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Entanglement production in coupled chaotic systems: Case of the kicked tops

Jayendra N. Bandyopadhyay* and Arul Lakshminarayan†,‡
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Entanglement production in coupled chaotic systems is studied with the help of kicked tops. Deriving the
correct classical map, we have used the reduced Husimi function, the Husimi function of the reduced density
matrix, to visualize the possible behaviors of a wave packet. We have studied a phase-space based measure of
the complexity of a state and used random matrix theory~RMT! to model the strongly chaotic cases. Extensive
numerical studies have been done for the entanglement production in coupled kicked tops corresponding to
different underlying classical dynamics and different coupling strengths. An approximate formula, based on
RMT, is derived for the entanglement production in coupled strongly chaotic systems. This formula, applicable
for arbitrary coupling strengths and also valid for long time, complements and extends significantly recent
perturbation theories for strongly chaotic weakly coupled systems.
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I. INTRODUCTION

A quantum mechanical system, which consists of at le
two interacting subsystems, has an unique property ca
‘entanglement’@1#. This property is unique in the sense th
even if we know the exact state of the system, it is in gene
not possible to assign any pure state to the subsystems
tanglement is a nonclassical correlation among the s
systems which exists even between spatially well separ
subsystems@2#. This unique property of a quantum syste
has been characterized as a quantum resource for qua
information theory and quantum computation@3#. Moreover,
quantum entanglement has also been studied extens
from the decoherence point of view. It has been argued th
quantum system in the presence of an ‘‘environment’’ c
loose its coherence and behave more like a classical sy
@4#.

A quantum computer is a collection of many interacti
particles. Such a many-particle structure may be prone
problems of decoherence and chaos. Decoherence can c
some errors in the operation of a quantum computer, h
ever, these errors, in principle, can be removed by quan
error correcting codes@3#. On the other hand, the problem
due to chaos has recently attracted some attention. It
been shown that residual, uncontrolled interaction betw
the particles might induce quantum chaos in the quan
computer if the interaction strength crosses certain crit
limits and consequently, it may destroy the operational c
dition of the quantum computer@5#. Besides quantum chao
can also emerge during the implementation of some quan
algorithms@6#. Obviously, a quantum algorithm which simu
lates a quantum chaotic system is by definition a unit
operation showing quantum chaos@7#. However, it has been
shown that well-known algorithms, such as Grover’s sea
algorithm and the quantum Fourier transform algorithm g
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rise to some unusual combination of quantum signature
chaos and of integrability@6#. The error due to the presenc
of chaos in a quantum computer can also be corrected
error correcting codes, but the presence of chaos enha
the complexity and hence much more error correction
needed@8#. Therefore, the knowledge of the presence a
effects of chaos in a quantum computer is necessary
implement proper error correcting codes. Very recently,
behavior of quantum entanglement during the operation
an efficient algorithm for quantum chaos have been stud
@9#. However, here we are interested at a more basic leve
study the effect of the underlying classical dynamics on
tanglement production.

Recently, several studies have explored this question@10–
18#. The first one studied the entanglement production in
N-atom Jaynes-Cummings model@10#, and they found that
the entanglement rate was considerably enhanced if the
tial wave packet was placed in a chaotic region. They a
argued that their results support an earlier conjecture wh
predicted that the entanglement production in a chaotic s
tem, coupled to an environment, would be more than
regular system@19#. According to that conjecture, the en
tanglement production rate would be higher for a chao
system coupled to an environment. For theN-atom Jaynes-
Cummings model, each atomic subsystem plays the role
an environment for the other. Later, it has been shown
large entanglement production rate is not the hallmark o
nonintegrable system@11#. Even in the integrableN-atom
Jaynes-Cummings model some special initial coherent st
exhibit strikingly similar entanglement production as corr
sponding to the chaotic case@12#.

In another paper, the entanglement production rate
been related to the classical Lyapunov exponents with
help of a coupled kicked tops model@13#. They also justified
their findings on the basis of the above mentioned conjec
@19#. However, the classical limit of the coupled kicked to
derived in this rather well-quoted work is incorrect, in fact
is not even canonical. However, they consider very wea
coupled tops and therefore their conclusions turn out to
qualitatively valid. In other work, one of us studied the e
tanglement in coupled standard maps and found that

h-
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tanglement increased with coupling strength, but after a
tain magnitude of coupling strength corresponding to
emergence of complete chaos, the entanglement satu
@14#. Similar saturation of entanglement was also obser
for a time evolving state, which was initially unentangle
This saturation value depended on the Hilbert space dim
sion of the participating subsystems, and was less than
maximum possible value. It was also pointed out that in an
ogy with environment induced decoherence, the redu
density matrices~RDMs! corresponding to subsystems
fully chaotic systems are diagonally dominant.

Later, we derived the saturation value of the entanglem
using random matrix theory@15#. Moreover, we presented
universal distribution of the eigenvalues of the RDM’s, a
demonstrated that this distribution is realized in quantiz
chaotic systems by using the model of coupled kicked to
Subsequently, an analytical explanation for the entanglem
production, based on perturbation theory, has been given
two weakly coupled strongly chaotic systems@16#. The au-
thors also found that increase in the strength of chaos d
not enhance the entanglement production rate for the cas
weakly coupled,strongly chaotic, subsystems. In a rece
work, entropy production in subsystems has been exam
as a dynamical criterion for quantum chaos@17#. It has been
observed that the power spectrum of the entropy produc
gets progressively broad banded with a progressive trans
from regular to chaotic systems. More recently, entanglem
production has been investigated in a class of quantum B
er’s map@18#. They also found that, in general, the quantu
Baker’s map is a good dynamical system to generate
tanglement.

Besides these studies of entanglement production and
coherence in coupled chaotic systems, extensive studies
been done on decoherence of chaotic systems that
coupled to an environment. These studies were mainly
tivated by the fact that decoherence induces a transition f
quantum to classicallike behavior and therefore, this de
herent approach can be utilized in a more straightforw
way to restore the correspondence between a quantum
otic system and its classical counterpart@19#. Irreversibility
is the price of this decoherent model for the restoration
quantum-classical correspondence in a quantum system.
irreversibility causes entropy production in the system. It h
been conjectured, as already mentioned, that this entr
grows linearly in time with a fixed rate determined by t
Lyapunov exponents.

This conjecture has been tested for several model o
quantum chaotic systems. It has been shown that the ent
production rate, as a function of time, in a quartic dou
well with harmonic driving coupled to a sea of harmon
oscillators has at least two distinct regimes@20#. For short
times this rate is proportional to the system-environm
coupling strength, and for longer times there is a regi
where this rate is determined by the Lyapunov exponent
another work, the entropy production in Baker’s map a
Harper’s map coupled to a diffusive environment is stud
@21#. A regime was found to exist where the entropy produ
tion rate is determined by the system’s dynamical proper
such as Lyapunov exponents, folding rates, etc., and m
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over, in this regime the entropy production rate becomes
dependent of the system-environment coupling stren
Similar results are also reported in Refs.@22,23#. In other
work evidence has been presented that the decoherence
~or entropy production rate! of a quantum system coupled t
an environment is governed by a quantity which is a meas
of both the increasingly detailed structure of the quant
distributions ~Wigner function! and classical phase-spac
distributions@24#.

Very recently, it has been reported that, in open quant
systems, there exists a universal scaling among the pa
eters~effective Planck’s constant, measure of the coupl
strength between system and environment, class
Lyapunov exponents! on which the quantum-classical trans
tion of that system depends@25#. In another direction, deco
herence has been discussed in an open system coupled
nonlinear environment with finite degrees of freedom@26#. It
was found that even though the environment is finite dim
sional, the strong nonlinearity of it can destroy the quant
coherence. Hence there is a possibility to utilize this fin
dimensional chaotic system as a model of environment,
stead of infinite dimensional heat bath. The above possib
has also been discussed in a recent work@27#. Naturally, this
approach is closely linked to studies like the present one
the coupled kicked tops.

We have discussed two different approaches in the st
of entanglement production and decoherence in chaotic
tems. First approach was to study the entanglement pro
tion and decoherence in coupled chaotic systems by perfo
ing exact numerical calculation or using some model ba
on random matrix theory~RMT! and perturbation theory
The second approach was mainly based on approximate
ter equations. In this paper, following the first approach,
have studied entanglement production in coupled kick
tops. We have considered the entanglement production
both chaotic and regular cases. Besides considering the e
of different kind of classical dynamics on quantum entang
ment, we have also considered the effect of different c
pling strengths on entanglement production. We have ex
sively studied a measure of the complexity of the tim
evolving state, based on the second moment of the Hus
function of that state, corresponding to both single a
coupled tops. Using RMT, we have explained the behav
of this measure for strongly chaotic cases. We have t
derived an analytical formula for the entanglement prod
tion in coupled strongly chaotic systems using RMT. Th
formula is applicable for any coupling strength and it al
valid for sufficiently long time.

This paper consists of six sections. In Sec. II we ha
discussed the quantum and classical properties of cou
kicked tops. We have presented the correct classical ma
the coupled kicked tops. We have discussed the initial st
used and have defined the measures of entanglement
here. Finally, we have concluded this section by discussin
method to visualize the wave packet of a coupled system
the phase space of a subsystem. In Sec. III we have con
ered a recently proposed method to measure the comple
of a quantum state. Using this method, we have define
measure which quantifies the fraction of the total number
1-2
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ENTANGLEMENT PRODUCTION IN COUPLED CHAOTIC . . . PHYSICAL REVIEW E 69, 016201 ~2004!
Planck cells occupied by the Husimi function of a giv
state, roughly speaking the amount of ‘‘phase space’’ tha
filled by the Husimi.

The Hilbert space dimension is the number of Plan
cells, each of volumehd, which fit into the total phase-spac
volume. In one dimension, d51, then N
5phase-space area/h. The above mentioned measure of t
complexity of quantum states is also approximately equa
the fraction of the Hilbert space occupied by the given sta
We have observed for the single top that a typical ti
evolving state can occupy half of the total number of t
Planck cells, and this happens only for the strongly cha
cases. Whereas for a highly chaotic top coupled strongl
another such top, the above measure, now for the redu
density matrix of each top, has reached a value very clos
unity. We explain the behavior of this measure, using RM
for the strongly chaotic cases. For nonchaotic and mi
cases, the time evolving state occupies lesser numbe
Planck cells and is reflected in smaller values of this m
sure.

In Sec. IV, we have presented the numerical results on
entanglement production. In Sec. V, we have derived an
proximate formula, based on RMT, to explain the entang
ment production in coupled strongly chaotic systems.
nally, we summarize in Sec. VI.

II. COUPLED KICKED TOPS

A. Quantum top

The single kicked top is a system, characterized by
angular momentum vectorJ5(Jx ,Jy ,Jz), where these com
ponents obey the usual angular momentum algebra. We
Planck’s constant to unity. The dynamics of the top is go
erned by the Hamiltonian@28#

H~ t !5pJy1
k

2 j
Jz

2 (
n52`

1`

d~ t2n!. ~1!

The first term describes free precession of the top arouny
axis with angular frequencyp, and the second term is due
periodicd-function kicks. Each such kick results in a torsio
aboutz axis by an angle proportional toJz , and the propor-
tionality factor is a dimensionless constantk/2j . Now, to
study the entanglement between two tops, we consider
Hamiltonian of the coupled kicked tops which can be wr
ten, following Ref.@13#, as

H~ t !5H1~ t !1H2~ t !1H12~ t !, ~2!

where

Hi~ t ![piJyi
1

ki

2 j
Jzi

2 (
n

d~ t2n!, ~3!

H12~ t ![
e

j
Jz1

Jz2(n
d~ t2n!, ~4!

where i 51,2. HereHi(t)’s are the Hamiltonians of the in
dividual tops, andH12(t) is the coupling between the top
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using spin-spin interaction term with a coupling strength
e/ j . All these angular momentum operators obey stand
commutation relations. For the rest of the paper we will on
concentrate to the casep15p25p/2. This special choice of
the angular frequencies will simplify both the quantum a
classical maps. SinceJi

2 andJzi
’s are four mutually commut-

ing operators, the simultaneous eigenvectors of these op
tors we take as our basis. In general, this basis is denote
u j 1 ,m1 ; j 2 ,m2&5u j 1 ,m1& ^ u j 2 ,m2&, where Ji

2u j i ,mi&5 j i( j i

11)u j i ,mi& and Jzi
u j i ,mi&5mi u j i ,mi&. The individual top

angular momentums,j 1 and j 2, could in general be different
The time evolution operator, defined in between two co

secutive kicks, corresponding to this coupled Hamiltonian
given by

UT5U12
e ~U1^ U2!5U12

e @~U1
kU1

f
^ ~U2

kU2
f !#, ~5!

where the different terms are given by,

Ui
f[expS 2 i

p

2
Jyi D , Ui

k[expS 2 i
k

2 j
Jzi

2 D ,

U12
e [expS 2 i

e

j
Jz1

Jz2D , ~6!

and as usuali 51,2.

B. Classical top

The corresponding classical map of the coupled kick
tops discussed above can be obtained from the quantum
scription with the Heisenberg picture in which the angu
momentum operators evolve as

J~n11!5UT
†J~n!UT . ~7!

Now we have to determine the explicit form of this angu
momentum evolution equation for each component of
angular momentum. Here we present the time evolution
Jx1

~see Appendix A!:

Jx1
8 [UT

†Jx1
UT5

1

2
~Jz1

1 iJy1
!expF i

k

j S 2Jx1
1

1

2D G
^ expS 2 i

e

j
Jx2D1

1

2
expF2 i

k

j S 2Jx1
1

1

2D G~Jz1
2 iJy1

!

^ expS i
e

j
Jx2D . ~8!

The above expression differs from the coupled tops map
sented in a previous publication@13#. First,Jx1

8 is now really

a Hermitian operator. Second, the terms which arise in
above expression due to the interaction, containJx2

operator

instead ofJy2
. We proceed by rescaling the angular mome

tum operator as (Xi ,Yi ,Zi)[(Jxi
,Jyi

,Jzi
)/ j , for i 51,2.

Components of this rescaled angular momentum vector
isfy the commutation relations,@Xi ,Yi #5 iZi / j ,@Yi ,Zi #
5 iXi / j and@Zi ,Xi #5 iYi / j . Therefore, inj→` limit, com-
1-3
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ponents of this rescaled angular momentum vector will co
mute and become classicalc-number variables. Conse
quently, in this large-j limit, we obtain the classical map
corresponding to coupled kicked tops as

X185Z1cosD121Y1sinD12, ~9a!

Y1852Z1sinD121Y1cosD12, ~9b!

Z1852X1 , ~9c!

X285Z2cosD211Y2sinD21, ~9d!

Y2852Z2sinD211Y2cosD21, ~9e!

Z2852X2 , ~9f!

where

D12[kX11eX2 and D21[kX21eX1 . ~10!

The difference between the map presented above and the
which was derived in Ref.@13# lies in the form of the angles
D12 andD21. However, these differences are very importa
The above map is canonical. It satisfies all Poisson bra
relations such as$Xi8 ,Yi8%5Zi8 ,$Yi8 ,Zi8%5Xi8 and $Zi8 ,Xi8%
5Yi8 , where i 51,2, and Poisson brackets of any two d
namical variables corresponding to different tops are equa
zero. In contrast, the classical map presented in Ref.@13#
satisfies the first three Poisson bracket relations, but the P
son brackets of any two dynamical variables correspond
to different tops are nonzero and they are proportional to
coupling strengthe, implying that the map is canonical onl
in the uncoupled limit. Moreover, this earlier publication r
lates the entanglement rate to the sum of the posi
Lyapunov exponents, which were actually determined us
the incorrect classical map. However, they considered v
weak coupling (e51023) among the tops and therefore th
error in the calculation of the Lyapunov exponents was v
small, these being practically those of the uncoupled to
Hence we believe that the main conclusions presented in
paper are still valid.

In the limit e→0, we will arrive at the map correspondin
to the single kicked top, whose Hamiltonian is given in E
~1!, and that map is given by

X85Z coskX1Y sinkX, ~11a!

Y852Z sinkX1Y coskX, ~11b!

Z852X. ~11c!

The classical dynamics of the single top have been stu
extensively in Refs.@28,29# and is a well studied model o
quantum chaos. From the above expressions, it is clear
the variables (X,Y,Z) lie on the sphere of radius unity, i.e
X21Y21Z251. This constraint on the dynamical variabl
restricted the classical motion to the two-dimensional surf
of a unit sphere. Following the usual procedure, we can
rametrize the dynamical variables in terms of the polar an
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u and the azimuthal anglef as X5sinu cosf, Y
5sinu sinf, and Z5cosu. In terms of these new (u,f)
variables, the above map looks very complicated, and th
fore we do not display that map. Moreover, during our n
merical iterations we use the above three-dimensional fo
of the map, and after every iteration we get back the co
sponding (u,f) from the relations cosu5Z and f
5tan21(Y/X), where cosu andf are the canonical coordi
nates on the sphere. In Fig. 1, we have presented the ph
space diagrams of the single top for different values of
parameterk. For k51.0 and k52.0, the phase space
mostly occupied by regular orbits. As we further increase
value of k, we can see the well-known kolmogrou-Arnold
moser scenario. Finally, atk56.0, the phase space is most
covered by the chaotic sea, with very tiny islands. The d
circle, marking the point (u,f)5(0.89,0.63) in all the
phase-space diagrams, is representing the point at which
will construct our initial wave packet. The quantities pr
sented in all the figures are dimensionless.

C. Initial wave packet

We use a generalized SU~2! coherent state or the directe
angular momentum state@28# as our initial state for the in-
dividual tops and this state is given inu j ,mi& basis as

^ j ,mi uu0 ,f0&5~11ugu2!2 jg j 2miAS 2 j

j 1mi
D , ~12!

whereg[exp(if0)tan(u0/2). For the coupled top, we tak

FIG. 1. Phase-space pictures of the single top, correspondin
different parameter values, are presented.~a! k51.0: The phase
space is mostly regular.~b! k52.0: The phase space is still ver
much regular, but now a thin stochastic layer is visible at the se
ratrix. ~c! k53.0: The phase space is truly mixed type. Regu
elliptic islands are visible inside the chaotic region.~d! k56.0: The
phase space is mostly covered by the chaotic region with few
elliptic islands. The solid circle is the point at which we will con
struct the initial wave packet.
1-4
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the initial state as the tensor product of the directed ang
momentum state corresponding to individual tops. Now
we will write u j ,mi& as umi& for notational simplification.
Explicitly in umi& basis this initial product state can be wr
ten as@13#

uc~0!&5 (
m1 ,m252 j

1 j

^m1 ,m2uc~0!&um1 ,m2&

5 (
m1 ,m252 j

1 j

^m1uu0
1 ,f0

1&^m2uu0
2 ,f0

2&um1 ,m2&,

~13!

where^mi uu0
i ,f0

i &,i 51,2, can be obtained from Eq.~12!.
Now we have the evolutionuc(n)&5UTuc(n21)&

5UT
2uc(n22)&5 . . . 5UT

nuc(0)&. Even though, the nu
merical iteration scheme for the above evolutions have
ready been presented in Ref.@13#, here we again present tha
for the sake of completeness. From Ref.@13#, we have

^s1 ,s2uc~n!&5expS 2 i
e

j
s1s2D (

m1 ,m252 j

1 j

^s1uU1um1&

3^s2uU2um2&^m1 ,m2uc~n21!&, ~14!

where

^s1uU1um1&5expS 2 i
k

2 j
s1

2Dds1m1

( j ) S p

2 D . ~15!

ds1m1

( j ) (p/2) is the Wigner rotation matrix@30#:

ds1m1

( j ) S p

2 D5
~21!s12m1

2 j S 2 j

j 2s1
D 1/2S 2 j

j 1m1
D 21/2

3(
k

~21!kS j 2s1

k D S j 1s1

k1s12m1
D . ~16!

The main problem in calculating the Wigner rotation mat
lies in the calculation of the above sum. Defining that sum
Vm1

, and starting fromV2 j51 andV2 j 1152 s1, we can get

the otherVm1
recursively by using the following relation

@31#:

~ j 2m111!Vm12122s1Vm1
1~ j 1m111!Vm11150.

Besides the Wigner rotation matrix can be expressed in te
of Jacobi polynomials and of different hypergeometric fun
tions @32#. However, we have followed the above recursi
scheme.

D. Measures of entanglement

All the previous studies on the connection between
tanglement and chaos, were based on pure states of bip
system, where the von Neumann entropySV and the Linear
entropySR of the RDMs were natural measures of entang
ment. The definition of these entropies are:
01620
ar
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SV~n!52Tr1@r1~n!ln r1~n!#52Tr2@r2~n!ln r2~n!#
~17!

and

SR~n!512Tr1@r1
2~n!#512Tr2@r2

2~n!#, ~18!

wherer1 andr2 are the RDMs corresponding to the first an
the second top, respectively. In the eigenbasis of the RD

SV~n!52(
i

l i ln l i , ~19!

SR~n!512(
i

l i
2 , ~20!

wherel i ’s are the eigenvalues of the RDMs.

E. Reduced Husimi function

Since the phase space of the coupled tops is four dim
sional (S23S2), it is not possible to visualize the wav
packet dynamics on such a phase space. Therefore, we u
approximate numerical way to visualize the behavior of
time evolving stateuc(n)& in any one of its subspaces. W
call this methodreduced Husimi functionand it is defined in
the following way. Consider a stateuc& in the angular mo-
mentum basisum1 ,m2&, i.e.,

uc&5 (
m1 ,m2

am1m2
um1 ,m2&. ~21!

The Husimi function ofuc& is u^z1 ;z2uc&u2, where

^z1 ;z2uc&5 (
m1 ,m2

am1m2
^z1um1&^z2um2&, ~22!

and uzi&[uu i ,f i& are the directed angular momentum sta
~atomic coherent states!. We define reduced Husimi functio
corresponding to first subspace,

r1H~z1!5E
z2

u^z1 ;z2uc&u2dm~z2!, ~23!

wheredm(z2) is the Haar measure

dm~z2!5
2 j 11

4p
sinu2 du2 df2 . ~24!

Since the phase space of a kicked top is the surface
sphere of unit radius, the total phase space area is 4p. There-
fore for the kicked top whose Hilbert space dimension isN
52 j 11, volume of the Planck cell is 4p/(2 j 11). Hence
the above mentioned Haar measuredm(z) is equal to the
number of Planck cells present in the infinitesimal areadz
5sinududf. The integration ofdm(z) over whole phase
space will give total number of Planck cellsN52 j 11
present in the whole phase space. One can also write
above expression, Eq.~23!, as
1-5
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r1H~u1 ,f1!5^u1 ,f1u
2 j 11

4p F E
u2

E
f2

^u2 ,f2uc&

3^cuu2 ,f2&sinu2 du2 df2G uu1 ,f1&.

~25!

The above integral is just the partial trace of the dens
matrix uc&^cu over the second subspace, and hence it gi
the RDM corresponding to the first subspace. Therefore,

r1H~u1 ,f1!5^u1 ,f1ur1uu1 ,f1&, ~26!

wherer1 is the RDM of the first subspace. Therefore, t
reduced Husimi function is just the Husimi function of th
RDM. We can writer15( i 51

N l i uei&^ei u, wherel i ’s are the
eigenvalues ofr1 and uei& ’s are the corresponding eigen
states. Theseuei& ’s are also called Schmidt vectors. Ther
fore,

r1H~u1 ,f1!5(
i 51

N

l i u^u1 ,f1uei&u2. ~27!

Thus, the reduced Husimi function can also be expresse
the weighted sum of the Husimi functions of the Schm
vectors, where the weight factors are the eigenvalues of
RDM. Identically, we can define reduced Husimi function f
the second subspace, and is given by

r2H~u2 ,f2!5(
i 51

N

l i u^u2 ,f2udi&u2, ~28!

whereudi& ’s are the Schmidt vectors of the second subspa

III. SECOND MOMENT OF HUSIMI FUNCTION: A
MEASURE OF COMPLEXITY OF A QUANTUM STATE

Reduced Husimi function technique is useful for the vis
alization of the behavior of the time evolving state on t
phase space. Moreover, we want a phase-space measu
the complexity of any state to relate it with the entangleme
There already exists a good measure of that comple
based on the Husimi distribution function,rH5^zuruz&,
called ‘‘classical entropy’’ or Wehrl entropy@33# and that is
given by

S~rH!5E dm~z!rHln rH . ~29!

However, it is difficult to determine the above quantity d
to the presence of the logarithmic function. Therefore, f
lowing a recent proposal@34#, we consider inverse of the
‘‘second moment of the Husimi function’’W2(rH) as a mea-
sure complexity of quantum states. This measure is defi
as

W2~rH!5
1

M2~rH!
, ~30!
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where

M2~rH!5E dm~z!rH
2 . ~31!

The quantityW2 represents the effective phase space oc
pied by the Husimi function of the stater and its unit is
Planck’s cell volume. We note that a similar kind of quanti
based on the Wigner function, has been introduced and s
ied as a measure of the complexity of quantum states
phase space@35# many years ago.

We can now define a quantityDNeff[W2(rH)/N as the
fraction of the total number of Planck cells (N52 j 11) oc-
cupied by the stater. Since the total number of Planck cel
is equal to the Hilbert space dimension, we can defineDNeff
also as the rough measure of the fraction of the Hilbert sp
occupied by the above state. The above definitions ofDNeff
are valid for the single top. For the coupled tops, phase sp
is four dimensional. Here, we can defineDNeff for any one of
its subspaces. However, the only difference between th
two cases is thatr is a pure state for the single top where
for the coupled tops,r is a mixed state. Here we have stu
ied the time evolution ofDNeff for the single top and also fo
the coupled tops.

A. Single top

In the single top case, we have again considered SU~2!
coherent stateuc(0)&5uu0 ,f0&, which we have already de
fined in Eq.~12!, as the initial state. We have constructed th
state at the point (u0 ,f0)5(0.89,0.63), and evolved it with
repeated applications of the single top evolution operatorU.
The time evolution operatorU, defined between two con
secutive kicks, is given as

U5expS 2 i
p

2
JyDexpS 2 i

k

2 j
Jz

2D . ~32!

For the single top case,DNeff at timen is

DNeff5
1

~2 j 11!M2@ uc~n!&]
,

where

M2@ uc~n!&] 5E dm~z!u^zuc~n!&u4 ~33!

anduc(n)&5Unuc(0)&. In Fig. 2, we have shown time evo
lution of DNeff for different k values. Fork51.0, the initial
state is inside the elliptic region, and therefore, time evo
tion of this state is governed by the elliptic orbits on which
is initially placed. Since the evolution of this state is in som
sense trapped by the elliptic orbits, it has little or no acces
many parts of the phase space. Consequently, the maxim
value ofDNeff is very small. After reaching its maxima, ther
are many oscillations in the time evolution ofDNeff due to
partial and full revival of the time evolving stateuc(n)&.
This particular issue of quantum revival of the time evolvi
state in such mixed systems warrant a separate study. No
1-6
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k52.0, the initial state is inside a stochastic layer presen
the separatrix and consequently its dynamics is restricted
and large to be inside that stochastic layer. Naturally, for
case, the maxima ofDNeff is again small. Fork53.0, the
phase space is of a truly mixed type, with a significant m
sure of chaotic orbits. In this case, the initial state is ins
the chaotic region. Therefore, time evolution of this state
governed by the chaotic dynamics and this state has ac
over chaotic region of the phase space. Since the size o
chaotic region is large, hence the maxima ofDNeff is larger
(;0.35). Whenk56.0, the phase space is mostly cover
by the chaotic region, with few visible tiny regular island
The time evolving state has now almost full access over
phase space. However, we observed thatDNeff reaches maxi-
mum around 0.5 and then fluctuates around that value. T
means, for this strong chaotic case, the time evolvingpure
state has access over only half of the phase space. This
cal behavior ofDNeff for strongly chaotic case can be e
plained by RMT in the following way.

In the angular momentum basis$um&%,

M2@ uc~n!&] 5(
i ,k

(
l ,m

^ i uc~n!&^c~n!uk&^ l uc~n!&

3^c~n!um&E dm~z!^zu i &^kuz&^zu l &^muz&.

~34!

After performing the above integral~see Appendix B!,

FIG. 2. Evolution ofDNeff is presented for the single top. Fo
the nonchaotic cases (k51.0 andk52.0), denoted by solid and
dotted line, respectively, maximum value ofDNeff is very less. That
means, the time evolving state has very little access over the p
space. However, for chaotic cases (k53.0 andk56.0), maximum
value of DNeff is also not large. For the strongly chaotic casek
56.0), the average value of the maxima is about 0.5.
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M2@ uc~n!&] 5(
i ,k

(
l ,m

^ i uc~n!&^c~n!uk&^ l uc~n!&

3^c~n!um&F~2 j ; i ,k,l ,m!d i 1 l ,k1m , ~35!

where

F~2 j ; i ,k,l ,m!5
2 j 11

~4 j 11!!
AS 2 j

j 2 i D S 2 j

j 2kD S 2 j

j 2 l D S 2 j

j 2mD
3~2 j 2 i 2 l !! ~2 j 1 i 1 l !. ~36!

Let us assume, in the angular momentum basis,

uc~n!&5(
m

cmum&. ~37!

In Fig. 3, we have presented the distribution of the real a
the imaginary part of the coefficientscm . They are indeed
Gaussian distributed random numbers. Moreover, in this
ure, we have also presented the distribution ofucmu2. This
figure shows thatucmu2 are exponentially distributed, which
is a typical property of the elements of a Gaussian unit
ensemble~GUE! distributed random vector. Therefore, w
can assume that the distribution of$cm% are GUE type. For

se FIG. 3. Distribution of the components of the time evolvin
state, evolving under strongly chaotic single top dynamics is p
sented. Top and middle windows are showing that the real and
imaginary part of the components of the time evolving state
Gaussian distributed random numbers withzeromean and the vari-
ance is 1/AN, whereN52 j 11 is the Hilbert space dimension o
the top. In this casej 580. Bottom window is showing that the
distribution of the square of the absolute values of the compon
of the time evolving state are exponentially distributed. This is
typical property of the components of a GUE distributed vect
Dotted line represents the Gaussian orthogonal ensemble~GOE!
distribution.
1-7
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GUE case, RMT average of a quantity identical
M2@ uc(n)# has been calculated in a recent paper@36#, and
according to that,

^M2@ uc~n!#&5
2

N11
, where N52 j 11, ~38!

where the angular bracket̂& represents RMT average
value. Using the above expression, we have

^DNeff&5
N11

2N
5

1

2 S 11
1

ND ~39!

and for largeN limit,

^DNeff&.0.5. ~40!

This is the saturation value ofDNeff , which was observed in
strongly chaotic casek56.0.

B. Coupled tops

In the preceding section, we have presented reduced
simi function technique to visualize the behaviors of the ti
evolving state of the coupled tops on any one of its s
spaces. However, to measure the complexity of this stat
any one of its subspaces, we have to defineDNeff in a sub-
space. We have definedDNeff for a given subspace as

DNeff5
1

~2 j 11!M2~r iH !
, ~41!

where

M2~r iH !5E dm~zi !^zi ur i uzi&, ~42!

and i 51,2 representing different subspaces. In Fig. 4,
have presented the time evolution of the above mentio
DNeff for different dynamics~differentk values! and for dif-
ferent coupling strengthse. When coupling strength is ver
weak (e51024), time evolution ofDNeff for different dy-
namics are practically identical to that which we have o
served in the case of single tops. Therefore, for this coup
strength, effect of the dynamics of one top on the other to
very small and two tops are very close to two uncoup
systems. For other coupling strengths, the maxima ofDNeff
has not changed much for the nonchaotic cases (k51.0, and
k52.0). Whene51023, for the chaotic cases (k53.0, and
k56.0), DNeff first reaches the saturation value which
observed in the case of single tops and then it increases
proximately linearly with time. However, for the strong
coupling (e51022), it is not possible to divide the time
evolution of DNeff , for the chaotic cases, into two distin
time regimes. In these cases,DNeff saturates at much highe
values than the maxima ofDNeff observed in single top. Fo
the strongly chaotic casek56.0, DNeff saturates at a valu
that is very slightly less than unity. This saturation ofDNeff
can be also explained by RMT, which we now proceed to
01620
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e
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In the angular momentum basis, second moment of
Husimi function of the reduced state, say for the first su
system, at timen is

M2~r1H!5(
i ,k

(
l ,m

~r1! ik~r1! lmE dm~z1!^z1u i &^kuz1&^z1u l &

3^muz1&. ~43!

After performing the above integral, we have

M2~r1H!5(
i ,k

(
l ,m

~r1! ik~r1! lmF~2 j ; i ,k,l ,m!d i 1 l ,k1m

~44!

whereF(2 j ; i ,k,l ,m) has already been given in Eq.~36!. If
we write down the above expression in the eigenbasis of
RDM r1, then we have

M2~r1H!5 (
a,b51

N

lalb(
i ,k

(
l ,m

^ i ufa&^fauk&^ l ufb&

3^fbum&F~2 j ; i ,k,l ,m!d i 1 l ,k1m

5(
a

la
2(

i ,k
(
l ,m

^ i ufa&^fauk&^ l ufa&

3^faum&F~2 j ; i ,k,l ,m!d i 1 l ,k1m ~45!

FIG. 4. Evolution ofDNeff corresponding to coupled kicked top
is presented. Solid lines and dotted lines are representing the re
corresponding to nonchaotic cases (k51.0 and k52.0, respec-
tively!. Dashed lines are representing the mixed case (k53.0) and
dash-dot lines are showing the results corresponding to stro
chaotic case (k56.0). The top window representing the results f
the stronger coupling strength (e51022), middle window is show-
ing the results for the intermediate coupling strength (e51023) and
the bottom window is for the weak coupling case (e51024).
1-8
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1 (
a,b

aÞb

lalb(
i ,k

(
l ,m

^ i ufa&^fauk&^ l ufb&

3^fbum&F~2 j ; i ,k,l ,m!d i 1 l ,k1m

[(
a

la
2Qaa

2 1 (
a,b

aÞb

lalbQab
2

where Qaa
2 5(

i ,k
(
l ,m

^ i ufa&^fauk&^ l ufa&

3^faum&F~2 j ; i ,k,l ,m!, ~46!

and Qab
2 5(

i ,k
(
l ,m

^ i ufa&^fauk&^ l ufb&

3^fbum&F~2 j ; i ,k,l ,m!, ~47!

where$la ,ufa&% are the eigenvalues and the eigenvectors
the RDM r1.

In Fig. 5, we have presented the distribution of the r
and the imaginary part of the components of the eigenvec
$ufa&% of the RDM r1. This figure shows that the real an
the imaginary part of$ufa&% are Gaussian distributed ran
dom numbers. Moreover, Fig. 5 also shows that the distri
tion of the absolute square of the components of$ufa&% is

FIG. 5. Distribution of the components of the eigenvectors
the RDM, corresponding to which entanglement production
reached the statistical bound. The top and the middle window sh
that the real and the imaginary part of the components of th
eigenvectors of RDM are Gaussian distributed random num
with zero mean and the variance is 1/AN. Here N52 j 115161.
The bottom window is showing that the distribution of the absol
square of the eigenvectors of the RDM are exponentially dist
uted. Therefore, the eigenvectors of the RDM are GUE distribu
Dotted line represents the GOE distribution.
01620
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GUE type. Therefore, from the recent calculation@36#, we
can again use RMT average values ofQaa

2 and Qab
2 to get

RMT average value ofM2(r1H) as,

^M2~r1H!&5
2

N11 K (
a

la
2 L 1

1

N11 K (
a,b

aÞb

lalbL
5

2

N11 K (
a

la
2 L 1

1

N11 F12K (
a

la
2 L G

5
1

N11 S 11K (
a

la
2 L D . ~48!

We know from our earlier work@15#,

K (
a

la
2 L 5

2N11

N212
. ~49!

Therefore, we have,

^M2~r1H!&5
1

N11 S 11
2N11

N212
D . ~50!

Hence,

^DNeff&5
1

N^M2~r1H!&
5

~N11!~N212!

N~N212N13!
. ~51!

In the largeN limit,

^DNeff&5
N11

N12
1OS 1

N2D &1.0. ~52!

This is the saturation value ofDNeff , which we have ob-
served in the strongly chaotic (k56.0) and strongly coupled
(e51022) case. We emphasize that this is nearly twice t
of pure states in a single top. Thus roughly speaking
effect of strongly coupling to another chaotic system doub
the phase space access of a state.

IV. NUMERICAL RESULTS

A. Classical phase space

In Fig. 1, we have presented the phase-space pictur
the single kicked top for different parameter values. Fok
51.0, as shown in Fig. 1~a!, the phase space is mostly co
ered by regular orbits, without any visible stochastic regi
Our initial wave packet, marked by a solid circle at the c
ordinate (0.89,0.63), is on the regular elliptic orbits. As w
further increase the parameter, regular region beco
smaller. Figure 1~b! is showing the phase space fork52.0.
Still the phase space is mostly covered by the regular reg
but now we can observe a thin stochastic layer at the se
ratrix. In this case, the initial wave packet is on the sepa
trix. For the change in the parameter value fromk52.0 to
k53.0, there is significant change in the phase space. Ak
53.0, shown in Figure 1~c!, the phase space is of a trul
mixed type. The size of the chaotic region is now very lar

f
s
s
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rs

e
-

d.
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with few regular islands. At this parameter value, the init
wavepacket is inside the chaotic region. Fig. 1~d! is showing
the phase space fork56.0. Now the phase space is mos
covered by the chaotic region, with very tiny regular islan
Naturally, our initial wave packet is in the chaotic region.

B. Time evolution of the quantum entanglement

In Fig. 6, we have presented our results for the entan
ment production in coupled kicked tops for the spinj 580.
As we go from top to bottom window, coupling strength
decreasing by a factor of ten. Top window corresponds te
51022, middle one is showing the results fore51023, and
the bottom window corresponds to the casee51024. For
each coupling strength, we have studied entanglement
duction for four different single top parameter values, who
corresponding classical phase-space picture has already
shown in Fig. 1.

1. Coupling eÄ10À2

Let us first discuss the case of stronger couplinge
51022, whose results are presented in Fig. 6~a!. It shows
that there exists a saturation ofSV for k51.0 andk52.0,
which are much smaller than the saturation value co
sponding to highly chaotic cases such as whenk56.0. The
saturation value ofSV for k56.0 is the statistical boundSV
5 ln(N)21

2.4.57 ~whereN5161), which can be understoo
from random matrix theory@15#. However fork53.0, corre-
sponding to a mixed classical phase space,SV is still less
than the above mentioned saturation value, indicating
influence of the regular regions.

FIG. 6. Time evolution of the von Neumann entropy in coupl
kicked tops is presented for different coupling strengths and
different underlying classical dynamics.~a! e51022. ~b! e
51023. ~c! e51024. Solid line representsk51.0, dotted line cor-
responds tok52.0, dashed line is fork53.0, and dash-dot line
representsk56.0.
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These two distinct behaviors of the entanglement satu
tion can be understood from the underlying classical dyna
ics. Fork51.0, the initial unentangled state is the product
the coherent wave packet placed inside the elliptic reg
@see Fig. 1~a!# of each top. This initially unentangled sta
will become more and more entangled under the repea
application of the coupled top unitary operatorUT . More-
over, if one observes the evolution of the reduced Hus
function corresponding to each top, then it can be seen
the initially localized wave packet starts moving along t
classical elliptic orbits on which it was initially placed an
simultaneously it also spreads along those orbits.

However, one can observe some initial oscillations in
entanglement production, which is due to the fact that
entanglement production is mostly determined by the spre
ing of the wave packet alongu direction. As we know
cosui5lim j→`(Jzi

/ j ), therefore the spreading of the wav

packet alongu direction determines how many eigenstates
Jzi

, which are also our basis states, are participating to c

struct the wave packet. Larger amount of spreading of
wave packet along theu direction causes greater number
basis states to participate in the wave packet. Moreover, c
pling between two tops is via interaction betweenJz1

and

Jz2
. Therefore, this interaction term will couple greater nu

ber of basis states and consequently leads to higher enta
ment.

Initially, the spreading of the wave packet sometimes m
become parallel to thef direction and therefore its spreadin
along u direction become less. Consequently, one can
serve a dip in the entanglement production. Finally, the w
packet spreads all over the elliptic orbits and the entan
ment production reaches its saturating maxima. In Fig. 7~a!,
we have shown the reduced Husimi function of the wa
packet corresponding to the maxima~saturation! of the en-
tanglement production. After reaching its saturation, th
are again many dips in the entanglement production. Th
dips are also due to the small spreading of the wave pa
along u direction. However, the localization of the wav
packet alongu direction are now happening due to fraction
or full revival of the wave packet. These revivals are actua
the single top behaviors which persists even under the in
action with other top. The quantum revivals of the wa
packet are interesting phenomena of any quantum sys
and therefore it requires separate study, especially in
rather more complex setting.

At k52.0, the center of the initial coherent state was
side the separatrix. Therefore, in its time evolution, t
spreading of the wave packet was restricted to be inside
separatrix region. Finally, the wave packet spread over
separatrix region, and the entanglement production arrive
its saturation. The corresponding reduced Husimi funct
has been shown in Fig. 7~b!. Moreover, the reduced Husim
function shows that even though the wave packet has sp
over the whole separatrix region, its spread is not unifo
The wave packet is strongly localized at the unstable per
4 orbit. This strong localization of the wave packet is also
single top behavior which may also warrant separate stu

r
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ENTANGLEMENT PRODUCTION IN COUPLED CHAOTIC . . . PHYSICAL REVIEW E 69, 016201 ~2004!
At k53.0 andk56.0, the initial wave packets were insid
the chaotic region. However, the saturation of the entan
ment production are different for these two cases. This
be understood as the phase space of the kicked top is m
mixed type fork53.0 than the casek56.0. Therefore, the
size of the chaotic region is less fork53.0 than its size
corresponding tok56.0. Consequently, the wave packet c
spread over less of the phase space fork53.0 thank56.0.
In Fig. 7~c!, we have shown the spreading of the wave pac
corresponding to this case. Atk56.0, since the phase spac
is almost fully chaotic, the wave packet can spread over
most whole phase space. In Fig. 7~d!, we have shown re-
duced Husimi function corresponding to this strongly chao
case.

As we know, there exists a universal bound on the
tanglement for chaotic cases and that bound is given by,
the von Neumann entropy, (SV)sat5 ln gN where g51/Ae
.0.6. Now a natural question is whether there exists
such bound on entanglement of the form lngN8, for the non-
chaotic cases such ask51.0 andk52.0. If there exists really
such an entanglement bound, then what is theN8 in terms of
N? We conjecture thatN8 is actually the effective dimensio
of the Hilbert space corresponding to those parameter val
i.e., N85Neff5DNeffN. Since we know the evolution ofSV
and of DNeff , we can determine the time evolution of th
factor g from the relation

g5
exp~SV!

N8
5

1

N Fexp~SV!

DNeff
G . ~53!

FIG. 7. Reduced Husimi functions of the time evolving sta
evolving underUT , are presented corresponding to the time
which the entanglement production is saturated.~a! k51.0: The
wave packet is spread over the elliptic orbits.~b! k52.0: The wave
packet is spread over the separatrix. It is also showing strong lo
ization at the unstable period-4 orbit.~c! k53.0: The wave packe
is spread over the whole chaotic region.~d! k56.0: At this param-
eter value, the phase space is mostly covered by the chaotic re
see Fig. 1. Consequently, the wave packet is spread over al
whole phase space.
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In Figs. 8 and 9, we have shown the evolution ofSV and
DNeff corresponding tok51.0 for different Hilbert space di-
mensions. Using the above relation, we determine the ev
tion of g for this k value and that is presented in Fig. 1
Initially there were some oscillations, later it fluctuates a
proximately aroundg.0.5220.54 for different Hilbert
space dimensions. The solid line is showing the aver
value ofg at the saturation region. Figs. 11 and 12 are sim
larly showing the evolution ofSV and of DNeff at k52.0
corresponding to different Hilbert space dimensions. In F

,
t

l-

on,
ost

FIG. 8. Evolution of the von Neumann entropy, correspond
to the parameter valuek51.0, are presented for different Hilbe
space dimensions (N52 j 11).

FIG. 9. Evolution ofDNeff , corresponding tok51.0, are pre-
sented for different Hilbert space dimensions.
1-11
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13, we have shown the evolution ofg for this case. This
figure is showing that at the saturationg.0.4020.43 for
different Hilbert space dimensions. At the saturation, the f
tor g is different for k51.0 andk52.0. This is essentially
due to the fact that atk51.0 andk52.0, two different kind
of dynamics are responsible for the spreading of the w
packet on phase space. Atk51.0, the wave packet ha
spread over the regular elliptic orbits, whereas atk52.0 the
wave packet has spread over a thin stochastic layer prese

FIG. 10. Evolution of the factorg are presented for differen
Hilbert space dimensions. This factor has been calculated num
cally using Eq.~53!. Herek51.0.

FIG. 11. Evolution of the von Neumann entropy, correspond
to the parameter valuek52.0, are presented for different Hilbe
space dimensions.
01620
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the separatrix. Even though we may not expect any univ
sality in the case of integrable or near-integrable cases,
have found that for a given coupling strength and for a giv
classical dynamical behavior, the factorg is more or less the
same for different Hilbert space dimensions.

2. Coupling eÄ10À3

Entanglement production corresponding to this coupl
strength has been presented in Fig. 7~b!. For the nonchaotic
cases (k51.0 andk52.0), the saturation value of the en

ri-

g

FIG. 12. Evolution ofDNeff , corresponding tok52.0, are pre-
sented for different Hilbert space dimensions.

FIG. 13. Evolution of the factorg are presented for differen
Hilbert space dimensions. This factor has been calculated num
cally using Eq.~53!. Herek52.0.
1-12
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ENTANGLEMENT PRODUCTION IN COUPLED CHAOTIC . . . PHYSICAL REVIEW E 69, 016201 ~2004!
tanglement production is less than the entanglement sa
tion observed in the stronger coupling case (e51022). For
weaker coupling, the influence of one subsystem on the o
subsystem becomes less, and the individual subsystem
have more like isolated quantum systems. Conseque
pure quantum effects play dominant role in the evolution
the wave packet. In Fig. 14, we have shown reduced Hus
function for k51.0 andk52.0 at the timen5384 when the
entanglement production saturated. Fork51.0, the reduced
Husimi function is showing that the wave packet has spr
over the elliptic orbits, but not uniformly.

Now for k52.0, at the entanglement saturation, the wa
packet has spread as usual over the whole separatrix re
Moreover, it also shows localization at the same unsta
period-4 orbit. However, the difference is that the wa
packet is now more localized at a particular periodic point
that period-4 orbit which was very close to the initial wa
packet. As we have seen in Fig. 4~b!, within our observa-
tional time (n51000), DNeff has not reached any saturatio
value for the mixed and as well as for the chaotic cas
Moreover, for the strong chaos case,k56.0, theDNeff was
well short of unity even after the observational time a
consequently the wave packet has not got access over w
Hilbert space within this time of observation. Therefore, t
entanglement production is well short of the known stati
cal bound ln(N)21

2.

3. Coupling eÄ10À4

The entanglement production for this very weak coupl
regime has been presented in Fig. 7~c!. The entanglemen
production for this weak coupling has recently been
plained by perturbation theory@16#. However, the formula
for the entanglement production presented in that work is
valid for arbitrarily long times. In the following section w
have presented an approximate formula for the entanglem
production in coupled strongly chaotic systems. This form
explains the entanglement production for the casek56.0.
Here we have also observed that entanglement productio
much larger for the nonchaotic cases than the chaotic ca
Rather, we can say that, for weakly coupled cases, the p
ence of chaos actually suppresses entanglement produc

FIG. 14. Reduced Husimi functions of the time evolving wa
packet are presented corresponding to the timen5384 at which the
entanglement production gets saturated.~a! k51.0. The wave
packet is spread over the elliptic orbits, but the spreading is
uniform. ~b! k52.0. The wave packet is spread over the separa
and shows strong localization on the unstable period-4 orbit. H
e51023.
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V. ENTANGLEMENT PRODUCTION IN COUPLED
STRONGLY CHAOTIC SYSTEM

Due to the relatively simple form ofSR , the linear en-
tropy, it is easier to derive an approximate formula for
time evolution. Here we present an analytical formalism
the time evolution ofSR in coupled strongly chaotic system

Let us assume, the initial state is a product state, given
uc(0)&5uf1(0)& ^ uf2(0)&, where uf i(0)& ’s are the states
corresponding to individual subsystems. In general, the t
evolution operator of a coupled system is of the formU
[UeU05Ue(U1^ U2), whereUe is the coupling time evo-
lution operator andUi ’s are the time evolution operators o
the individual subsystems. Furthermore, we have assum

Ue5exp~2 i eH12!, ~54!

whereH125h(1)
^ h(2), and h( i ) are Hermitian local opera

tors. For simplicity, we derive our formalism in the eigenb
sis of h( i )’s, i.e., h( i )uea

( i )&5eauea
( i )&, where$ea

( i ) ,uea
( i )&% are

the eigenvalues and the corresponding eigenvectors ofh( i ).
The one step operation ofU on uc(0)& will give

^ea
(1) ,eb

(2)uc~1!&5exp~2 i eea
(1)eb

(2)!^ea
(1)eb

(2)uc0~1!&,
~55!

where uc(1)& is the time evolving state of the full couple
system at timen51 and uc0(1)& is the same for the un
coupled system. From the above expression, one can ge
RDM corresponding to one subsystem by tracing over
other subsystem. The RDM corresponding to the first s
system is given by

@r1~1!#ab5^ea
(1)ur1~1!ueb

(1)&

5(
g

^ea
(1) ,eg

(2)uc~1!&^c~1!ueb
(1) ,eg

(2)&

5(
g

exp@2 i e~ea
(1)2eb

(1)!eg
(2)#^ea

(1) ,eg
(2)uc0~1!&

3^c0~1!ueb
(1) ,eg

(2)&. ~56!

Here we now assume thatuc0(1)& is a random vector. Con
sequently we can further assume that the component
uc0(1)& are uncorrelated to the exponential term coming d
to the coupling. Hence we have

@r1~1!#ab.
1

N (
g

^ea
(1) ,eg

(2)uc0~1!&^c0~1!ueb
(1) ,eg

(2)&

3(
d

exp@2 i e~ea
(1)2eb

(1)!eg
(2)#

5
1

N
@r10~1!#ab(

g
exp@2 i e~ea

(1)2eb
(1)!eg

(2)#,

~57!

ot
ix
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whereN is the Hilbert space dimension of the first subsyst
andr10 is the density matrix corresponding to the uncoup
top. If we proceed one more time step, then at the timn
52 we have

@r1~2!#ab.
1

N
up~e!u2@r10~2!#ab(

g
exp@2 i e~ea

(1)2eb
(1)!#

where

p~e!5
1

N2 (
a,b

exp~2 i eea
(1)eb

(2)!. ~58!

If we use the above assumptions upto any arbitrary timen,
we obtain

@r1~n!#ab5
1

N
up~e!u2(n21)@r10~n!#ab

3(
g

exp@2 i e~ea
(1)2eb

(1)!eg
(2)#. ~59!

From the above expression, it is straightforward to calcu
linear entropy and that is given as,

SR~n!.12
1

N4
up~e!u4(n21)

3(
a,b

(
g,d

exp@2 i e~ea
(1)2eb

(1)!~eg
(2)2ed

(2)!#.

~60!

This is a general result, applicable to any coupled stron
chaotic systems of the formUe(U1^ U2). Moreover, this
result is valid for long time.

For the coupled kicked topsH125Jz1
^ Jz2

/ j . Therefore,
for this particular system, the above formula would beco

SR~n!.12
1

N4
p~e!4(n21)

3 (
m1 ,n152 j

1 j

(
m2 ,n252 j

1 j

expF2 i
e

j
~m12n1!~m22n2!G ,

where

p~e!5
1

N2 (
m1 ,m252 j

1 j

expS 2 i
e

j
m1m2D and N52 j 11.

~61!

In largej limit, we can substitute above sums by approxim
integrals and then performing those integrals we get~for de-
tails, see Appendix C!,
01620
d

te

ly

e

e

SR~n!.12p~e!4(n21)F 2

N H 11
Si~2Ne!

e J 2S 1

Ne D 2

3$12cos~2Ne!1Ci~2Ne!2 ln~2Ne!2g%G
where

p~e!.
2

N F11
1

e
SiS Ne

2 D G . ~62!

The functions Si and Ci are the standardsine-integraland
cosine-integral function, respectively, while g
50.577 216 . . . is theEuler constant. In the above deriva
tion we have not assumed, unlike the perturbation the
@16#, any particular order of magnitude of the couplin
strengthe. Therefore, as we demonstrate below, the abo
formula is applicable for nonperturbative coupling streng
as well.

In Fig. 15, we have shown the numerical result of t
linear entropy (SR) production in the coupled tops where th
individual tops are strongly chaotic. Here we have cons
ered many initial coherent states at different parts of
phase space and presented the linear entropy production
eraged over all these initial states, with time. In all our p
vious calculations we only considered the entanglement p
duction on coupling identical tops, therefore, permutat
symmetry was present. As in the above derivation, we h
not assumed any special symmetry property, we break
mutation symmetry by taking slightly nonidentical tops wi
k56.0 for the first top andk56.1 for the second top.

Figure 15 demonstrates that our theoretical estimation,
noted by the solid curve, is not only valid for weak couplin

FIG. 15. Evolution of the linear entropy for the coupled strong
chaotic system is presented. The dotted line is the numerical re
of the coupled kicked tops system. We choosek56.0 for the first
top andk56.1 for the second top. The solid line is the theoretic
estimation, given by Eq.~62!.
1-14
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ENTANGLEMENT PRODUCTION IN COUPLED CHAOTIC . . . PHYSICAL REVIEW E 69, 016201 ~2004!
case such ase51024 but it also valid for sufficiently strong
coupling cases such ase51022. Moreover, this formula is
applicable for very long times. If we consider weak coupli
approximation, i.e.,j e!1, then the above formula will be
come approximately

SR~n!.
2e2 j 2

9
~n21!1O~e3 j 3!. ~63!

Therefore, at this weak coupling approximation, the e
tanglement production rate is 2e2 j 2/9, which has been cal
culated in a recent publication@16# by very different means

VI. SUMMARY

In this paper, our major goal was to study entanglem
production in coupled kicked tops. Single kicked top is
well studied model of both classical and quantum chao
system. The classical map corresponding to coupled kic
tops was presented in a previous publication, but was un
tunately incorrect. Hence, we have presented the correct
sical map corresponding to the coupled kicked tops whic
canonical. In the quantum case, we have studied the red
Husimi function to visualize the behavior of the wave pac
of a coupled system in any one of its subspaces. We h
also studied a phase-space based measure of complex
the time evolving state~denoted byDNeff), which quantify
the fraction of the total number of the Planck cells occup
by the Husimi function of a given state. As we have alrea
mentioned that, for kicked top, this quantity is also appro
mately equal to the fraction of the Hilbert space occupied
a given state. We have studied this quantity for both sin
and coupled tops. It has been observed that, for the si
top, the time evolving state can occupy maximum, in av
age,half of the total number of the Planck cell, i.e.,DNeff
50.5, and this happened for the strongly chaotic cases.

For nonchaotic and mixed cases, the time evolving s
occupies even less number of Planck cells and it is refle
in smaller values ofDNeff . Following a recent result, usin
RMT, we have explained the fact thatDNeff50.5 for the time
evolving state corresponding to strongly chaotic single t
However, when a strongly chaotic top is strongly coupled
another such top,DNeff corresponding to any subsyste
reaches very close tounity. We have again explained this b
means of RMT calculations.

Then we studied entanglement production in coup
kicked tops for different underlying classical dynamics of t
individual top and also for different coupling strengths. W
find, in general, entanglement production is higher for str
ger chaotic cases. Moreover, coupling strength between
tops is also an important parameter for the entanglement
duction. For example, when the coupling strength betw
two tops is very weak, we find that entanglement product
is higher for sufficiently long time corresponding to nonch
otic cases. Finally, we have derived an approximate form
based on the ideas of RMT, for the entanglement produc
in coupled strongly chaotic system. This formula is app
cable, unlike perturbation theory, to large coupling streng
and is valid for sufficiently long times.
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APPENDIX A: DERIVATION OF EQ. „8…

Let us define ladder operators,

J16[Jx1
6Jy1

, J115J12 ,

J11um1&5Cm1
um111& and J12um1&5Dm1

um121&,
~A1!

whereCm1
and Dm1

are known functions ofj and m1 and

um1& are the standard angular momentum basis states.
can writeJx1

5(J111J12)/2. Therefore,

Jx1
8 ^ I 25 1

2 UT
†~J11 ^ I 2!UT1 1

2 UT
†~J12 ^ I 2!UT , ~A2!

where the terms present at the right-hand side are the
mitian conjugate of each other. Therefore, it is sufficient
determine only one term. Here we will calculate the fi
term explicitly. We have

UT
†~J11 ^ I 2!5~U1^ U2!†U12

e†
~J11 ^ I 2!U12

e ~U1^ U2!.
~A3!

In um1 ,m2& basis,U12
e†

(J11 ^ I 2)U12
e is

^m1 ,m2uU12
e†

~J11 ^ I 2!U12
e un1 ,n2&

5expF i
e

j
~m12n1!m2G^m1uJ11un1&dm2n2

5expF i
e

j
~m12n1!m2GCn1

dm1 ,n111dm2n2

5expF i
e

j
m2GCn1

dm1 ,n111dm2n2
. ~A4!

The above expression can also be written as

^m1 ,m2uU12
e†

~J11 ^ I 2!U12
e un1 ,n2&

5^m1 ,m2uJ11 ^ expS i
e

j
Jz2D un1 ,n2&

⇒U12
e†

~J11 ^ I 2!U12
e 5J11 ^ expS i

e

j
Jz2D .

~A5!

Therefore,

UT
†~J11 ^ I 2!UT5~U1^ U2!†FJ11 ^ expS i

e

j
Jz2D G~U1^ U2!

5~U1
†J11U1! ^ FU2

†expS i
e

j
Jz2DU2G . ~A6!

Now
1-15
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U1
†J11U15U1

f †
U1

k†
J11U1

kU1
f

5U1
f †

J119 U1
f , where J11

9 [U1
k†

J11U1
k .

~A7!

In $um1&% basis,J119 can be written as

^m1uJ119 un1&5^m1uU1
k†

J11U1
kun1&

5expF i
k

2 j
~m1

22n1
2!G^m1uJ11un1&

5expF i
k

2 j
~m1

22n1
2!GCn1

dm1 ,n111

5expF i
k

j S n11
1

2D GCn1
dm1 ,n111

5^m1uJ11expF i
k

j S Jz1
1

1

2D G un1&

⇒J119 5J11expF i
k

j S Jz1
1

1

2D G .
~A8!

Therefore,

U1
†J11U15U1

f †
J11expF i

k

j S Jz1
1

1

2D GU1
f . ~A9!

The operatorU1
f is the rotation operator about they axis with

angle p/2, thereforeU1
f †

(Jx1
,Jy1

,Jz1
)U1

f 5(Jz1
,Jy1

,2Jx1
).

Hence we have

U1
†J11U15~Jz1

1 iJy1
!expF i

k

j S 2Jx1
1

1

2D G . ~A10!

Now we will calculate the other term of Eq.~A6!, i.e.,

U2
†expS i

e

j
Jz2DU2

5U2
f †

U2
k†

expS i
e

j
Jz2DU2

kU2
f

5U2
f †

expS i
e

j
Jz2DU2

f ~since @U2
k ,Jz2

#50!

5expS 2 i
e

j
Jx2D @since U2

f is rotation matrix#.

~A11!

Substituting all the above results in Eq.~A6!, we get
01620
UT
†~J11 ^ I 2!UT5~Jz1

1 iJy1
!expF i

k

j S 2Jx1
1

1

2D G
^ expS 2 i

e

j
Jx2D . ~A12!

By taking the Hermitian conjugate of the above expressi
we determine

UT
†~J12 ^ I 2!UT5expF2 i

k

j S 2Jx1
1

1

2D G~Jz1
2 iJy1

!

^ expS i
e

j
Jx2D . ~A13!

Substituting, last two expressions in Eq.~A2!, we will get
Eq. ~8!.

APPENDIX B: CALCULATION OF THE INTEGRAL
PRESENT IN EQS. „34… AND „43…

We know^muz&5^muu,f&, and using Eq.~12!, the above
mentioned integral becomes

2 j 11

4p
AS 2 j

j 2 i D S 2 j

j 2kD S 2 j

j 2 l D S 2 j

j 2mD
3E

u50

p E
f52p

p S 11tan2
u

2D 24 j S tan
u

2D 4 j 2 i 2k2 l 2m

3exp@2 if$~ i 1 l !2~k1m!%#sinududf. ~B1!

After performing thef integral, we get

~2 j 11!AS 2 j

j 2 i D S 2 j

j 2kD S 2 j

j 2 l D S 2 j

j 2mD d i 1 l ,k1m

3E
u50

p S cos
u

2D 4 j 12(i 1 l )11S sin
u

2D 4 j 22(i 1 l )11

du.

~B2!

Substitutingh5u/2, we get

2~2 j 11!AS 2 j

j 2 i D S 2 j

j 2kD S 2 j

j 2 l D S 2 j

j 2mD d i 1 l ,k1m

3E
h50

p/2

~sinh!4 j 22(i 1 l )11~cosh!4 j 12(i 1 l )11dh.

~B3!

The above integral is ab integral, and therefore we get

~2 j 11!AS 2 j

j 2 i D S 2 j

j 2kD S 2 j

j 2 l D S 2 j

j 2mDb@$~2 j 11!

2~ i 1 l !%,$~2 j 11!1~ i 1 l !%#d i 1 l ,k1m. ~B4!
1-16
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From the relation,b(m,n)5@G(m)G(n)#/G(m1n), we get

2 j 11

G~4 j 12!
AS 2 j

j 2 i D S 2 j

j 2kD S 2 j

j 2 l D S 2 j

j 2mDG$~2 j 11!

2~ i 1 l !%G$~2 j 11!1~ i 1 l !%d i 1 l ,k1m . ~B5!

We know that, for any integerm, G(m11)5m!. Using this
01620
relation the above expression will be equal to Eqs.~35! and
~44!.

APPENDIX C: CALCULATION OF EQ. „62…

Let us first calculate the sum present in the expression
p(e). That sum can be simplified in the following way:
(
m1 ,m252 j

1 j

expS 2 i
e

j
m1m2D5

2N21

N2
1

1

N2 F (
m151

j

(
m251

j

expS 2 i
e

j
m1m2D1 (

m152 j

21

(
m251

j

expS 2 i
e

j
m1m2D

1 (
m151

j

(
m252 j

21

expS 2 i
e

j
m1m2D1 (

m152 j

21

(
m252 j

21

expS 2 i
e

j
m1m2D G

5
2N21

N2
1

2

N2 F (
m1 ,m251

j

expS i
e

j
m1m2D1 (

m1 ,m251

j

expS 2 i
e

j
m1m2D G

5
2N21

N2
1

4

N2
Re (

m1 ,m251

j

expS i
e

j
m1m2D , ~C1!

where Re is denoting the real part. Now we definex[m1 / j , y[m2 / j andd[1/j , whered→0 in largej limit. We can convert
the above sum into an integral in the largej limit as

j 2 lim
d→0

E
x5d

1 E
y5d

1

dx dycos~ j exy!5 j 2 lim
d→0

E
x5d

1 sin~ j ex!

j ex
dx5

j

e
Si~ j e! ~C2!

In the largej limit, N52 j 11.2 j , therefore

p~e!.
2N21

N2
1

2

Ne
SiS Ne

2 D . ~C3!

If we neglectN22 term, then we get

p~e!.
2

N
F 11

SiS Ne

2 D
e

G . ~C4!

Let us now calculate the bigger sum@see Eq.~61!#. If we definel 1[m12n1 and l 2[m22n2, then this sum will become

(
l 1 ,l 252M

1M

~N2u l 1u!~N2u l 2u!expS 2 i
e

j
l 1l 2D , whereM52 j 5N21,

52N (
l 152M

1M

~N2u l 1u!1 (
l 152M

l 1Þ0

1M

(
l 252M

l 2Þ0

1M

~N2u l 1u!~N2u l 2u!expS 2 i
e

j
l 1l 2D

54N2M14Re (
l 1 ,l 251

M

~N2 l 1!~N2 l 2!expS i
e

j
l 1l 2D

54N2M14N2Re (
l 1 ,l 251

M

expS i
e

j
l 1l 2D28NRe (

l 1 ,l 251

M

l 1expS i
e

j
l 1l 2D14Re (

l 1 ,l 251

M

l 1l 2expS i
e

j
l 1l 2D . ~C5!
1-17
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We can write the first sum of the above expression as

(
l 1 ,l 251

M

expS i
e

j
l 1l 2D5 (

l 1 ,l 251

M

expS i
2e

M
l 1l 2D . ~C6!

This sum is similar to the sum which we have calculated
derive p(e), see Eq.~C1!. Therefore, using this previou
result, we get the above sum as

(
l 1 ,l 251

M

expS i
e

j
l 1l 2D.

M

2e
Si~2Me!. ~C7!

Now

Second sum5Re (
l 1 ,l 251

M

l 1expS i
e

j
l 1l 2D

.M3 lim
d→0

E
x5d

1 E
y5d

1

x cos~2Mexy!dxdy

.
M2

2e E0

1

sin~2Mex!dx.
M

4e2
@12cos~2Me!#.

~C8!
-

hy

et

o

o

e

,

g,

01620
o

Third sum5Re (
l 1 ,l 251

M

l 1l 2expS i
e

j
l 1l 2D

.M4 lim
d→0

E
x5d

1 E
y5d

1

dxdyxycos~2Mexy!

.
M3

2e
lim
d→0

F E
x5d

1

sin~2Mex!dx

1E
x5d

1 cos~2Mex!21

2Mex
dxG

.
M2

4e2
@12cos~2Me!1Ci~2Me!2 ln~2Me!2g#.

~C9!

For largej limit, M.N and therefore substituting above r
sults in Eq.~C5!, we will arrive at Eq.~62!.
ys.
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