral by identifying For each diffeomorphic branch df, one hasF/(2)
=112, we get =F/(F; (X)) =11dF, Y(X)/dX,], then, from Eq.(21),
46 sin(mx) the probability thatx, belongs to the intervalX(",X "] is
P(\p)= f dx — , (23)  given by
™0 N 1—e?nsird(arx)
which gives - °
| _dkp@)=23 [F - =23, 8z,
~ 2 ~
P(Xn) = In[coth —Xy/2)]. (24) (25
v

The approximations here performed are expected to be gogthereAz are the segments displayed in Fig. 3, correspond-
even for smalln, namelyn=2. In fact, a good agreement ing to the inverse images d\. The summation runs up to
between the approximate and exact PDFs in this region ia valuem that depends on the particular interval chosen and
observed already fan=2 (see Fig. 1 that is given by the smooth componentFf.

(2) The domain 6<X,<nIn2 is more tricky. At each local This procedure will give rise to a discrete PDF where the
maximum ofF(z), a divergence in the PDF appears, as itintegrated proNbab|I|t|e(s25) can be aittrlbuted, for instance, to
follows from Eg.(21). Then, in this region, the PDF pos- the midpoints\* of each intervalA\, such that
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T
f _dA\P(N) '
~ AN AZi 1.0 4
PRN*)=—————=2> —. (26) :
AN =1 A\ ~
_ . P(,)
Now, AN/Az=|F/(z")|, where the derivative is evaluated
at the midpointz| of the intervalAz; . As the derivativeF|,

is dominated by the periodic component in E20), one can 0.5 -
perform an analysis analogous to that for cél§e obtaining

_ 4N Imax |sin(j m/2")|
P(A*)= > = . @
72" =1 \J1— e\ sirR(j /2"
0.0 T .
where | a=2"arcsifexp(—\*)]/m, for \* e (X", X 7). Re- -1 0 1 X 2
placing the summation by an integral as in cd%g one n
obtains ~ ) ~
FIG. 4. P(\,) as a function ofx, for n=10. Small symbols
461* ook sin(x) correspond to the histogram accumulated ovet higtories ob-
P(X*)“—‘—f ( )dx (28) tained through numerical iterations of the map, after a transient of
o

0 \ /1_ er*Sinz(TrX) 10 time steps. The bin size is 0.02. Expressi@®® (full line) and

(19) (dotted ling are plotted for comparison. Inset: the same data in
semilog representation allow to appreciate the tails. The spikes in
the right-hand tail of the histogram are visible for largge where
they become more sparse and are amplified by the logarithmic
scale.

where 9(\*)=arcsifiexp(~\*)])/«. After integration, one
arrives at

- 2 ~
P(X*)= - In[cothX*/2)]. (29)
T ponent X,=n(A,—\.) calculated with our PDF isg?

Let us recall that, in contrast to ca®), here we have a =72/6. Then for exponent\, one obtains o?(n)
discrete PDF defined for the middle points of the interspike™ 772/(6_"12) which coincides with the exact resultd), if
intervals. However, since the interspike distaide goes to neglect_lng t'he term of order ¥2the order of the perfqrmed

. . ~ approximations In contrast, the ansatz of Rdfl2] gives
zero for increasingn and not too larga\,,, one can smooth

. . : . . 2 = (m2/12+ 2)/n?=0. 2 2 ie.
the staircase functiofR9) by extending it to every point of J (()n) (m*/12+[In2]')/n"=0.79m*/(6n%), i.e., more than
the int L (01 In21. In that s th i 20% smaller than the true value.
coirlwrtleer:[ra\;?t E)f ,e>r<]pr]e.ssnio(|22) case, one gets the Symmetric  aq an aside comment, notice that in the exact distribution

Expressiong24) and (29) can be gathered into the single thg ordinate at the orlgm. mcreages WmthJt is finite for
expression finite n. However, expressio(80) diverges ak,=0 [as also

Eq. (19 doed. In the exact PDF, divergences appear for
~ 2 ~ positive abscissas only and accumulate close to the origin as
P(N,)= —2In(cotH)\n/2|). (300  nincreases. Therefore, strictly speaking, a divergence at the
™ origin is expected in the limih—oo only.

This result explains the apparent symmetry of numerical
PDFs for largen despite the fact that left- and right-hand V. SUMMARY AND FINAL REMARKS
wings of the distribution have very different genealogies. For

large [X,|, the PDF decays exponentially, yielding straight We have derived analytical results for the statistics of

i in th i tation displaved in Fig. 4. Noti finite-size exponents on the logistic map at the Ulam point.
IN€s in the semrlog representation dispiayed In F1g. 4. Nolicg, particular, we have found the autocorrelation function of

that the approximate distributiai30) for the scaled variable one-step LEs, which allows to obtain the exact analytical

A does not depend on. In particular, it is expected to be expression(15) for the variance of local exponents, putting
exact in the limitn—o. That is, Eq.(30) is a good repre- into evidence the origin of its anomalous time decay. More-
sentation of thes function to which the finite-time distribu- oyer, we have found the smooth analytical P[50), ex-
tion asymptotically collapses. Remarkably enough, the appected to be the exact one in the limit>. Therefore, we
proximations that led to Eq.30) did not spoil the have extended the work initiated by Prasad and Ramaswamy
normalization condition, i.ef”_.d\ P(\)=1 holds. [12], providing a complete and consistent picture of the sta-
In Fig. 4 the approximatiori30) is compared to a histo- tistical properties of finite-time LEs at an outer crisis.
gram obtained from numerical iterations of the mapping. The As the special shape of the distribution of finite-time ex-
analytical prediction is in very good accord with numerical ponents at the Ulam point is also seen in other systems pre-
results and it describes the numerical data more accuratekenting fully developed chad4?2], our results are expected
than the ansat#l9). Notably, the variance of the scaled ex- to be useful for more general systems falling into the same
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