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Symplectic evolution of Wigner functions in Markovian open systems
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The Wigner function is known to evolve classically under the exclusive action of a quadratic Hamiltonian.

If the system also interacts with the environment through Lindblad operators that are complex linear functions
of position and momentum, then the general evolution is the convolution of a non-Hamiltonian classical
propagation of the Wigner function with a phase space Gaussian that broadens in time. We analyze the
consequences of this in the three generic cases of elliptic, hyperbolic, and parabolic Hamiltonians. The Wigner
function always becomes positive in a definite time, which does not depend on the initial pure state. We
observe the influence of classical dynamics and dissipation upon this threshold. We also derive an exact
formula for the evolving linear entropy as the average of a narrowing Gaussian taken over a probability
distribution that depends only on the initial state. This leads to a long time asymptotic formula for the growth
of linear entropy. We finally discuss the possibility of recovering the initial state.
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I. INTRODUCTION R;=exp(2JHt) €)

The correspondence between classical and quantum mgthe 2<2 matrix giving the classical Hamiltonian time evo-
chanics of closed dynamical systems is most perfect for qudution of a phase space poirt Actually, this propagation is
dratic Hamiltonians. In this case, the classical evolution isalso shared by the Fourier transformWf(x),
linear, like its quantum counterpart, and generates an orbit
within the group of symplecti¢linear, canonical transfor- ~ 1 i
mations in phase spa¢é]. These are directly linked to the A(§)= mf dx exp( - gf/\X>A(X)’ @)
corresponding quantum metaplectic grddj. Indeed, the
evolution operator in any of the usual representations ise._ it is also true that
merely the complex exponential of the classical generating
function [3]. Of course, quadratic Hamiltonians are a very J_ _
special case, but they include the ubiquitous harmonic oscil- Ewt(g):{H(g),Wt(g)}. 5)
lator, the parabolic potential barrier, and the free patrticle,

which form adequate starting points for the analysis of MOTe | te thatH (&) must be read literally as the classical Hamil-

complex motion. . L S i
The Weyl representation of an arbitrary quantum operatoFoman,H(X) taken at the poing= (£, ’gq); which is in gen
~ eral different from the chord transfortd (&) of H(x). In

Als ~ ~
other words, one has alsd/, (&) =Wy(R_;&). Above we
q . q g’ have made use of the wedge product,
A(X)Ef dq’<q+ 7|A|q—7>exrl( ' ) 1)

P
f E\X=£,0— £,p=(IHTX=JE X, ®)

that is, A is represented in phase spage; (p,q), by the  also defining the transpose of a vector' (and the matrix.
Weyl symbolA(x). The Wigner functionW(x) is then the  The semiclassical background for the symplectic invariance
Weyl symbol forp/27h, wherep is the density operator. of both the Wigner function and its Fourier transform is that
Just as all Weyl symbols, the Wigner function propagateshe Weyl phase space coordinatemay be associated to pairs
classically under the action of a quadratic Hamiltor{iass]: of points in phase spac&, , by x=(x. +x_)/2. The con-
jugate variable to this center is the chafex, —x_. The
linear motion of both the choré and the centex is the same

as for each individual phase space pointor x_ . We will

refer W(£) as the chord function as in Re#], though it is
introducing the classical Poisson bracket on the right-handiso known as the characteristic function in quantum optics.
side[1] andH(x) =x- Hx, the Weyl symbol of the quadratic The question that we address is to what extent can the
Hamiltonian. The symbol stands for the inner scalar prod- simplicity and generality of symplectic motion of closed
uct. Hence one had/;(x) =Wy(R_;x), where quantum systems be incorporated within the description of
systems whose coupling to the environment cannot be ig-
nored. In this case the evolution is no longer unitary, unless
*Email address: brodier@chbpf.br the full Hamiltonian of the system combined with the envi-
"Email address: ozorio@cbpf.br ronment is taken into account. All the same, a certain mea-
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sure of generality is restored by the assumption that the dedowever it becomes inversely proportional to the Lyapunov
sity operator is governed by a Markovian master equatiorexponent if the latter is greater than this coefficient, that is in

[5], the case of a hyperbolic systelire., the inverted oscillatdr
in the weak coupling limit. Then positivity can be reached

ap i . 1 C g ege o ag much fa}ster th_an in the_ corresponding eIIipti_c cése, the
i g[H,p]— 7% EJ: 2LjpLj—LjL;p—pL;L;. harmonic oscillator with the same coupling constants

Though all the formulas presented here are appropriate for a
single degree of freedom, the generalization to higher dimen-
. i sions is discussed in this section. In Sec. VI we derive a
Ij‘a further assumption is made that each Lindblad Operatoéeneral formula for the growth of the linear entropy (1
L; is a linear function off and g, we will show that the  —Trj2), with respect to the initial density operators, for each
evolution of W,(§) is the product of the classically evolved choice of the quadratic master equation. We also show that
W (&) with g,(&), a Gaussian centered @0, which has for long times the growth of linear entropy attains a universal
diminishing width. One can then generalize in a straightforform. Finally in Sec. VII we point out that this general solu-
ward way the exact solution given by Agarw@] for the  tion is obviously reversible, giving a very synthetic inversion
Wigner function. This is a convolution of the Fourier trans- formula which generalizes previous work about quantum
form of g,(&€ with the classically evolvedV,(x). In other ~ state reconstructiofiL0].
words the Wigner function is coarse grained by a widening The generalization of the convolution as exact solution of
Gaussian window. the master equatiofy) whenH is not quadratic, or for non-

A simple example of symplectic evolution of an open |inear [, is not obvious. However, the approximate semi-
guantum system is that of a dust particle interacting thh ailc|assical theory developed by one of the present aufidis
molecules, or radiation, so that in the absence of gradity has no such constraint. Its compatibility with the present
=p2/2m and the interaction with the environment dependstheory is the subject of a companion pap#g]. A simpler
basically on the particle’s positio:= ¢, where 7z is the  Vversion of the present work, for the restricted case of hermit-

coupling parameter. This example is discussed by Giulinian I:j, can be accessed in R¢L3].

et al. in Ref. [7]. Another important example is that of an

optical field, say an arbitrary superposition of coherent state$; exacT SOLUTION IN THE QUADRATIC CASE WITH

interacting with thermal photons. In terms of real variables, DISSIPATION

the internal Hamiltonian is jusH=w(p?+§2)/2, i.e., the _ , ,

harmonic oscillator. The Lindblad operators in this case are Ve derive here the exact solution of the Lindblad equa-

known to bey(n+1)a/2 and yna'/2, wherea' anda are t|9n in the case where the Hamllftonlan is quﬁr_:ldratlf: and the

the usual creation and annihilation operatoris the average -indblad operators are complex linear formsgrandp.

number of thermal photons at the frequeneyf the cavity Taking the Weyl-Wigner transform of E€7), i.e., associ-

mode at temperatur® and vy is the decay ratg8]. ating the Weyl symbaol\(x) to each operatoh, as defined in
Recently Disi and Kiefer(DK) [9] showed in the case of Ed. (1), and using the product rulgd4] for operators, we

the first example that the Wigner function of any pure stateobtain,

becomes positive within a definite time. Thus the Markovian

interaction with the environment has the effect of erasing the

interference fringes characteristic of quantum coherence and

from then on the effect of coarse graining on the Wigner

function is not distinguishable from that of a classical Liou-

ville distribution. How general is the DK scenario? In Sec. Il

we present the exact solution of the Lindblad equation for

()

IW.
Wt(x>={H<x),wt<x>}+§ (F-15)

X Wi +2W,
X- W(X) L(X)

general quadratit! and arbitrary complex linear Lindblad N 3 S ﬂ(x))\]l-’
operatorij=)\jq+ﬂjf). In Sec. lll we explain the underly- 29 P ox? '

ing classical structure of the solution. Then, in Sec. IV, we

use the properties of the convolution to generalize the posi- " W, "

tivity time of DK in the case of arbitrary quadratic Hamil- +JIy- X2 (%) Il - ®
tonian and non-Hermitian Lindblad operators. Furthermore

we make the much stronger statement that the Wigner fungyge Li()=1!-x+il’-x are the Weyl symbols of the non-

tion cannot be positive before this threshold, unless the imHermitian linear Lindblad operators. We use the notation
tial distribution is a Gaussian. We discuss the consequences '

of this statement through the example of a bath of photons. N G
In Sec. V we specify the behavior of the positivity threshold x—( ) and I’ :( ,), |” nE 9)
for each type of quadratic Hamiltonian. It turns out that a 5 2

nonzero dissipation coefficient implies that positivity is . ]
reached exponentially fast. The positivity threshold is in gendt is well known that in this cas¢i(x) and L;(x) can be
eral inversely proportional to the dissipative coefficient.identified as the classical variables correspondingi tand
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E\j. Note that ifl”=0 then the second term in E@) cancels.

It will become clear that this term is responsible for dissipa-

tion in the evolution ofW,(x) and we define the dissipation
coefficienta==;(JI}-I{), which is zero in Ref[13].

PHYSICAL REVIEW B9, 016204 (2004

{H<§>,\7vt<§>}——23H§ pY: (§) (16)

Hence the ansatdll) is a solution of Eq(10) if & fulfills

It is actually easier to solve the evolution equation for the

chord functionW,(&),

={H(&,W,(&)} - a§ (§)

23

1 ~
o 2 L0927+ (792 W(®. (10

as derived in Appendix A. We guess a solution of the form

Wi(&)=Wo(£-) p( E f[(l' & y)?

+<I3’-§m>2]dt'), (11

whereé; is a linear evolution o€, which will be expliciteda

posteriori such that

&=¢. 12

Then, inserting the forni11) of W, in Eq. (10) and dividing

both sides by the exponential of E(Ll) leads us to the
following left part:

ag Mo g 0k - o5 2 [} &%+ (1] ©*Wo(£-0)

1. t .
~ 503 [ 12060l (<E-0

— & _y]dt’, (13)

which must be equal to the following right part:

+2(1f - & -0l - (

IWo
— (€0

aW,
—2JHE - Y-

S (E0—aky

1 ~ 1.
g7 2 L0724 (1 §71Wo( 50— 57 Wol£-0)

t
X; foz[(lj,'§t’7t)|j/’(_ZJHgt’ft_agt’ft)

+(IF- & DI - (—2IH& _(—ady ) ]dt'. (14
We have used
3 ag[wo@t] £-" T Mo g, (15

and

&=20HE+ k. (17
Thus, we can write explicitly
£=e"R¢, (18

whereR;, defined in Eq(3), gives the purely Hamiltonian
evolution and the dissipation termleads to a classical non-
Hamiltonian expansiorfa>0) or contraction(a<0) of the
chord variable&. One should be aware that although the
Hamiltonian part of the evolution of is shared with that of
the phase space poir} the effect of dissipation is inverted,
as it will be explained soon.

The argument of the exponential in EG1) is a quadratic
form in &, so the solution can be written as

1
FEMOE (19

Wy(&) =\7vo<§_t>exp( -

with M(t) a real, time dependent<2 matrix, which can
naturally be decomposed into

t r
M(D)=2> M;(t)=2>, fdt’eza(t “OR] IRy,
] i 0
(20)
so that each Lindblad operator contributes a Gaussian to Eq.
(29).

Now, back into the Weyl-Wigner representation by using
Eq. (4), one obtains the solution of E(B),

1

vdetM 5(t)

1
Wi(x) = %esz Wole“R_(x—Y)]

xexp( - %y-MJ(t)ly) dy, (21
where we have defined
M;(t)= —IM(t)J,
M;(t) " t=—IM(1)"1J (22)

with the symplectic matri¥ defined in Eq(6). Wy(X) is the

initial Wigner function and the convolution Gaussian turns

into a Diracé function ast goes to 0. We have equivalently
Wi(X) =Wi(X-+) (23)

1
- |w
ZWﬁx/detMJ(t)J oY)

o -

1 -
25 (Y=X-0)'M ()" Hy—x-y) |dy, (24)
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with One can check easily, see, for instance, RES), that the
following Langevin equation:
Xt - e_ athX (25)
and p=- —(x) ap A2 I\ pfm(D) + N igm(D)],

M(t)=—e*'RT IM(t)IR_=—M,(—t). (26

Hence the solution is a convolution with a Gaussian which (X) aq+ ‘/—E [mf (D + nGm(D]. - (27)
broadens in time, composed with a backwards non-

Hamiltonian evolution of the phase space variakleAs induces Eq.(8) as a Fokker-Planck counterpart. The
mentioned earlier, the Hamiltonian part of this classical evo-Brownian forces” f,(t) andg(t) verify

lution is the same as in the chord space, whereas the dissi-

pative part has the opposite effect: dissipatian-0) will (fm(t") (1)) = 6mnd(t’ —t"),
shrink the phase space variable, and thus expand the distri-
bution W, . (Im(t")Gn(t")) = Smnd(t" —t"),
This solution, which has been derived in the case of an
homogeneous quadratic Hamiltonian, can be generalized eas- (fm(t")gn(t"))=0. (28

ily to a quadratic Hamiltonian with a linear part. One then
has to be aware that the matri¥ , which appears in the
exponential Lindbladian damping, strictly corresponds to the
classical motion of thechord, which is determined by the
homogeneoupart of the HamiltoniarH. This remark is im-
portant, for instance, in the parabolic case, say a particle wit
a linear potential, where the motion of the chord disregard
the potential.

Since|detM (t)| grows with time, one can conclude, fol- p= P=5h q.
lowing DK [9], that the solutior{21) becomes positive after
a certain time. Indeed it is, after rescaling the variable, the =9 (29)
convolution of the initial Wigner function with a Gaussian of '

broadening size, which smoothes out oscillations aroungp the above Langevin equation, which then turns into the

zero. It is the property of symplectic invariance of the following more intuitive form, where the dissipation depends
Wigner function that DK employ to prove strict positivity in only on the momentum:

a specific case that is now extended to its broader context.

Moreover we shall give in the much stronger result Sec, IV

that the Wigner function cannot be positive before the DK p=— —(X) ap+ \/—2 [N of (D) + X Gm(D],
time, which does not depend on the initial pure state, unless

it is a coherent state. We then give the general behavior of —

this positivity threshold for different dynamics in Sec. V, .o

namely whenH is elliptic, as for the harmonic oscillator, B (X +\/_E [imf () F 1G] (30
hyperbolic, as for the scattered particle, or in the parabolic

intermediate case which includes the system studied in Refjere, the matrix for the transformed Hamiltoniginis

[9]. The following section explains the formal correspon-

fm(t) correspond to the diffusion induced by the nondissipa-
tive real part of the Lindblad operators, whereggt) cor-
respond to the diffusion induced by dissipation. It can easily
be verified that the Fokker-Planck equation is symplectically
Hwarlant so one is allowed to perform the following change
é)f coordinates:

dence between this problem and a classical Brownian motion Hip Hio
described by a Langevin equation, as Agarj@ldid for his o+ 4aH (31)
solution. Hip Hpph o —2i2)

4H

Il CLASSICAL CORRESPONDENCE Mn=Am—(al2H )}, and, respectively, fon},, and a

Since Eq.(8) is a Fokker-Planck equation, it can be inter- =2a.
preted as the evolution equation for the probability distribu- From this classical picture we can interpret the general
tion of a classical Brownian motion defined by a Langevinbehavior of the solution of the Lindblad equation. In the case
equation. This correspondence gives a simple classical inteof a closed system, remember that the Wigner function un-
pretation of the problem. Hence the decoherence may béergoes a Liouville, unitary, propagation. Now the system is
seen as a diffusion induced by some random force, and disoupled to an environment, i.e., there are nonzero Lindblad
sipation can be interpreted as a classical viscosity, although @perators. If dissipation of energy is neglected, these opera-
is always accompanied by another diffusive term. The onlytors are Hermitian, so there is no imaginary part of the vec-
feature which cannot be assigned a classical meaning is thersl. Then the effect of the environment over the system can
Wigner function itself, which, as a pseudoprobability distri- be interpreted as a diffusion process corresponding to ran-
bution, can have negative values. dom forces in the Langevin equation. Formally, it corre-
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sponds to the initial Wigner function being convoluted with awidth smaller tharh. The point is that one can then convo-
Gaussian which broadens with time. If one now takes intqute again with exp—(x/4)x_.- M(t) “*x_,], with the real
account the dissipation induced by the environment, allowparametei chosen so that the output is also a Husimi func-

ing the Lindblad operator to be non-Hermitian, a viscoustjgn Q(x_,). To show this we refer to the simple general
term appears in Eq$27) and(30), meaning that the classical rg|ation:

trajectories on which the distribution travels are drifted to

lesser or higher energy, according to the siggnor —, of the

“viscosity” a. Indeed, the dissipative linear motion governed J dy exg — (X=y)-M(x—y)]exp( —y- «My)

by the nonrandom terms of EqR7) is just that of(25). One

should be aware that it is only a formal classical scheme, and T F{ K v ) 33
that the viscous term might have a purely quantum origin. = = 8eXp — X o MX.

For instance, in the case of photons in a cavity with dissipa- (1+x)vdeM 1t
tion, whose Lindblad operators are explained in Sec. V A, thel.
viscosity is related to spontaneous emission, which breaks i }
the symmetry between emission and absorption. Then theYmplectic transfornx_;—x’, so we have

classical trajectories of the above equation spiral in towards B

the origin, although a semiclassical theory would lead to no / :f - F{— AN v R | ):
dissipation. The opposite case would be an amplified cavity, Q(Xo) dy wi(Xo—y)exp — 5zy-M(t) Ty | =0.
where the trajectories would spiral out. Note that this viscous (34
term always goes along with a supplement of diffusion, o )

which can be interpreted as a consequence of the fluctuatiofOW it is obvious from Eq.(34) thatw,, henceW,, must

dissipation “theorem™16]. have a negative part for akt, .
Let us emphasize the striking consequence of this result:

the positivity time does not depend on the initial distribution,

as long as it is not a Gaussian one. The following example
We have seen in Sec. Il that, because of the Lindbladiashall illustrate this remarkable property in a more transparent

part of the master equation, the pure state Wigner function igvay.

convoluted with a Gaussian whose width grows with time. It

has been pointed out by DF9] that at the timet, at which Example

the width of the Gaussian reachesthat is, when it becomes . ”

the Weyl representation of some coherent or squeezed state Wwe start from the familiar superposition Of. two co_herent

then its convolution with the initial Wigner functiow/o(x) states, i.e., ground states of the harmonic oscillator, displaced

is a Husimi function17,2,4 of the initial state, or @ func- to the pha_se space p0|nts<§=(0,4__f 9: |l.ﬂ°>:.(|§>.

tion in the language of quantum optics. It is a well known *. |~ £))/y2, in the context of photons in a cavity with dis-

property that the Husimi function is positive, so we havesipation. The Wigner function, which is a particular case of

W, =0, and obviously, since the Gaussian is strictly broadEd: (2D, is the sum of three terms; two of these correspond

! : to the coherent states taken independently, and the third term
ening, W;>0 for t>t,. It has already been emphasized bycomes from their interference:
Leonhardtet al. [18] that the form of the Wigner function
after interaction with a dissipative environment can be read W, (X) =W(X) +W_ () +W;(X), (35)
as an intermediate phase space distributii(x,t=0.,),
with an s which depends on the dissipation rate. TlsasO  with
corresponds to thénitial) Wigner function ands=—1 to

his Husimi function can be identified WitWtp through a

IV. UNIQUE POSITIVITY TIME FOR ANY INITIAL STATE

the Husimi function of DK(in Ref.[18] the role of the en- 2N 2 2 22
vironment is played by the imperfections of a beam separa- Wi(X)= W_BIGX - ﬁ_tp exp — E(q—e 0
tor).
We shall now prove that the Wigner function can never be (36)
positive before the positivity threshotd, unless it is posi- and
tive from the beginning, that is, unless the initial state is a
Gaussian state. Indeed, if an initial pure statg) is not a 4N 2, 0,
Gaussian, then it was shown by Tatargkio] that the initial Wi (x)= W_ﬁtex - E(p +9°)
Wigner functionWy(Xx) has negative parts. But it is also true
that non-Gaussian Husimi functions necessarily have zeroes, xexp{ _2< - e_V‘) 2 cos( 4eyt/2§ ) -
as shown in Appendix B. Smc\a;\/tp is, up to a symplectic Bt B Pl
transform, a Husimi function, there existg such that
where v, defined in the introduction, corresponds te, 2
W (Xo)=0. (32 and B;=2n[1—exp(—y)]+1. The function is normalized

by N=[1+exp(3#h)] 1.Obviously the minimum values
Let us now investigate the caset,. ThenW,(x) given by  are concentrated on the ling=0, where the expression sim-
Eq. (24) is a convolution ofWy(x_;) with a Gaussian of plifies into
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1- 7 late it, we notice thafH, in the expressiof3) of R;, can be
! diagonalized in most cases, that is when its two eigenvalues

7By

AN 2 e N ) function. The matrixM is defined by Eq(20), so, to calcu-
Wi(p,q=0)= —ex ~ 5P ) ex —2( )g

4en2 e " are finite and different. We then define the maRisuch that
X co lp|+expg —2——22||. (39
t t
2JH=P 1DP (42)
The Wigner function becomes positive when i
wi
e e
1-——=—, (39) o 0
Bt Bt D= ( ) , (43)
0 —o

that is, att,=1/yIn[1+1/(2n+1)], which indeed does not - ) , i
depend on the initial spacingof the two coherent states. On @ndo=2y—deH. Note that sincé is symmetric, thedH

the other hand, the positiomy,0) of the closest zero, given @S & null trace, and so h&s The dissipation parameter
by the first minimum of the cosine at that time, and o are basic elements for the description of the evolution

of Markovian quadratic open systems.
Then, using Eq(20) one can easily derive the expression

Bt of M,
Pm="7 NTa (40)
1_872(0'+a)t 1_672at

gets further away ag becomes smaller. This shows that the 2(a+to) Au 2a P2
negative regions that remain untj may be so shallow as M(t)=PT 1—e2at 1— g2(o—at P,
to be practically irrelevant. —A,; A,

The chord representation reveals how the positivity 2a 2(a=0)
threshold is related to a more reasonable estimate of the de- (44)

coherence time. The expression of the initial chord functionWhereA is defined b
in our example is y

~ 1 2 i£/\x A=PHTS [11ANHT+17(11) TP L. 45
Wo(§)=ﬁex;{—f—h>ex;{— §ﬁ g)Jrc.c. ( );[l(l) (5] (45)
1 (£-x,)? The corresponding quadratic form actually depends on the
+—— exg — ¢ classical motion of the chord, determined by the homoge-
2mh p( 4 ) neous park-Hx of the Hamiltonian. One then has to sepa-
rate different cases: the elliptic case, Het0, the parabolic
N Lexp( 3 (£+%,)? 4y C%Se ded =0, and the hyperbolic case, #&t0.
27h 4% : Since the Wigner function is symplectically invariant, one

just has to treat the simplest expressi(;n in ezach case, respec-
The first two terms, distributed around the origin, corresponﬁ:\éﬂﬁ’ntgﬁi:sar‘:nggtlgnct’isam?gi—lé)z(/)z f; '/ZaJ;](qj tll‘zle tsr::Zt?:rred
to the two coher_ent states taken separately, Whereas the | rticle, H(x)=pg, which is symplectically equivalent to
two terms, distributed around, and —x,, describe the p2/2—q2/2.1
guantum interference between them. The positivity time cor-
responds to the moment when the Gaussian in @§) ] )
damps everything outside a region of sizein the chord A. Harmonic oscillator
space. However, both interference terms in this example will In this case, the Hamiltonian reads
be damped much sooner {fis large enough, indicating an
overall loss of coherence.

2 2
It should be remarked that one just has to study a specific H(X)=w % + % (46)
example, here the twin coherent states, to get the positivity

time for any non-Gaussian initial pure state.

The reduction of a linear Lindblad operator under a symplectic
V. BEHAVIOR OF THE POSITIVITY THRESHOLD transformatiorx’ = Cx, is especially simple in the Wigner or in the

. . ) . chord representation. If, instead of E®), we setl;(x)=t;/\x,
Positivity is attained when the determinant of the matriXy,an the invariance is obtained by takifg=Cl, . Of course, one

M(t), that is the determinant dfi(—t), is equal to 1/4. must also use the invariance of the classical HamiltorHm’)
Then the expression of the soluti¢?4) is indeed a Husimi  =H(x).

016204-6



SYMPLECTIC EVOLUTION OF WIGNER FUNCTIONS IN . ..

and the matrixP is

Then the determinant d¥l(—t) reads

(N)?=(p])2+2iNju;
—i(\)?=i(u])?

J

A:%E(

by using Eq.(9).

In the dissipative case, that, is far>0, this determinant
diverges exponentially fast, and positivity is attained in a
time of the order of 14|. Let us take for instance the bath of
photons, then the coefficients of the Lindblad operators are

0 y(n+1)

I1= [y(n+1) |, I]= 2 ,
2 0
0 'yn
Lb={ [yn]|, = V2], (50)
0

2
and the frictiona= /2. Then

(e"-1)?

deM(—t)= 7

(2n+1)?, (51)

which equals 1/4 at=1/yIn(1+1/(2n+1)), as wasprevi-

PHYSICAL REVIEW B9, 016204 (2004

gttt pe2elcogyt + 1

detM(—t)= AA
(=) 4(a+ 0?) 11722
(47) e4at_2e2at+ 1A 2A (48)
da? 121215
where in this case the matriX is complex:
|
IO +(idem with \” and ") (49)
idem wi ¢ and ut),
— (N2 () 2+ 2iN j i
|
detM(—1) ett—2e?ch2pt+ 1 A
e —t)=
Ao’ — o?) 11722
e4uzt_2e20(t+ 1
—————Aha, (53)

4o

As long asa>—w it grows exponentially, so positivity is
always reached. Whea<—w the determinant has again a
finite asymptotic value. Then the positivity threshold is of the
order of 1(|a|]—w), which is greater than the corresponding
elliptic case, with identical Lindblad operators.

The main difference with the elliptic case appears in the
weak coupling limito|<w. Whereas positivity of the elliptic
system will then be attained in a time which is still inversely
proportional to the coupling with the environment, the posi-
tivity threshold of the hyperbolic system will saturate ab.1/
We conjecture that this will also be the case in a more gen-
eral chaotic system.

C. Patrticle in a linear potential

ously mentioned. Note that, although the coarse graining YV& now study the intermediate case, which can be repre-
grows for ever, the size of the Wigner distribution reaches £€nted by the Hamiltonian
finite limit, for the rescaled functiof®4) is the expression of 02
W(x) and notW(x_,). H(x)= = +q.
If, on the other hande<0 then the determinant reaches 2
its limit in a time also of the order of [Z|. We conjecture

that this limit has a lower bound greater than 1/4. Here res-_ .
caling x_,—x now implies thatW,(x) spreads with no This degenerate case does not follow our general form for

bound. the matrixM, so one has to treat it separately, taking care of
the linear term(cf. remark of Sec. )l One should remember
here that the motion of the chord is given by the free motion
of the particle, which corresponds to

R10
lto1)

Then the damping matrix is

(54)

B. Scattered particle

The simplest form of the Hamiltonian for a particle scat-
tered by a parabolic barrier is

H(X)= wpa. (52 (55

Then the matrixP is just identity and the matriA is real, so
the determinant reads
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—2at

e—Zuzt 1 1
5 Q- 520 S5 -Qi- 50
M(t):tz e—2at 1 e2—at 1 ’ (56)
J (H_ _— o — oW
2 12 g 12 2a 2a) 22
I
WhereQi(jd) are the polynomials of degrekin t and of de- S= 1_Trf>t2- (59)

gree 2 in the coupling constants, say (A{,u] ,u]). Letus
take for instance one Lindblad operator with’){  This is only zero for a pure state, just as for the von Neu-
=(0,/D") and (")T=(e/D",0), with e==1. Then one has Mann entropy

deM(—t)=— e"’th(lJr _ L . .
4 4(D")? Since the solution is simpler in the chord representation, we
, make use of the following relatiofgor operatorsA,B, . . .
—g2eDt| —_¢2 +2) +1+ , represented by chord functiodg £),B(#), . ..
D” Z(DH)Z 4(DH)2
(57) A—A(d), (61)
with D=D'D”. The limit is always greater than 1/4, with AT—A(-§*, (62
the usual exponential contrast between the dissipative case o
(e=1) and the excited casg=—1). In Ref.[9], DK study TrA=A(£=0), (63
this example with no dissipation, and they find a positivity
time of the order of yD’. On the following table, one can L. 1 -
read different values of the positivity threshold for =2, TAB=5— | déA(£)B(— ). (64)
and check that the limiD"”—0 is attained gradually:
D" 0 0.1 1 10 100 Therefore, using'=p andp,(&€)=27#% W,(£), we obtain
e=—1 0930 0640 0244 0077 0.022 Trp=2mh Wi(§=0)=1, (65
e=1 0.930 1.040 1.025 0.752 0.400. and
(58)
~2_ v 2
However for large values dd”, the positivity threshold will Trpy _ZWﬁf dg |Wi(HI (66)

behave like 1yD'D".

So far the discussion has been restricted to the case ofla the case of the solutiofl9) of the Lindblad equation, we
single degree of freedom. Besides trivial changes of factorthus have
of 277, the basic form of the solutions of the Lindblad equa-
tion in the chord representati¢h9) and for the Wigner func-
tion (21) remain unchanged in the caseroflegrees of free-
dom. The evolution matrbR; now has the dimension (3
X (2n), but it can again be simplified by symplectic trans-and
formations. It will often decompose into blocks correspond-
ing to the above examples. If every Lindblad vectpiis v 2_
defined for a single block, then its contributiont(t) vslill 2mh f dg [Wo(§)["=1 (€8)
be of the same form as that for a single degree of freedom, o )
but otherwise each case must be examined separately. Als the initial state is pure. _ o
four-dimensional blocks may arise, corresponding to hyper- After changing the variables of integration in E@6),
bolic spiral motion, as well as singular cases analyzed byeplacingé_. in Eq. (19) by the initial chordg’, we obtain
Arnold [1].

~ 1
Wo(¢=0)= 5 67)

Tfﬁt2=2ﬂﬁez“‘f d§’|VVo(§')|zeXp<%§’ : M(—t)§’> ,

VI. THE GROWTH OF LINEAR ENTROPY 69)

Besides considering the positivity of the Wigner function,
we can use the exact solutigh9) to investigate the growth
of linear entropy Note that there is a misprint in formul$.24) of Ref.[4].
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whereM (—1), defined in Eq(20), is negative definite. 5 1
Thus T2 is just the average of a rescaled Gaussian Trp2=27h €2 |W0(O)|Zj dé exp —&M(—t)&
whose width narrows in time in a manner that depends ex- h

clusively on the particular form dfi(x) and the linear Lind- h e2at
blad operatord ;(x). The initial state merely determines the - (70)
probability density employed in the calculation of the aver- VdetM (—t) '

age. A general asymptotic behavior can be predicted for this
formula, because the width of the Gaussian generally shrinkisy using Eq.(67). It can be explained, using Eq&t3) and
ast grows. If the contraction is sufficient, the expressi68) (44), in terms of the dissipatior and the basic Hamiltonian

will tend to parametelo:

5 h

Trp~= . 71

Pt st ot e20’t+e720't ( )
e "—-2e +1

2 e 4at_pe 2at4 ]
> A1Az— > A12A21
A(a+0°) 4o

If the underlying classical system is elliptic, e¢=0, one recover the initial information after interaction of the system
can distinguish two situations. In the excited case;0,  with the environment. In general these consist of reconstruct-
Trp,? converges to zero. In the dissipative cage0, it con-  ing the quantum state of a lossy cavity by using mathemati-
verges to a finite value, which is not surprising since thecal inversion formula$10] or directly by experimental pro-
system then reaches a thermal equilibrilBh For instance cesse$21]. We show here that the reversibility of the Wigner

in the case of a bath of photons, one has function results from the deconvolution of its evoluti2#),
or even simpler, as a divisiqid9) in the chord space. Indeed,
, Amh one has
Trp — . 72
P o1 (72 - o _
Wi(§)=Wo(e™ “R_1§)G(§), (73)

If the system is hyperbolic, the “Lyapunov exponent”

w=Re0)#0. The consequence is to shift the definition of which can easily be inverted as

the above dichotomy. Indeed,gkf has a nonzero limit in the

more restricted range> . . ~ W,(e*'R,&)
The decoherence time, for the decay of;fr is in gen- Wo(d)==——— -

eral inversely proportional to the coupling strength. However Gi(e"Rié)

in the weak coupling limit|a|<w, it is 1/w in the hyperbolic

case, whereas it is |bf in the elliptic one. Hence the deco- This is a generalization and a simplification of the inversion

herence time defined by the linear entropy is here consistefiermula of Ref.[10] since the loss induced by beam splitter

with the positivity threshold. This is a strong support to theis a particular case of our general formalism.

thesis that positive Lyapunov exponents accelerate decoher-

(74)

ence[20].
. VIIl. CONCLUSION
The asymptotic formuld70) holds only for those cases
where all the eigenvalues &1 (—t) tend to infinity. Coun- The exact solution of the Markovian master equation for

terexamples are the elliptic case with<0, since the deter- quadratic Hamiltonians and linear complex Lindblad opera-
minant then has a finite limit, and the hyperbolic case, fortors has been derived in the form of a convolution for the
a<—w. Moreover, though-w<a<w leads to a determinant Wigner function. This involves the classical evolution of the
which tends to infinity, one of the eigenvalues will indeed initial Wigner function for the closed system with a phase
diverge whereas the other one, corresponding to the unstabdpace Gaussian that is independent of this initial condition,
direction, will have a finite limit. while its width expands in time, depending only on the
Hamiltonian and the Lindblad operators. This simple solu-
tion allows for the generalization of DK’s proof that the
Wigner function becomes positive within a definite time
Although decoherence is usually associated with a loss dfurthermore we support the much stronger statement that,
information, which goes along with the growth of entropy, unless the initial distribution is already a coherent state, the
several techniques have been developed in quantum optics Wigner function must have negative regions before that time

VIl. REVERSIBILITY OF THE SOLUTION
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t,, which then does not depend on the initial state. In Sec. V oW i
we have given the behavior af, for three basic types of W_’ﬁ‘lgw’
motion of the quadratic Hamiltonian, namely, the elliptic, the
hyperbolic, and the parabolic case, verifying that positivity is ~
always reached exponentially fast. The positivity threshold is XW—s — ﬁ Jﬂv
generally of the order of 4|, except in the weak coupling i€’
regime|a|<w of a hyperbolic system, where it is of the order
of 1/w. One should note that the threshold becomes indepen- J ~ 9
dent on the Planck constant, if the Lindblad equation is ap- X — = —2W-¢§ GE (A2)
propriately scaled.
The Fourier transform of the exact solution, the chordgy, applying these rules on the following Poisson bracket:
function, is even simpler. This is the product of two terms:
one is just the non-Hamiltonian classical evolution of the IW
initial chord function with dissipation and the other is again {HO0, WO} =2(H 1P+ Hao) ()
a Gaussian, but with narrowing width. This leads to a simple P
formula for Tp? as an average of a shrinking Gaussian, IJW
where the probability distribution used to calculate the mean —2(Hyp+Hy0) E(X)’ (A3)
is just the square modulus of the initial chord function. For
long times, we use the normalization condition that the chorqye get
function is unity at the origin to derive simple rules for the

asymptotic growth T#? for a general quadratic Hamiltonian. oW

This decays exponentially fast in a time which is of the same {H(),W(X)}—2(H 1265+ szgq)ﬁ—(x)

order as the positivity threshold. This result is compatible &p

with the arguments presented by Zurek and P24# for ex- oW

ponential growth of linear entropy for chaotic systems. These —2(Hyép+Hppég) (%),  (Ad)
are classically characterized by local hyperbolicity, where the 9&q

Lyapunov exponent describes the average effected by a typi- .
cal orbit that approaches many hyperbolic points. In contrastnat is:

the hyperbolic quadratic Hamiltonian defines a linear classi- ~

cal motion, but both will exponentially stretch the Wigner {HO), W)} —{H(£), W(&)}- (AS)
function. Of course, in a chaotic system, the result must b
analyzed more deeply since the phase space volume remai
finite, which leads to a saturation of entropy even with no

the same way we get

2 2 2
d|53|pat[on. ' _ . . )\Zﬂv(x)—f—ﬂzﬂ(x)_Z)\M i W(x)ﬂ—i(l-g)zw,
We finally point out a very simple inversion formula 99> ap? apaq £2
which allows one to retrieve the initial state of the system, (AB)
which seems a very transparent way to deal with the topics
of quantum state reconstruction. hence the final equatiof10) for W, with the help of the last

line of Eq.(A2).
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APPENDIX A: LINDBLAD EQUATION z)=e"1" ngo \/ﬁhﬂ), (B1)
IN THE CHORD SPACE '
From the definition4) of the chord transform, where |n) are the eigenstates of the harmonic oscillator.

Hence, the coherent state representation of any pure|gpate
can be expressed as

~ 1 i
W(§)= o7 dxex;{ — %g/\x W(X), (A1) o

(Zy)=e" "R (z), (B2)
applied to the derivatives i and the product ofV with g
or p, we set the following transformation rules by using in-

tegration by parts: "
. F(2)=2

W—W, n=0 \/n—|

where

Zn

(nl) (B3)
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is an entire function, known as the Bargmann func{i?@]. sor<2.
Since the Husimi function is the square modulus of the co- We now make use of the following

herent state representation, we obtain Theorenm{23]: If F(z) is an entire function of finite order
S 5 with no zeroes on the plane, then its order is necessarily an
Qx)=[z(x)|)|*=e " |F(2)|*. (B4 integer andF(z)=eP@, whereP,(z) is a polynomial of
orderr.

Thus the zeroes of the Husimi function coincide with the n th f the B functi the is at
zeroes of an analytic function. Indeed, we may define the n the case of the bargmann function, n(z) is a

state|y) by its Bargmann representatiéi(z). An important MOost of second order and henCx) given by Eq.(B4)
a priori restriction is thaf (z) is at most of order =2. must be a Gaussian mandq if it represents a normalized

To see this, recall tha(z) is of finite order if function. _ o . _
Thus, only Gaussian Husimi functions have no zeroes in
|F(2)|<el?” (B5)  the phase plane. To a great extent, positions of the isolated

zeroes of the Husimi function also restrict the class of ad-
for all sufficiently large|z| and the order of this function is missible pure states through the factorization theorems of
r=infu for which Eq.(B5) holds. But if we use the fact that Weierstrass and Hadamal&3]. The characterization of the

|(z]$)|?<1 in Eq.(B4), we obtain pure states as chaotic or regular by the pattern of zeroes has
) ) been extensively studied for the case where the phase space
|F(2)|<eld72<eld”, (B6) s a torus, because the restriction is then more seizstle
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