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Entanglement production in coupled chaotic systems: Case of the kicked tops
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Entanglement production in coupled chaotic systems is studied with the help of kicked tops. Deriving the
correct classical map, we have used the reduced Husimi function, the Husimi function of the reduced density
matrix, to visualize the possible behaviors of a wave packet. We have studied a phase-space based measure of
the complexity of a state and used random matrix théBRIMT) to model the strongly chaotic cases. Extensive
numerical studies have been done for the entanglement production in coupled kicked tops corresponding to
different underlying classical dynamics and different coupling strengths. An approximate formula, based on
RMT, is derived for the entanglement production in coupled strongly chaotic systems. This formula, applicable
for arbitrary coupling strengths and also valid for long time, complements and extends significantly recent
perturbation theories for strongly chaotic weakly coupled systems.
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[. INTRODUCTION rise to some unusual combination of quantum signatures of
chaos and of integrabilit}6]. The error due to the presence
A quantum mechanical system, which consists of at leasdf chaos in a quantum computer can also be corrected by
two interacting subsystems, has an unique property calledrror correcting codes, but the presence of chaos enhances
‘entanglement[1]. This property is unique in the sense thatthe complexity and hence much more error correction is
even if we know the exact state of the system, it is in generaheeded[8]. Therefore, the knowledge of the presence and
not possible to assign any pure state to the subsystems. Eaffects of chaos in a quantum computer is necessary to
tanglement is a nonclassical correlation among the subimplement proper error correcting codes. Very recently, the
systems which exists even between spatially well separatdsehavior of quantum entanglement during the operation of
subsystem$2]. This unique property of a quantum system an efficient algorithm for quantum chaos have been studied
has been characterized as a quantum resource for quantyel. However, here we are interested at a more basic level to
information theory and quantum computaticdj. Moreover,  study the effect of the underlying classical dynamics on en-
guantum entanglement has also been studied extensivefgnglement production.
from the decoherence point of view. It has been argued that a Recently, several studies have explored this que$fior
quantum system in the presence of an “environment” canl8]. The first one studied the entanglement production in an
loose its coherence and behave more like a classical systeNtatom Jaynes-Cummings moddl0], and they found that
[4]. the entanglement rate was considerably enhanced if the ini-
A quantum computer is a collection of many interactingtial wave packet was placed in a chaotic region. They also
particles. Such a many-particle structure may be prone targued that their results support an earlier conjecture which
problems of decoherence and chaos. Decoherence can cregtedicted that the entanglement production in a chaotic sys-
some errors in the operation of a quantum computer, howtem, coupled to an environment, would be more than the
ever, these errors, in principle, can be removed by quantumegular systen{19]. According to that conjecture, the en-
error correcting codef3]. On the other hand, the problem tanglement production rate would be higher for a chaotic
due to chaos has recently attracted some attention. It haystem coupled to an environment. For ti@tom Jaynes-
been shown that residual, uncontrolled interaction betwee@ummings model, each atomic subsystem plays the role of
the particles might induce quantum chaos in the quantunan environment for the other. Later, it has been shown that
computer if the interaction strength crosses certain criticalarge entanglement production rate is not the hallmark of a
limits and consequently, it may destroy the operational connonintegrable systerhll]. Even in the integrabléN-atom
dition of the quantum comput¢b]. Besides quantum chaos Jaynes-Cummings model some special initial coherent states
can also emerge during the implementation of some quantumxhibit strikingly similar entanglement production as corre-
algorithms[6]. Obviously, a quantum algorithm which simu- sponding to the chaotic cag&2].
lates a quantum chaotic system is by definition a unitary In another paper, the entanglement production rate has
operation showing quantum chaldd. However, it has been been related to the classical Lyapunov exponents with the
shown that well-known algorithms, such as Grover's searchhelp of a coupled kicked tops moddl3]. They also justified
algorithm and the quantum Fourier transform algorithm givetheir findings on the basis of the above mentioned conjecture
[19]. However, the classical limit of the coupled kicked tops
derived in this rather well-quoted work is incorrect, in fact it
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tanglement increased with coupling strength, but after a cemver, in this regime the entropy production rate becomes in-
tain magnitude of coupling strength corresponding to thedependent of the system-environment coupling strength.
emergence of complete chaos, the entanglement saturat&imilar results are also reported in Refg22,23. In other
[14]. Similar saturation of entanglement was also observedavork evidence has been presented that the decoherence rate
for a time evolving state, which was initially unentangled. (or entropy production rajeof a quantum system coupled to
This saturation value depended on the Hilbert space dimeran environment is governed by a quantity which is a measure
sion of the participating subsystems, and was less than itsf both the increasingly detailed structure of the quantum
maximum possible value. It was also pointed out that in analdistributions (Wigner function and classical phase-space
ogy with environment induced decoherence, the reducedistributions[24].
density matriceSRDMs) corresponding to subsystems of  Very recently, it has been reported that, in open quantum
fully chaotic systems are diagonally dominant. systems, there exists a universal scaling among the param-
Later, we derived the saturation value of the entanglemenrgters (effective Planck’s constant, measure of the coupling
using random matrix theorjl5]. Moreover, we presented a strength between system and environment, classical
universal distribution of the eigenvalues of the RDM’s, andLyapunov exponenin which the quantum-classical transi-
demonstrated that this distribution is realized in quantizedion of that system depend&5]. In another direction, deco-
chaotic systems by using the model of coupled kicked topsherence has been discussed in an open system coupled to a
Subsequently, an analytical explanation for the entanglememtonlinear environment with finite degrees of freedi@8]. It
production, based on perturbation theory, has been given favas found that even though the environment is finite dimen-
two weakly coupled strongly chaotic systefi$]. The au-  sional, the strong nonlinearity of it can destroy the quantum
thors also found that increase in the strength of chaos doesherence. Hence there is a possibility to utilize this finite
not enhance the entanglement production rate for the case dimensional chaotic system as a model of environment, in-
weakly coupled,strongly chaotic, subsystems. In a recent stead of infinite dimensional heat bath. The above possibility
work, entropy production in subsystems has been examineldlas also been discussed in a recent Wai. Naturally, this
as a dynamical criterion for quantum chddg]. It has been approach is closely linked to studies like the present one on
observed that the power spectrum of the entropy productiothe coupled kicked tops.
gets progressively broad banded with a progressive transition We have discussed two different approaches in the study
from regular to chaotic systems. More recently, entanglemerf entanglement production and decoherence in chaotic sys-
production has been investigated in a class of quantum Bakems. First approach was to study the entanglement produc-
er’'s map[18]. They also found that, in general, the quantumtion and decoherence in coupled chaotic systems by perform-
Baker’'s map is a good dynamical system to generate ering exact numerical calculation or using some model based
tanglement. on random matrix theoryRMT) and perturbation theory.
Besides these studies of entanglement production and d&he second approach was mainly based on approximate mas-
coherence in coupled chaotic systems, extensive studies hater equations. In this paper, following the first approach, we
been done on decoherence of chaotic systems that almve studied entanglement production in coupled kicked
coupled to an environment. These studies were mainly matops. We have considered the entanglement production for
tivated by the fact that decoherence induces a transition frorhoth chaotic and regular cases. Besides considering the effect
guantum to classicallike behavior and therefore, this decoef different kind of classical dynamics on quantum entangle-
herent approach can be utilized in a more straightforwardnent, we have also considered the effect of different cou-
way to restore the correspondence between a quantum chpling strengths on entanglement production. We have exten-
otic system and its classical counterpd®]. Irreversibility — sively studied a measure of the complexity of the time
is the price of this decoherent model for the restoration ofvolving state, based on the second moment of the Husimi
guantum-classical correspondence in a quantum system. THignction of that state, corresponding to both single and
irreversibility causes entropy production in the system. It hagoupled tops. Using RMT, we have explained the behaviors
been conjectured, as already mentioned, that this entropgf this measure for strongly chaotic cases. We have then
grows linearly in time with a fixed rate determined by the derived an analytical formula for the entanglement produc-
Lyapunov exponents. tion in coupled strongly chaotic systems using RMT. This
This conjecture has been tested for several model opeformula is applicable for any coupling strength and it also
guantum chaotic systems. It has been shown that the entropplid for sufficiently long time.
production rate, as a function of time, in a quartic double This paper consists of six sections. In Sec. Il we have
well with harmonic driving coupled to a sea of harmonic discussed the quantum and classical properties of coupled
oscillators has at least two distinct regimé9]. For short  kicked tops. We have presented the correct classical map of
times this rate is proportional to the system-environmenthe coupled kicked tops. We have discussed the initial states
coupling strength, and for longer times there is a regimeused and have defined the measures of entanglement used
where this rate is determined by the Lyapunov exponent. Imere. Finally, we have concluded this section by discussing a
another work, the entropy production in Baker's map andmethod to visualize the wave packet of a coupled system on
Harper’'s map coupled to a diffusive environment is studiedthe phase space of a subsystem. In Sec. Ill we have consid-
[21]. A regime was found to exist where the entropy produc-ered a recently proposed method to measure the complexity
tion rate is determined by the system’s dynamical propertiesf a quantum state. Using this method, we have defined a
such as Lyapunov exponents, folding rates, etc., and moreneasure which quantifies the fraction of the total number of

016201-2



ENTANGLEMENT PRODUCTION IN COUPLED CHAOTT . .. PHYSICAL REVIEW E 69, 016201 (2004

Planck cells occupied by the Husimi function of a givenusing spin-spin interaction term with a coupling strength of
state, roughly speaking the amount of “phase space” that i%/j. All these angular momentum operators obey standard
filled by the Husimi. commutation relations. For the rest of the paper we will only
The Hilbert space dimension is the number of Planckconcentrate to the cagg = p,= w/2. This special choice of
cells, each of volum&Y, which fit into the total phase-space the angular frequencies will simplify both the quantum and
volume. In one dimension, d=1, then N classical maps. Sind? andJZi’s are four mutually commut-

=phase-space arém/The above mentioned measure of thejng operators, the simultaneous eigenvectors of these opera-
complexity of quantum states is also approximately equal tqors we take as our basis. In general, this basis is denoted by
the fraction of the Hilbert space occupied by the given statelj, m,:j,,my)=1j1.m)®|j,,m,), whereJ?[j; . m)=j(;

We have observed for the single top that a typical time 1)|j;,m;) and J,|j;,m)=milj;,m). The individual top
evolving state can occupy half of the total number of the naular momenturin' andi. could in aeneral be different
Planck cells, and this happens only for the strongly chaoti¢ gI]'he time evolutiosfr;l oper]affor defineg in between two cén-

cases. Whereas for a highly chaotic top coupled strongly to . . . . SR
another such top, the agoge measurepnowpfor the re%ic cutive kicks, corresponding to this coupled Hamiltonian is
' I Iven by

density matrix of each top, has reached a value very close {8
unity. We explain the behavior of this measure, using RMT, U-=US(U.®U.)=U (UUT @ (UkU" 5
for the strongly chaotic cases. For nonchaotic and mixed 1=UnU19Up)=Uid(Uihe (UeU2)], - ()
cases, the time evolving state occupies lesser number @fhere the different terms are given by,

Planck cells and is reflected in smaller values of this mea-

sure. - T . . )
In Sec. IV, we have presented the numerical results on the Ui=exp —i5Jy ], Ui=exg —i Z_j‘]zi ,
entanglement production. In Sec. V, we have derived an ap-
proximate formula, based on RMT, to explain the entangle- €
ment production in coupled strongly chaotic systems. Fi- izEeXF{ _'J-—leJzz), (6)

nally, we summarize in Sec. VI.

and as usual=1,2.
II. COUPLED KICKED TOPS

A. Quantum top B. Classical top

The single kicked top is a system, characterized by an 1he corresponding classical map of the coupled kicked
angular momentum vectdr=(J,,J, ,J;), where these com- tops discussed above can be obtained from the quantum de-

ponents obey the usual angular momentum algebra. We sSgription with the Heisenberg picture in which the angular
Planck’s constant to unity. The dynamics of the top is gov-MOMeNtum operators evolve as

erned by the Hamiltoniaf28] J(n+1):U$J(n)UT. @
Kk o . . .
H(=pJ+ —J2 St—n). 1 Now we have to determine the explicit form of this angular
(H=pJ, 2j Zn;w (t=n) @ momentum evolution equation for each component of the

angular momentum. Here we present the time evolution of
The first term describes free precession of the top arqund J, (see Appendix A
axis with angular frequency, and the second term is due to *
periodic 5-function kicks. Each such kick results in a torsion 1 k 1
aboutz axis by an angle proportional tb,, and the propor- JLIEUleUT:E(Jzﬁinl)eXF{i ]—( —Jyts
tionality factor is a dimensionless constaki®j. Now, to

study the entanglement between two tops, we consider the € 1 k 1 i
Hamiltonian of the coupled kicked tops which can be writ- ®exp 17y, |+ 5ex —lj— —Jyts (Jz,=1dy,)
ten, following Ref.[13], as
. €
H(H)=Ha(1)+ Hp(t) +Haa(1), @) ®exp( | ,—-JXZ)- ®

where The above expression differs from the coupled tops map pre-

_ sented in a previous publicati¢h3]. First, J, is now really
_ ki 1
Hi(t)=p;iJy + z—szi; o(t—n)j, (3 a Hermitian operator. Second, the terms which arise in the
above expression due to the interaction, conﬂaizmperator
€ instead onyz. We proceed by rescaling the angular momen-
Haalt)= JTleJZZ; o(t—n), @ um operator as X;,Y; ,Zi)E(JXi,in,JZi)/j, for i=1,2.
Components of this rescaled angular momentum vector sat-
wherei=1,2. HereH,(t)’s are the Hamiltonians of the in- isfy the commutation relations[X;,Y;]=iZ;/j,[Y;,Z;]
dividual tops, andH ,(t) is the coupling between the tops =iX;/j and[Z;,X;]=iY;/j. Therefore, inj—c° limit, com-
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ponents of this rescaled angular momentum vector will com-
mute and become classicatnumber variables. Conse-
quently, in this largg- limit, we obtain the classical map
corresponding to coupled kicked tops as

X1=2Z,C08A 1o+ Y SinA4,, (93
Y1=—2Z;SinA,+Y,C08A 5, (9b)
Z=—Xq, (90
X5=27,C08A 1+ Y,SinAyg, (9d)
Y= —Z,SiNA,;+ Y,C08A 5, (9¢)
Z,=—X,, (9f)

where

A]_ZE kX1+ GXZ and A21EkX2+ le. (10)

FIG. 1. Phase-space pictures of the single top, corresponding to

The difference between the map presented above and the Oferent parameter values, are presentél.k=1.0: The phase

which was derived in Ref13] “?S in the form of the_ angles space is mostly regulatb) k=2.0: The phase space is still very
A, andA,. How_ever, these dn‘ferenc_es are very important., ,cp, regular, but now a thin stochastic layer is visible at the sepa-
The above map is canonical. It satisfies all Poisson brackgkyix (c) k=3.0: The phase space is truly mixed type. Regular
relations such a$X{ ,Y{}=2{ {Y{,Z{}=X{ and{Z{ ,X{} elliptic islands are visible inside the chaotic regiéd). k=6.0: The
=Y, wherei=1,2, and Poisson brackets of any two dy- phase space is mostly covered by the chaotic region with few tiny
namical variables corresponding to different tops are equal telliptic islands. The solid circle is the point at which we will con-
zero. In contrast, the classical map presented in Re]  struct the initial wave packet.
satisfies the first three Poisson bracket relations, but the Pois-
son brackets of any two dynamical variables corresponding and the azimuthal anglep as X=sinfcos¢, Y
to different tops are nonzero and they are proportional to the=sinésin¢, and Z=cosé. In terms of these new & ¢)
coupling strengtte, implying that the map is canonical only variables, the above map looks very complicated, and there-
in the uncoupled limit. Moreover, this earlier publication re- fore we do not display that map. Moreover, during our nu-
lates the entanglement rate to the sum of the positivenerical iterations we use the above three-dimensional form
Lyapunov exponents, which were actually determined usin@f the map, and after every iteration we get back the corre-
the incorrect classical map. However, they considered vergponding @,¢) from the relations co8=Z and ¢
weak coupling €=10 %) among the tops and therefore the =tan *(Y/X), where co® and ¢ are the canonical coordi-
error in the calculation of the Lyapunov exponents was verynates on the sphere. In Fig. 1, we have presented the phase-
small, these being practically those of the uncoupled topsspace diagrams of the single top for different values of the
Hence we believe that the main conclusions presented in thgarameterk. For k=1.0 andk=2.0, the phase space is
paper are still valid. mostly occupied by regular orbits. As we further increase the
In the limit e—0, we will arrive at the map corresponding value ofk, we can see the well-known kolmogrou-Arnold-
to the single kicked top, whose Hamiltonian is given in Eq.moser scenario. Finally, &=6.0, the phase space is mostly

(1), and that map is given by covered by the chaotic sea, with very tiny islands. The dark
, ] circle, marking the point 4,¢)=(0.89,0.63) in all the
X'=Z coskX+Y sinkX, (118 phase-space diagrams, is representing the point at which we

will construct our initial wave packet. The quantities pre-

Y'=—ZsinkX+Y coskX, (11D sented in all the figures are dimensionless.

Z'=-X (119 C. Initial wave packet

The classical dynamics of the single top have been studied We use a generalized $2) coherent state or the directed
extensively in Refs[28,29 and is a well studied model of angular momentum staf@8] as our initial state for the in-

quantum chaos. From the above expressions, it is clear thdividual tops and this state is given jjym;) basis as

the variables X,Y,Z) lie on the sphere of radius unity, i.e.,

X?+Y?+2Z%=1. This constraint on the dynamical variables , v =i jemi | 2]

restricted the classical motion to the two-dimensional surface (1:mil 6o, o) =(1+[7]%) "1y~ j+m)’ (12

of a unit sphere. Following the usual procedure, we can pa- '

rametrize the dynamical variables in terms of the polar anglevhere y=exp(¢g)tan(6,/2). For the coupled top, we take
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the initial state as the tensor product of the directed angular S, (n)=—Try[p;(n)In p;(n)]=—Tr,[po(N)IN py(N)]
momentum state corresponding to individual tops. Now on, (17)
we will write |j,m;) as|m;) for notational simplification.

Explicitly in |m;) basis this initial product state can be writ- and

ten as[13] ) )
N Sr(N)=1-Try[p1(N)]=1-Try[p5(N)], (18
j
lp(0))=" >, (my,my|(0))|my,my) wherep, andp, are the RDMs corresponding to the first and
my.Mz="J the second top, respectively. In the eigenbasis of the RDM,
+]
— 1 1 2 42
_ml,%?j (M| 05, Po) (M| 65, do) My, my), sv(n):_Ei AN, (19)
(13
where(m;| 65, #p),i=1,2, can be obtained from E¢L2). SR(”)=1—Z N (20
Now we have the evolution|¢(n))=U+|/¢(n—1))
=U3[¢(n—2))=...=UZ¢(0)). Even though, the nu- \here),'s are the eigenvalues of the RDMs.

merical iteration scheme for the above evolutions have al-
ready been presented in REE3], here we again present that

E. Reduced Husimi function
for the sake of completeness. From Réf3], we have

Since the phase space of the coupled tops is four dimen-
€ sional (§?xS?), it is not possible to visualize the wave
(s1,82|9p(n)) = exp< —I J-_SlSZ) Z_ (s1|Uq|my) packet dynamics on such a phase space. Therefore, we use an
M Ma==) approximate numerical way to visualize the behavior of the
X(So|Uo|mo){my,my|s(n—1)), (14 time evolving statd#(n)) in any one of its subspaces. We
call this methodeduced Husimi functioand it is defined in
where the following way. Consider a state) in the angular mo-
mentum basi$m, ,m,), i.e.,

+j

Kealqn [T
(s1/U4|my)=ex —|2—js1 dgim, 5] (15
)= 2 am,m,|my,mg). (2D)
d{,, (w/2) is the Wigner rotation matrif30]: v

1 The Husimi function ofl ) is [(z1;2,|#)|?, where

_ Si—m 1 1/2 1
(2] )
T2 2! 1751 J+m, <21?22|‘/’>:m2m am,m,{Z1]M1)(Z5| M), (22)
i ) 1.2
1St 1+s;
XEk: (-1 K k+s,—my )’ (16) and|z)=|6;,¢;) are the directed angular momentum states

(atomic coherent stateNe define reduced Husimi function

The main problem in calculating the Wigner rotation matrix corresponding to first subspace,
lies in the calculation of the above sum. Defining that sum as

Vpm,, and starting fronV/_;=1 andV_;,,=2s;, we can get p1n(z1) = J (z4;2,] ) |2du(2,), (23)
the otherVml recursively by using the following relation z
[31]: wheredu(z,) is the Haar measure
(j—ml+l)Vm1,1—251le+(j+m1+1)Vm1+1=0. 2j+1
du(zy)= ?sinez do,do,. (29

Besides the Wigner rotation matrix can be expressed in terms
of Jacobi polynomials and of different hypergeometric func-
tions[32]. However, we have followed the above recursive
scheme.

Since the phase space of a kicked top is the surface of a
sphere of unit radius, the total phase space arearisiere-
fore for the kicked top whose Hilbert space dimensioNis
=2j+1, volume of the Planck cell is#/(2j+1). Hence
the above mentioned Haar measute(z) is equal to the

All the previous studies on the connection between ennumber of Planck cells present in the infinitesimal adea
tanglement and chaos, were based on pure states of bipartitesin gddd¢. The integration ofduw(z) over whole phase
system, where the von Neumann entrd@yand the Linear space will give total number of Planck celd=2j+1
entropy Sy of the RDMs were natural measures of entanglepresent in the whole phase space. One can also write the
ment. The definition of these entropies are: above expression, E€R3), as

D. Measures of entanglement
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INREZE

X(] 65, ¢,)sin 6, d 6, d¢2}|911¢1>- , ,
The quantityW, represents the effective phase space occu-
(25) pied by the Husimi function of the staie and its unit is
Planck’s cell volume. We note that a similar kind of quantity,
The above integral is just the partial trace of the densitybased on the Wigner function, has been introduced and stud-
matrix |)(¢] over the second subspace, and hence it giveied as a measure of the complexity of quantum states in
the RDM corresponding to the first subspace. Therefore, phase spacE35] many years ago.
We can now define a quantityN.s=W,(py)/N as the
p11(01,01)=(01,¢1]p1| 61, 1), (26)  fraction of the total number of Planck cellsl&2j +1) oc-

_ i cupied by the statp. Since the total number of Planck cells
wherep, is tlje. RDM _of t_he_ first subspgcg. Ther_efore, thejg equal to the Hilbert space dimension, we can defihg
reduced Husimi function s just the Husimi function of the 554 a5 the rough measure of the fraction of the Hilbert space
RDM. We can writep; =X, \i[€)(e;|, where\;'s are the  occpied by the above state. The above definitiona g
eigenvalues ofp; and |e;)’s are the corresponding eigen- are valid for the single top. For the coupled tops, phase space

where

2j+1
le(611¢1):<61-¢1| 4

Matpw)= | du(2)0f. (31

fore, its subspaces. However, the only difference between these
N two cases is that is a pure state for the single top whereas
_ 2 for the coupled topsp is a mixed state. Here we have stud-
= i O 2 . i : ;
piu(01. 1) 21 Nil(01, dalen) @ ied the time evolution ofA N for the single top and also for

the coupled tops.
Thus, the reduced Husimi function can also be expressed as
the weighted sum of the Husimi functions of the Schmidt A. Single top
vectors, where the weight factors are the eigenvalues of the , i )
RDM. Identically, we can define reduced Husimi function for N the single top case, we have again considere@5U

the second subspace, and is given by coherent staté(0))=|6q, $o), Which we have already de-
fined in Eqg.(12), as the initial state. We have constructed this

N state at the pointfj, $) =(0.89,0.63), and evolved it with
p2H(02,¢2)=z Nil{ 62, d,]di)?, (28)  repeated applications of the single top evolution operdtor
=1 The time evolution operatod, defined between two con-

. secutive kicks, is given as
where|d;)’s are the Schmidt vectors of the second subspace. g

A -ig]
ex —|2—sz . (32

For the single top casé\ N at timen is

T
Ill. SECOND MOMENT OF HUSIMI FUNCTION: A U :eXF’< 5y
MEASURE OF COMPLEXITY OF A QUANTUM STATE

Reduced Husimi function technique is useful for the visu-

alization of the behavior of the time evolving state on the 1
phase space. Moreover, we want a phase-space measure of ANgg= ST TIM ,
the complexity of any state to relate it with the entanglement. (2j+ ML [(n))]

There already exists a good measure of that complexi%lhere
based on the Husimi distribution functiomy=(z|p|z),
called “classical entropy” or Wehrl entropp83] and that is

given by M2[|<//(n)>]=f du(2)[(zlp(n)]* (33
S :f duw(2) ouln ou . 29 and|#(n))=U"¢(0)). In Fig. 2, we have shown time evo-
(Pr) w(2)puin py @9 lution of AN for differentk values. Foik=1.0, the initial

N ) i state is inside the elliptic region, and therefore, time evolu-
However, it is difficult to determine the above quantity duéjon of this state is governed by the elliptic orbits on which it
to the presence of the logarithmic function. Therefore, folig jnitially placed. Since the evolution of this state is in some
lowing a recent proposgiB4], we consider inverse of the ggnse trapped by the elliptic orbits, it has little or no access to
second moment of the Husimi functionN;(py) as a mea-  many parts of the phase space. Consequently, the maximum
sure complexity of quantum states. This measure is defineg,| o of AN, is very small. After reaching its maxima, there
as are many oscillations in the time evolution AN due to

partial and full revival of the time evolving states(n)).
W, (py) = ——, (30)  This particular issue of quantum revival of the time evolving

Ma(pp) state in such mixed systems warrant a separate study. Now at
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FIG. 2. Evolution ofANg is presented for the single top. For
the nonchaotic casek€ 1.0 andk=2.0), denoted by solid and |e2
dotted line, respectively, maximum value ®N is very less. That
means, the time evolving state has very little access over the phase FIG. 3. Distribution of the components of the time evolving
space. However, for chaotic casds<3.0 andk=6.0), maximum  state, evolving under strongly chaotic single top dynamics is pre-
value of AN is also not large. For the strongly chaotic cake ( sented. Top and middle windows are showing that the real and the
=6.0), the average value of the maxima is about 0.5. imaginary part of the components of the time evolving state are

Gaussian distributed random numbers wadromean and the vari-

nce is 1{N, whereN=2j+1 is the Hilbert space dimension of

k=2.0, the initial state is inside a stochastic layer present &g
yerp the top. In this casg=280. Bottom window is showing that the

thedslepar?trlg and gontie?u?nﬂ%/ Iti’ d?/namlf\ls ItS re”Strlfte?hbXIStrlbutlon of the square of the absolute values of the components
and large to be inside that stochastic layer. Naturally, for 1%f the time evolving state are exponentially distributed. This is a
case, the maxima aANey is again small. Fok=3.0, the  nical property of the components of a GUE distributed vector.

phase space is of a truly mixed type, with a significant meapotted line represents the Gaussian orthogonal ense(@lE)
sure of chaotic orbits. In this case, the initial state is insid&jistribution.

the chaotic region. Therefore, time evolution of this state is
governed by the chaotic dynamics and this state has access .
over chaotic region of the phase space. Since the size of the M| #(n)1=2 2 (i[y(m){y(n)[K)(I[(n))

. . ; . . i,k I,m
chaotic region is large, hence the maximaAdfl is larger
(~0.35). Whenk=6.0, the phase space is mostly covered X{p(n)|myF(2j;i,k,1,m) 841 kem, (35
by the chaotic region, with few visible tiny regular islands.
The time evolving state has now almost full access over th&here
phase space. However, we observed #idt reaches maxi- ) i i i i
mum around 0.5 and then fluctuates around that value. That 5. | 2j+1 \/( 2] ( 2] )( 2] )( 2] )
means, for this strong chaotic case, the time evolpoge (4j+1)! i—i/\j=k/\j=1)\j—m
state has access over only half of the phase space. This typi- o S
cal behavior ofANg for strongly chaotic case can be ex- X(2)=i=DHEj+itl). (36)
pleﬁ'gigebgnzm;'r:ﬂ?gggifg'gg%\;);}, Let us assume, in the angular momentum basis,

9(n)=2, crlm). (37)
M[[#(n))] =, (i) g(n)[K)(I ()

Lk Im In Fig. 3, we have presented the distribution of the real and
the imaginary part of the coefficients,. They are indeed
><<¢,(n)|m>f du(z){(z]i)(k|z){z]1){(m|z). Gaussian distributed random numbers. Moreover, in this fig-
ure, we have also presented the distribution@f|?. This
(34 figure shows thatc,,|? are exponentially distributed, which
is a typical property of the elements of a Gaussian unitary
ensemble(GUE) distributed random vector. Therefore, we
After performing the above integrésee Appendix B can assume that the distribution {af,,,} are GUE type. For

016201-7



J.N. BANDYOPADHYAY AND A. LAKSHMINARAYAN PHYSICAL REVIEW E 69, 016201 (2004

GUE case, RMT average of a quantity identical to 1

T
y
Il

M[|#(n)] has been calculated in a recent paf&8], and 0.8 ;i e E
according to that, 0.6 Iﬁf & E
5 0.4 H =

(Mallg(n)])= 77 Wwhere N=2j+1, (38 0.2 tf :

ANy Bt

- ey

where the angular bracket) represents RMT averaged 0-8 ey W.w,wfvvmr

value. Using the above expression, we have 0.6 wwﬂfwﬂ‘“ WWWW memw i Mwmwwwwwé
04 [ wlml '\', =
ANy =Ly 39 02’N s
< Eﬁ> 2N 2 N ( ) L Il 1 Il ‘ Il Il Il ‘ Il 1 1 | Il Il Il ‘ Il 1 Il E
ANéff F T T T ‘ T T T ‘ T T T | T T T ‘ T T T :
and for largeN limit, o8 E
0.6 F
_ e Jubg AR AL i W\mﬂw
(ANef)=0.5. (40 2: ]LW wf‘ww,}mbjt,lf\,ﬂ,,\ﬂw/ww JL' \Aww Ly mww/w ity end Mv’?VWVW—I*
This is the saturation value &N, which was observed in P " A
strongly chaotic cask=6.0. ANt o 200 400 600 800 1000
n
B. Coupled tops FIG. 4. Evolution ofAN corresponding to coupled kicked tops

us presented. Solid lines and dotted lines are representing the results
corresponding to nonchaotic casds=(1.0 andk=2.0, respec-
tlvely) Dashed lines are representing the mixed c&se3.0) and
.dash-dot lines are showing the results corresponding to strongly

In the preceding section, we have presented reduced H
simi function technique to visualize the behaviors of the time
evolving state of the coupled tops on any one of its sub-
spaces. However, to measure the complexity of this state IQhaotlc case=6.0). The top window representing the results for
any one of its subspaces, we have to defif in & sub-  he stronger coupling strengtia€ 10-2), middle window is show-
space. We have defineliNq for a given subspace as ing the results for the intermediate coupling strengtk (0~3) and

1 the bottom window is for the weak coupling case=(10"%).

ANeg= 57— (41)
2]+ DMa(pin) In the angular momentum basis, second moment of the
Husimi function of the reduced state, say for the first sub-
where system, at timen is
MZ(piH):f du(z)zlpilz), 42 Mz(le):% % (Pl)ik(pl)lmJ du(z1)(ze|i){K|zy)(za )
andi=1,2 representing different subspaces. In Fig. 4, we x(m|z,). (43)

have presented the time evolution of the above mentioned
AN for different dynamicgdifferentk values and for dif-
ferent coupling strengths. When coupling strength is very
weak (€=10"%), time evolution of ANy for different dy-
namics are practically identical to that which we have ob- Mz(le)zz > (pDik(PL)imF (2§51, K,1,mM) 841 kem
served in the case of single tops. Therefore, for this coupling ik 1,m

strength, effect of the dynamics of one top on the other top is (44)

very small and two tops are very close to two uncoupled

systems. For other coupling strengths, the maximaNfz  whereF(2j;i,k,I,m) has already been given in E@6). If

has not changed much for the nonchaotic cakesl(0, and we write down the above expression in the eigenbasis of the
k=2.0). Whene=10"3, for the chaotic casekE 3.0, and RDM p4, then we have

k=6.0), AN first reaches the saturation value which is

observed in the case of single tops and then it increases ap-

proximately linearly with time. However, for the stronger Mao(pin)= 2 ANahp 2 (il du)(balk)I| s

coupling (=10"2), it is not possible to divide the time ®p=1 b hm

gvolutiorj of ANgg, for the chaotic cases, into two di§tinct X( gl MF (251, k,1,M) 841 esm

time regimes. In these casesN . saturates at much higher

After performing the above integral, we have

values than the maxima &N observed in single top. For B 2 .

the strongly chaotic cade=6.0, AN saturates at a value ‘% )\“% % (i[§a)(dalk)I|ba)

that is very slightly less than unity. This saturationOf .¢ o

can be also explained by RMT, which we now proceed to do. X(po|MF(2j;i,k,1,m) 64+ kim (45)
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+ ;ﬁ Mkﬁ% % (ilda)(Dalk)(I| )

a#f
X<¢E|m>':(2] ;i!krlim)5i+|,k+m

EE )\iQia—’_ 2 )\a)\ﬁQiﬁ
o a,

a# 3

where Qifg ;ﬂ (i a) Dl K)I| Do
X(po|MYF(2);i,k,1,m), (46)
and Q2=2 > (il bu)(balk) (| bg)

i,k I,m

X{pglmF(2j;i,k1,m), (47)

8 T GUE type. Therefore, from the recent calculati@®], we
_6F 4 can again use RMT average values@f, and Q% to get
T4 3 RMT average value oM ,(p1y) as,

& o E 3
ot : Malpr)= s SA2)+ [ 3 A
2P T NTL\ 4 el TNFL| A et
a# 3
8 E 5 2 1
E 3 2
—_ = - - + — —
- E N+1<§)‘a> Nt <§)‘>}
S 4= —
e 3
C = __ - 2
0L E o1 1+<§a) xa> : (49
0.
- _ We know from our earlier work15],
2 o 3 2N+1
N ] A= : 49
= 50 E <§ “> N2+2 “9
0EL . T T e e
o 001 0.02 0.03 0.04 Therefore, we have,
2
e 1 2N+1
FIG. 5. Distribution of the components of the eigenvectors of (Mz(pan)) = N+ 1 1+ N2+2 ) (50)
the RDM, corresponding to which entanglement production has
reached the statistical bound. The top and the middle window showgjence,
that the real and the imaginary part of the components of these
eigenvectors of RDM are Gaussian distributed random numbers (ANg) (N+1)(N?+2) 51)
with zeromean and the variance is\IN. HereN=2j +1=161. eff) = N(M = 2 .
The bottom window is showing that the distribution of the absolute (Ma(p1n)) N(N®+2N+3)
square of the eigenvectors of the RDM are exponentially distrib-ln the largeN limit
uted. Therefore, the eigenvectors of the RDM are GUE distributed. '
Dotted line represents the GOE distribution. N+1
= — e
(ANgg) N+2+O NE =<1.0. (52

This is the saturation value dfNg, which we have ob-
served in the strongly chaoti& € 6.0) and strongly coupled
(e=10"?) case. We emphasize that this is nearly twice that
of pure states in a single top. Thus roughly speaking the
effect of strongly coupling to another chaotic system doubles
the phase space access of a state.

IV. NUMERICAL RESULTS
A. Classical phase space

In Fig. 1, we have presented the phase-space picture of
the single kicked top for different parameter values. kor
=1.0, as shown in Fig. (&), the phase space is mostly cov-
ered by regular orbits, without any visible stochastic region.
Our initial wave packet, marked by a solid circle at the co-
ordinate (0.89,0.63), is on the regular elliptic orbits. As we
further increase the parameter, regular region becomes

where{\,,|¢,)} are the eigenvalues and the eigenvectors osmaller. Figure (b) is showing the phase space fo«2.0.

the RDM p;.
In Fig. 5, we have presented the distribution of the reabut now we can observe a thin stochastic layer at the sepa-

and the imaginary part of the components of the eigenvectonstrix. In this case, the initial wave packet is on the separa-

{|#.)} of the RDM p,. This figure shows that the real and trix. For the change in the parameter value fr&m 2.0 to

the imaginary part of|¢,)} are Gaussian distributed ran- k=3.0, there is significant change in the phase spacé At

dom numbers. Moreover, Fig. 5 also shows that the distribu= 3.0, shown in Figure (t), the phase space is of a truly

tion of the absolute square of the componentg|dgf,)} is

Still the phase space is mostly covered by the regular region,

mixed type. The size of the chaotic region is now very large
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e e e s e N e These two distinct behaviors of the entanglement satura-

__‘:/ E tion can be understood from the underlying classical dynam-

3 3.’ o ics. Fork=1.0, the initial unentangled state is the product of

Sy 2 g,L the coherent wave packet placed inside the elliptic region
1 a [see Fig. 1a)] of each top. This initially unentangled state

will become more and more entangled under the repeated

application of the coupled top unitary operatdy. More-

- T over, if one observes the evolution of the reduced Husimi
T r— e function corresponding to each top, then it can be seen that

the initially localized wave packet starts moving along the

classical elliptic orbits on which it was initially placed and

simultaneously it also spreads along those orbits.

However, one can observe some initial oscillations in the
entanglement production, which is due to the fact that the
entanglement production is mostly determined by the spread-
ing of the wave packet alon@ direction. As we know
cosbl,=limjﬂm(‘]zi/j), therefore the spreading of the wave

= == packet along direction determines how many eigenstates of
n Iz, which are also our basis states, are participating to con-

) ) . struct the wave packet. Larger amount of spreading of the
FIG. 6. Time evolution of the von Neumann entropy in coupled K | he di . b f
kicked tops is presented for different coupling strengths and fOIVVaV_e packet aong.t. e |r§Ctlon causes greater number o
different underlying classical dynamicsa) e=10"2. (b) e basis states to participate in the wave packet. Moreover, cou-
=103, (c) e=10"*. Solid line represents=1.0, dotted line cor- ~ Pling between two tops is via interaction betwe&y and
responds tk=2.0, dashed line is fok=3.0, and dash-dot line J,,- Therefore, this interaction term will couple greater num-

represent&=6.0. ber of basis states and consequently leads to higher entangle-
ment.

with few regular islands. At this parameter value, the initial  Initially, the spreading of the wave packet sometimes may

wavepacket is inside the chaotic region. Figd)lis showing  become parallel to the direction and therefore its spreading

the phase space fér=6.0. Now the phase space is mostly along 6 direction become less. Consequently, one can ob-

covered by the chaotic region, with very tiny regular islands.serve a dip in the entanglement production. Finally, the wave

Naturally, our initial wave packet is in the chaotic region. packet spreads all over the elliptic orbits and the entangle-
ment production reaches its saturating maxima. In Fig), 7

B. Time evolution of the quantum entanglement we have shown the reduced Husimi function of the wave

. acket corresponding to the maxinfsaturation of the en-

In Fig. 6, we hgve presentgd our results for the.}.emangIe{‘:')anglement er())ductign. After reaching its saturation, there
ment production in coupled k|cI§ed tops for t_he Spn80. . are again many dips in the entanglement production. These
As we g0 from top to bottom W'”dOV_Vv coupling strength is dips are also due to the small spreading of the wave packet
dec“}g‘s'”g by a facFor of tep. Top window correﬁgonds to along ¢ direction. However, the localization of the wave
=10"%, middle one is showing the results fer- 10, and  yacket along direction are now happening due to fractional
the bottom window corresponds to the casel0 ™. For o ¢ revival of the wave packet. These revivals are actually
each coupling strength, we have studied entanglement prege gingle top behaviors which persists even under the inter-
duction for four different single top parameter values, Whose, o with other top. The quantum revivals of the wave

corresponding classical phase-space picture has already beﬁ&:ket are interesting phenomena of any quantum system

shown in Fig. 1. and therefore it requires separate study, especially in this
rather more complex setting.

At k=2.0, the center of the initial coherent state was in-
Let us first discuss the case of stronger coupling side the separatrix. Therefore, in its time evolution, the
=102, whose results are presented in Figa)6lt shows spreading of the wave packet was restricted to be inside the
that there exists a saturation 8f for k=1.0 andk=2.0,  separatrix region. Finally, the wave packet spread over the
which are much smaller than the saturation value correseparatrix region, and the entanglement production arrived at
sponding to highly chaotic cases such as wkei6.0. The its saturation. The corresponding reduced Husimi function

saturation value o8, for k=6.0 is the statistical boun8,,  has been shown in Fig(l3). Moreover, the reduced Husimi
=In(N)—3=4.57 (whereN=161), which can be understood function shows that even though the wave packet has spread
from random matrix theorj15]. However fork=3.0, corre-  over the whole separatrix region, its spread is not uniform.
sponding to a mixed classical phase spa&gis still less The wave packet is strongly localized at the unstable period-
than the above mentioned saturation value, indicating thd orbit. This strong localization of the wave packet is also a
influence of the regular regions. single top behavior which may also warrant separate study.

bl

A EER SRR

[/ TT T T[T T T[T T [ T[T T T[T I [TTT

1. Coupling e=10"2
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FIG. 7. Reduced Husimi functions of the time evolving state, FIG. 8. Evolution of the von Neumann entropy, corresponding

evolving underUy, are presented corresponding to the time aty, the parameter valul=1.0, are presented for different Hilbert
which the entanglement production is saturatédl. k=1.0: The space dimensionsN(=2j +1).

wave packet is spread over the elliptic orbits. k=2.0: The wave

packet is spread over the separatrix. It is also showing strong local- . .
ization at the unstable period-4 orhit) k=3.0: The wave packet In Figs. 8 and 9, we have shown the evolutionSyfand

is spread over the whole chaotic regid¢d) k=6.0: At this param- ANef _Correqunding té=1.0 for Qifferent H”bert_ space di-
eter value, the phase space is mostly covered by the chaotic regiofl€Nsions. Using the above relation, we determine the evolu-

see Fig. 1. Consequently, the wave packet is spread over almodP" of y for this k value and.tha@t is presented in Fig. 10.
whole phase space. Initially there were some oscillations, later it fluctuates ap-

o ~ proximately aroundy=0.52—-0.54 for different Hilbert
At k=3.0 andk=6.0, the initial wave packets were inside space dimensions. The solid line is showing the average
the chaotic region. However, the saturation of the entangléya|ye of y at the saturation region. Figs. 11 and 12 are simi-
ment production are different for these two cases. This Cafyly showing the evolution oS, and of ANy at k=2.0

be understood as the phase space of the kicked top is mo ; iff Hil ; ; In Ei
mixed type fork 3.0 than the cask— 6.0. Therefors, the EBrresponding to different Hilbert space dimensions. In Fig.

size of the chaotic region is less fér=3.0 than its size
corresponding t&k=6.0. Consequently, the wave packet can
spread over less of the phase spacekfer3.0 thank=6.0.

In Fig. 7(c), we have shown the spreading of the wave packet ; o5
corresponding to this case. K& 6.0, since the phase space

is almost fully chaotic, the wave packet can spread over al- ooig
most whole phase space. In Figdy, we have shown re- "5
duced Husimi function corresponding to this strongly chaotic ¢.05
case.

As we know, there exists a universal bound on the en-
tanglement for chaotic cases and that bound is given by, fol g 1
the von Neumann entropy,S()s,=In YN where y=1/\/e 0.05
=0.6. Now a natural question is whether there exists any 0.2
such bound on entanglement of the formM, for the non- 091'2
chaotic cases such &s-1.0 andk=2.0. If there exists really 0.1
such an entanglement bound, then what isNhén terms of 5
N? We conjecture thatl’ is actually the effective dimension 022
of the Hilbert space corresponding to those parameter valuesp 15

0.15

0.2

i.e., N"=Ngz=ANgN. Since we know the evolution &, 0.1
; . ; 0.05
and of ANgs, we can determine the time evolution of that 0 '
factor y from the relation AI\TI 0 200 400 N 600 800 1000
eff
y= expSy) = E quS\,)} (53 FIG. 9. Evolution ofANg, corresponding t&=1.0, are pre-
N’ N| ANgg sented for different Hilbert space dimensions.
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FIG. 10. Evolution of the factory are presented for different FIG. 12. Evolution ofAN¢g, corresponding t&=2.0, are pre-
Hilbert space dimensions. This factor has been calculated numergented for different Hilbert space dimensions.
cally using Eq.(53). Herek=1.0.

the separatrix. Even though we may not expect any univer-

13, we have shown the evolution of for this case. This Sality in the case of integrable or near-integrable cases, we
figure is showing that at the saturation=0.40-0.43 for  have found that for a given coupling strength and for a given
different Hilbert space dimensions. At the saturation, the fac¢lassical dynamical behavior, the factpis more or less the
tor y is different fork=1.0 andk=2.0. This is essentially Same for different Hilbert space dimensions.
due to the fact that d¢t=1.0 andk= 2.0, two different kind
of dynamics are responsible for the spreading of the wave 2. Coupling e=10"°
packet on phase space. At=1.0, the wave packet has  Entanglement production corresponding to this coupling
spread over the regular elliptic orbits, whereaka®2.0 the  strength has been presented in Fig)7For the nonchaotic
wave packet has spread over a thin stochastic layer present@ses k=1.0 andk=2.0), the saturation value of the en-
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FIG. 11. Evolution of the von Neumann entropy, corresponding FIG. 13. Evolution of the factory are presented for different
to the parameter valuk=2.0, are presented for different Hilbert Hilbert space dimensions. This factor has been calculated numeri-
space dimensions. cally using Eq.(53). Herek=2.0.
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i(b) V. ENTANGLEMENT PRODUCTION IN COUPLED

(@)
STRONGLY CHAOTIC SYSTEM

' ‘ Due to the relatively simple form ofg, the linear en-
tropy, it is easier to derive an approximate formula for its
, time evolution. Here we present an analytical formalism for
, ‘ the time evolution of5; in coupled strongly chaotic systems.
Let us assume, the initial state is a product state, given as
. |4(0))=1¢1(0))®|$,(0)), where|¢;(0))'s are the states
—= 2L 8§ & = —4 =2 = ; L 2 3 corresponding to individual subsystems. In general, the time
evolution operator of a coupled system is of the fotn

FIG. 14. Reduced Husimi functions of the time evolving wave =U Uo=U(U1®U;), whereU, is the coupling time evo-
packet are presented corresponding to the tim&84 at which the  lution operator andJ;'s are the time evolution operators of
entanglement production gets saturat¢a. k=1.0. The wave the individual subsystems. Furthermore, we have assumed
packet is spread over the elliptic orbits, but the spreading is not
uniform. (b) k=2.0. The wave packet is spread over the separatrix U.=exp—ieHy), (54)
and shows strong localization on the unstable period-4 orbit. Here
e=10"3,

3 3
5 5
. 2]
01,5 L. 5
1 | 1
5 5
4] o]

whereH;,=h®eh®), andh() are Hermitian local opera-
tanglement production is less than the entanglement saturéers. For simplicity, we derive our formalism in the eigenba-
tion observed in the stronger coupling cage=(L0" ). For  sis of h()'s, i.e., hD|eMy=e |e)), where{e{,|e))} are
weaker coupling, the influence of one subsystem on the othehe eigenvalues and the corresponding eigenvectons of
subsystem becomes less, and the individual subsystems be-The one step operation &f on |(0)) will give
have more like isolated quantum systems. Consequently,

ure quantum effects play dominant role in the evolution of (1) A(2) _ IR NRORE)
Fhe nge packet. In Fig. 1y4, we have shown reduced Husimi (e €5 (1)) =exp—iee; g5 ) (e, e |¢°(1)>’(55)
function fork=1.0 andk=2.0 at the timen=384 when the

entanglement production saturated. ket 1.0, the reduced

Husimi function is showing that the wave packet has sprea?ﬁ"herew(l).> is the time evolving_ state of the full coupled
over the elliptic orbits, but not uniformly. system at timen=1 and|yq(1)) is the same for the un-
coupled system. From the above expression, one can get the

Now for k=2.0, at the entanglement saturation, the wave DM ding t bsvstem by traci th
packet has spread as usual over the whole separatrix regio'ﬁ corresponding 1o oné subsystém by tracing over the

Moreover, it also shows localization at the same unstablé’ther su_bsy_stem. The RDM corresponding to the first sub-
period-4 orbit. However, the difference is that the waveSyStem s given by

packet is now more localized at a particular periodic point of

that period-4 orbit which was very close to the initial wave [p1(1)]1.5=(e\"|p1(1)[€’)

packet. As we have seen in Fig(b¥ within our observa-

tional time (=1000), AN has not reached any saturation => (e @ y(1))(y(1)|ed) el

value for the mixed and as well as for the chaotic cases. y 7 pomy

Moreover, for the strong chaos cages 6.0, theANgs was

well short of unity even after the observational time and => exp{—ie(e&”—e%”)eﬁ?](e(al),e(72)|¢0(1))
consequently the wave packet has not got access over whole Y

Hilbert space within this time of observation. Therefore, the
entanglement production is well short of the known statisti-
cal bound Ini)—3.

X(o(1)|ef}),el?). (56)

_ ., Here we now assume thpty(1)) is a random vector. Con-
3. Coupling e=10 sequently we can further assume that the components of

The entanglement production for this very weak couplingl #o(1)) are uncorrelated to the exponential term coming due
regime has been presented in Figc)7 The entanglement to the coupling. Hence we have
production for this weak coupling has recently been ex-
plained by perturbation theorjl6]. However, the formula 1
for the entanglement production presented in that work is not [P1(1)]ap= > (e, P yo(1))(wo(1)]ef) )
valid for arbitrarily long times. In the following section we 7
have presented an approximate formula for the entanglement
production in coupled strongly chaotic systems. This formula x> exl —ie(elV—el)e?)]
explains the entanglement production for the ckses.0. °

Here we have also observed that entanglement production is 1 _ 1 O (2
much larger for the nonchaotic cases than the chaotic cases. = N[Plo(l)]agz exd —ie(elV—ef)el?)],
Rather, we can say that, for weakly coupled cases, the pres- 7

ence of chaos actually suppresses entanglement production. (57
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whereN is the Hilbert space dimension of the first subsystem
andpqq is the density matrix corresponding to the uncoupled

1

© o
o @
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top. If we proceed one more time step, then at the time
=2 we have

1
[P1(2)]ap= g IP(O)Tp10(2)]ap 2 eXH ~i (el —€f)]

where

1 .
p(e)= N EB exp(—iee(el?)). (58)

If we use the above assumptions upto any arbitrary time
we obtain

1
[pl(n)]aB:N| p(6)|2(n71)[P10(n)]a,3

x> exd —ie(elV—e)eP]. (59
Y

|
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FIG. 15. Evolution of the linear entropy for the coupled strongly
chaotic system is presented. The dotted line is the numerical results
of the coupled kicked tops system. We cho@se6.0 for the first
top andk=6.1 for the second top. The solid line is the theoretical

From the above expression, it is straightforward to calculatestimation, given by E¢(62).

linear entropy and that is given as,
1 4(n—1)
Sr(n)=1- mlp(e)l

x;ﬁ % ex —ie(elV—ef)) (P —e?)].

(60)

This is a general result, applicable to any coupled strongly

chaotic systems of the forr ,(U;®U,). Moreover, this
result is valid for long time.
For the coupled kicked t0|dd12=J21®J22/j. Therefore,

1

Si(2Ne) ( 1 )2
e [T INe

X{1—cog2Ne)+Ci(2Ne)—In(2Ne) — 'y}}

sR(n>:1—p<e>4<“-l>[§

where

pO=5 (62)

2|, 1S_(Ne
+; |7 .

The functions Si and Ci are the standaide-integraland
cosine-integral  function, respectively,  while vy
=0.57725 ... is theEuler constant. In the above deriva-

for this particular system, the above formula would becometion we have not assumed, unlike the perturbation theory

1
Se(m=1- ~p(e)*""Y

+j

D>

jexp[—if(ml—nl)mz—nz) ,

mg,Ny=—J Myp,np=
where
1 3 €
ple)=— exr{—i.—mlmz and N=2j+1.
N2 my,my=—] J
(61)

[16], any particular order of magnitude of the coupling
strengthe. Therefore, as we demonstrate below, the above
formula is applicable for nonperturbative coupling strengths
as well.

In Fig. 15, we have shown the numerical result of the
linear entropy &g) production in the coupled tops where the
individual tops are strongly chaotic. Here we have consid-
ered many initial coherent states at different parts of the
phase space and presented the linear entropy production, av-
eraged over all these initial states, with time. In all our pre-
vious calculations we only considered the entanglement pro-
duction on coupling identical tops, therefore, permutation
symmetry was present. As in the above derivation, we have
not assumed any special symmetry property, we break per-
mutation symmetry by taking slightly nonidentical tops with

In largej limit, we can substitute above sums by approximatek==6.0 for the first top and=26.1 for the second top.

integrals and then performing those integrals we(fmtde-
tails, see Appendix

Figure 15 demonstrates that our theoretical estimation, de-
noted by the solid curve, is not only valid for weak coupling
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case such as=10* but it also valid for sufficiently strong APPENDIX A: DERIVATION OF EQ. (8)
coupling cases such as=10 2. Moreover, this formula is
applicable for very long times. If we consider weak coupling
approximation, i.e.je<1, then the above formula will be-
come approximately

Let us define ladder operators,

Jia=d+J

1= Yy Ji=3d1-,
2:2

9

Ji4|my)=Cp [my+1) and J;_[my) =Dy, [my—1),
(A1)

Sr(n)= (n=1)+0(e%?). (63

Therefore, at this weak coupling approximation, the en-vvhereCml and Dy, are known functions of and m; and

tanglement production rate is%%/9, which has been cal- |m,) are the standard angular momentum basis states. We
culated in a recent publicatidi 6] by very different means. can writed, = (J,. +J;_)/2. Therefore
l 1

VI SUMMARY 3, ®1,=3U1(J1, @ 1)U+ 3UT(J;-®1)Ur, (A2)

In this paper, our major goal was to study entanglement
production in coupled kicked tops. Single kicked top is awhere the terms present at the right-hand side are the Her-
well studied model of both classical and quantum chaotianitian conjugate of each other. Therefore, it is sufficient to
system. The classical map corresponding to coupled kickedetermine only one term. Here we will calculate the first
tops was presented in a previous publication, but was unfoterm explicitly. We have
tunately incorrect. Hence, we have presented the correct clas-
sical map corresponding to the coupled klckeq tops which is U$(31+®|2)=(U1®U2)TUET2(31+®|2)Uiz(U1®U2)-
canonical. In the qguantum case, we have studied the reduced (A3)
Husimi function to visualize the behavior of the wave packet
of a coupled system in any one of its subspaces. We have ot e -
also studied a phase-space based measure of complexity /M1:M2) basis Ui, (31, @12)U5, is
the time evolving statédenoted byANy), which quantify R
the fraction of the total number of the Planck cells occupied (my,my|Uix(J1: ®1)U5 ) ng,Ny)
by the Husimi function of a given state. As we have already i
mentioned that, for kicked top, this quantity is also approxi-
mately equal to the fraction of the Hilbert space occupied by
a given state. We have studied this quantity for both single
and coupled tops. It has been observed that, for the single
top, the time evolving state can occupy maximum, in aver-
age, half of the total number of the Planck cell, i.A\Ngg -
=0.5, and this happened for the strongly chaotic cases. =exp i.fmz

For nonchaotic and mixed cases, the time evolving state J
occupies even less number of Planck cells and it is reflected
in smaller values of\Ng. Following a recent result, using The above expression can also be written as
RMT, we have explained the fact thaiN.z= 0.5 for the time
evolving state corresponding to.strongly chaotic single top. <m1,m2|Ui;(Jl+®|2)Uiz|nl,n2>
However, when a strongly chaotic top is strongly coupled to
another such topANgs corresponding to any subsystem €
reaches very close tlmriity. We have again explained this by =<m1,m2|J1+®exp( Ij_‘]22> n1,n2)
means of RMT calculations.

Then we studied entanglement production in coupled
kicked tops for different underlying classical dynamics of the
individual top and also for different coupling strengths. We
find, in general, entanglement production is higher for stron-
ger chaotic cases. Moreover, coupling strength between tw?herefore
tops is also an important parameter for the entanglement pro- ’
duction. For example, when the coupling strength between
two tops is very weak, we find that entanglement production, |+ _ t ;
is higher for sufficiently long time corresponding to noncha-nUT(JH@IZ)UT_(U1®U2) J1+®exp<|
otic cases. Finally, we have derived an approximate formula,
based on the ideas of RMT, for the entanglement production =(UIJ1+U1)® i
in coupled strongly chaotic system. This formula is appli-
cable, unlike perturbation theory, to large coupling strengths
and is valid for sufficiently long times. Now

<ml|-31+|nl>5m2n2

€
=exp ij—(ml—nl)m2
€
=€exp |j_(m1_nl)m2 Cn15m1,n1+15m2n2

Cnléml,nl+15m2n2- (A4)

€
:Uig(JH@lz)Uiz:JH@eX[{ i j_JZZ)'

(A5)

€
- Zz)}wl@uz)

J
€
-J
J

Ulex 22> uz}. (A6)
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T T
uld u=uluky, ukul
0o ul,  where 3, =UXJ,, UK.

(A7)
In {|m;)} basis,J], can be written as
” t
(mg|37Ing)=(mg| U5 31, UY[ny)

(mq]J14[ng)

k
=exg i 5 (mi—nj)

Cn15m1,n1+1

K
=exp Iz—j(mi—ni)

k1
=exg Ij_ nits

Cnléml,nﬁl

Iny)

ok 1
:<m1|J1+eX Ij_ le+§

, k 1
=J;,.=J1. X |j— le+ >
(A8)

Therefore,

1
3+ 5 Ul. (A9)

2

T ft Kk
U1J1+U1=Ul J1+eX |j—

The operatonl is the rotation operator about tlyeaxis with
angle /2, thereforeUflT(Jxl,Jyl,le)U% (3, dy, = Ix)-
Hence we have

(A10)

, . K 1
U1J1+Ul=(le+|Jyl)ex |j— —JX1+§
Now we will calculate the other term of E¢A6), i.e.,
T . €
U,ex |J.—JZZ U,
Tkt €
=ub Uk exp(uj—JZz)Ugu;
—Ulexpi <3 Ul (since [UX,J,.1=0)
2 J Z5 2 292z,

€
=exr{ —i J.—JXZ) [since Uf2 is rotation matriy.
(A11)

Substituting all the above results in E&\6), we get

PHYSICAL REVIEW E 69, 016201 (2004

. K 1
U'Jlr'(‘]1+®IZ)UT:(le'H‘Jyl)eXF{' J_( —Jxl—l— E)

€
®ex —|j—JX2 .

(A12)

By taking the Hermitian conjugate of the above expression,

we determine

(le_ inl)

. K 1
UT(J1,®|2)UT=EX _|j— _‘]X1+ E

€
®ex;{ij—‘]xz).

Substituting, last two expressions in E&\2), we will get
Eq. (8).

(A13)

APPENDIX B: CALCULATION OF THE INTEGRAL
PRESENT IN EQS. (34) AND (43

We know(m|z)=(m| 6, ¢), and using Eq(12), the above
mentioned integral becomes
2] \[ 2]
j=1/\j—m

2j+1\/ 2j \[ 2
4 i—i)lji—k

xfewofw_w(lﬂar?g tan;

xXexd —i¢{(i+1)—(k+m)}]sinodade.

4j—i—k—I-m

(B1)

After performing the¢ integral, we get

(21t \/(jziji)(jzjk>(jzjl)<jijm) i term

T 7] 4j+2(+1)+1 0 4j—2(i+)+1
XJ@O( CO%) (Slnz) dé.

(B2)
Substitutingn= 6/2, we get

RSN [ i i
2(2j+1) i—il\i=k/\j=1/1j=m i+l k+m

/2
Xf” (sin )4~ 204D+1(cogy)4i+20+)+1g,
7n=0

(B3)

The above integral is g integral, and therefore we get

| 2] 2]
(2]+1)\/(j—i) (j—l

= (DR + 1)+ ([ + D841 ke m-

2j ( 2j ) _
i~k | _m/AUI+D

(B4)
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From the relationg(m,n)=[T'(m)I"(n)]/T'(m+n), we get relation the above expression will be equal to E§&) and

(44).
2j+1 \/( Zj) 2j> 21)( 2j )r .
r@aj+2) V=il j—k/\j=1 /| jom/THEI+D)

—(I+DI{2j+ D)+ +D}Si 41 kim- (BS)

APPENDIX C: CALCULATION OF EQ. (62

Let us first calculate the sum present in the expression of
We know that, for any integen, I'(m+1)=m!. Using this  p(e). That sum can be simplified in the following way:

J € 2N—-1 € 2 J €
271_ ex;{—ij—mlm2> N— {2 E ex —ij—m1m2)+ 2 2 ex —ij—mlmz)

mq,my= m=1 my=1 mp=—j my=1

+E E ex |]—m1m2)+ 2 Z ex —ijfmlmz)}

mi=1 my=—]j mi=—j my=—j

j

2N—-1 2 € j F< € )
= + — exp i—mym, |+ exp —i—mim
N2 N2 ml%:]- F{J e ml%zl J e
2N 1 €
= Re exp i —mym ) C1
R m}z ) 7 mim, (CY)

where Re is denoting the real part. Now we defiteem;, /j, y=m,/j and §=1/j, where5—0 in largej limit. We can convert
the above sum into an integral in the laigkmit as

1 sin(jex
2I|mf J dx dycos{jexy):jznmf n(Je ) dx— J—sme) (C2)
5—0Jx=0Jy= 5507 Xx=46
In the largej limit, N=2j+ 1=2j, therefore
2N-1 2 Si Ne c3
ple)=—=—+ S| 7 (C3
If we neglectN ™2 term, then we get
S Ne
1 2 C4
ple)=| 1+ — (C4)

Let us now calculate the bigger sUmsee Eq(61)]. If we definel;=m;—n; andl,=m,—n,, then this sum will become

+M €
> (N—||1|)(N—||2|)exp(—i.—|1|2>, whereM =2j=N-1,
l1,05=—M J
+M +M +M
—2N|Z (N_||1|7L E 2 (N_||1|)(N_||2|)9XF{_|J—|1|2)
! |1¢0 IZ#O
M

—AN?M+4Re S (N—|1)(N—|2)exp( i jf|1|2)

e
M

+4Re S |1|2exp(ijf|1|2). (C5)

I o=1

M
€ €
=4N’M +4N°Re E‘, ex ij—I1I2>—8NRe > |1exp(ij—|1|2

L o=1 =1
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We can write the first sum of the above expression as

>

5=1

2€

M
€
ex i.—I1I2)= > expi |l|2). (CH)
J I, =1 M

This sum is similar to the sum which we have calculated to

derive p(e), see Eq.(C1). Therefore, using this previous
result, we get the above sum as

M € M
> ex ij—lllz):ZSi(ZMe). (C7)

=1

Now

M €
Second sumRe 2 Ilex;{lj—lllz)

|1,|2:l

1 1
:M3Iimf f x cog 2M exy)dxdy
s—0lx=6ly=s

M? (1 M
zzfo Sin(2M ex)dx= 4—62[1—C0§2M e)].

(C8)

PHYSICAL REVIEW E 69, 016201 (2004

. M . E
Third sum=Re >, Illzexp<|j—lllz)

=1

Jl 1
50 x=0Jy=46

=M*lim dxdyxycog 2M exy)

M3 1
=—1Iim J sin(2M ex)dx
265%0 X=0 n( € )

1 cog2Mex)—1
[

2M ex

X=68

2
:—2[1—C05(2M €)+Ci(2Me)—In(2Me) — v].
4e

(C9

For largej limit, M=N and therefore substituting above re-
sults in Eq.(C5), we will arrive at Eq.(62).
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