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Logarithmic corrections in directed percolation
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We study directed percolation at the upper critical transverse dimendsigh where critical fluctuations
induce logarithmic corrections to the leadifrgean-field behavior. Viewing directed percolation as a kinetic
process, we address the following properties of directed percolation clusters: thétimeasamber of active
sites or particles the radius of gyration, and the survival probability. Using renormalized dynamical field
theory, we determine the leading and the next to leading logarithmic corrections for these quantities. In
addition, we calculate the logarithmic corrections to the equation of state that describes the stationary homo-
geneous particle density in the presence of a homogeneous particle source.
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I. INTRODUCTION phase transitions into absorbing inactive states, it frequently
occurs that work on nonequilibrium phase transitions ad-
Directed percolatioflDP) [1] is an anisotropic variant of dresses the question, whether a given system belongs to the

activity can percolate only along a given preferfémhgitu- flyctuatlon induced ano_rr_]alou_s cr|t|c_al exponents. However,
dinal) direction. DP is perhaps the simplest model leading todlrect:ydat the .uppefr cr::t;cl::)altﬂlmlenzlpn, |.e.,|_m=£LtLans.- .

self-affine fractals. It has many potential applications, includ-/€Sa! dimensions for b, the leading scaling behavior IS

ing fluid flow through porous media under gravity, hopping purely of mean-field tyr;le and t_here i’:\redntl) ano_rr;]alqus critical

conductivity in a strong electric fielf3], crack propagation exponents. However, fluctuations lead logarithmic correc-

4 d th i f surf t depinning t i tions to the mean-field behavior. Just as the anomalous criti-
.[ |, an 1€ propagation of surfaces at depinning ransitiong,, exponents, the logarithmic corrections can be used to
in one dimension[5]. Moreover, it is related to self-

) - decide if a given system belongs to the DP universality class.
organized critical modelgs]. , With the computer resources available today, numerical
__ Often the longitudinal direction is viewed as time and DPsimylations on nonequilibrium systems explore more and
is interpreted as a spreading process. In this dynamic intefnore often high spatial dimensions. Simulations with reli-
pretation DP has become famous as the generic universaliple statistics of such systems in four dimensions are within
class for phase transitions between an active and an absongach today. Hence, we feel that it becomes important to
ing inactive stat¢7,8]. The perhaps most intuitive spreading know logarithmic corrections for the DP universality class.
process belonging to the DP universality class is the so- The leading logarithmic corrections are fairly easy to ex-
called simple epidemic procedSEP. In epidemic pro- tract from the known renormalization grodRG) results on
cesses, individual&lso referred to as particles and for sim- DP. Astonishingly, this has not been done to date, at least to
plicity assumed to be located on the sites aFdimensional our knowledge(See, howeverNote added in proof It has
lattice) are either susceptible, infected, or immune. At time to be expected, though, that knowing the leading logarithmic
an infected particle can randomly infect any of its susceptiblecorrections is not sufficient to obtain a decent agreement be-
neighbors with a certain activation rate. At 1 the newly tween theory and simulations. This expectation is based on
infected particles are capable of infecting their susceptibléhe experiences that has been made for another system for
neighbors and so on. With a certain deactivation rate anyhich logarithmic correction have been studied intensively
infected particle may become immune. Depending on thdy numerical and analytical means, viz., linear polymers
difference = between the activation and the deactivation[10,11. Numerical work on DP id=4 in progress seems to
rates, the process is endemic or epidemic. ot the pro-  corroborate our expectatiqi2].
cess dies out after a finite time. For 7. the process spreads ~ The aim of this paper is to derive analytically logarithmic
over the entire lattice and approaches a homogenous steadgrrection for DP up to and including the next to leading
state. The point= 7. marks a non-equilibrium phase transi- order. We focus three dynamical observables that are well
tion. There are two basic variants of epidemic processes. lauited for investigation by numerical simulations, namely,
the SEP there is a chance that an immune particle becom#éise numbem(t) of infected particles at timegenerated by
susceptible again. The spatiotemporal patterns generated hyseed at the spatiotemporal origix=0,t=0), their mean
the SEP are DP clustefg—9]. If immune particles remain distanceR(t) from the origin(radius of gyratiol, as well as
immune at all times, one has the so-called general epidemite survival probabilityP(t) of the corresponding cluster.
process(GEP. The clusters of immune particles generatedFurthermore, we determine logarithmic corrections for the
by the GEP are IP clusters. DP equation of statéEQS that relates the homogeneous

Since DP represents the generic universality class foparticle densityM of the stationary state teand an auxiliary
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constant homogeneous particle sounc&or dimensions be- existence of the absorbing state. Contributions to Efjs.
low four, this EQS is known to two-loop ordgt3]. Its loga-  that are of higher order in the field or the derivatives turn out
rithmic correction has not been addressed hitherto. to be irrelevant in the sense of the RG. For example, a dif-
Of course, logarithmic corrections to dynamic quantitiesfusional noise contribution can be neglected.
such asN(t) are not only relevant for DP, they are likewise  Langevin equations are fairly intuitive and thus provide a
important for dynamic IP at the respective upper criticalnatural starting point in the mesoscopic description of sto-
dimension 6. For logarithmic corrections to dynamic IP wechastic processes. Prevalent alternative forms of mesoscopic
refer to Ref[14]. Also, logarithmic corrections influence the description are Fokker-Planck equations as well as dynamic
static properties of IP clusters, for example, their variousfunctionals[22—24. Dynamic functionals, also known as re-
fractal dimensions and their transport properties. For logasponse functionals, are best suited for the application of field
rithmic corrections in static IP, see R¢L5]. theory and RG ideas. This is the form of description that we
The outline of our paper is as follows. In Sec. Il we will use here. The dynamic functional for DP has been
briefly review the SEP as a dynamic model for DP. Weknown for a long time[7,9]. After exploiting a rescaling
sketch the renormalized field theory of the SEP and cite preform invariance that allows to us equajeand d, .7 can be
vious RG results. Furthermore, we explain by solving the RGwritten as
equation ind=4 how logarithmic corrections arise in DP. In
Sec. lll we derive the logarithmic corrections for the afore-
mentioned dynamic observables. Sec. IV treats logarithmic
corrections of the mean-field equation of state. In Sec. V we
give a few concluding remarks. Details of our diagrammaticThe order parameter fiels(x,t) is proportional to the par-

J=f ddxdt)\~s()\1&t+(r—V2)+g(s—~s) s. (2

perturbation calculation are relegated to the Appendix. ticle densityn(x,t). S(x,t) is the response field correspond-
ing to s(x,t). Time reflection, also known as duality trans-
Il. A BRIEF REVIEW OF DIRECTED PERCOLATION AND formation,

ITS DYNAMICAL FIELD THEORY -
S(X,t) = —s(x,—1), (3

This section is intended to provide the reader with back- _ _ )
ground on the dynamical field theory of DP and to establisHS & symmetry transformation of the dynamic functiofil
notation. Moreover, it demonstrates how logarithmic correc-This, however, is merely an asymptotic symmetry that holds

tions emerge in the RG framework by solving the RG equaProvided that irrelevant terms are absent. When applying RG
tion directly ind=4. ideas to calculate leading scaling properties or logarithmic

corrections, one has to make sure that this symmetry is pre-
served. On the other hand, if one is interested in corrections
to scaling stemming from irrelevant contributions to the

There are basically two complimentary approaches tqunctional (2), then one has to admit composite fields that
model DP. The first approach is based on bond percolatioBreak the symmetry3).

and assigns a direction to the bonds. An example for this
kind of model is the random resistor diode network, see, e.g.,
Refs.[16—18. In the other approach one models DP as a
kinetic growth procesgl9—21], viz., the SEP that we elabo- The great virtue of response functiondlis that it allows
rated on in the Introduction. Here, we will take the latter for a systematic perturbation calculation in the coupling con-
route. stantg that resembles many features of, and allows to glean
On mesoscopic scales it makes sense to describe the Staehniques from, the well-established diagrammatic pertur-
in terms of the density(x,t) of infected particles at time bation treatments of equilibrium critical phenomena. The
and space coordinate It is well known that the Langevin Most economic way to actually do these calculations is to use

equation(in the Ito sensegoverning the time evolution of dime'nsion_all regularizatioq in 'conjunction with minimal sub-
this density is given by7] traction (minimal renormalization For background on these

methods we refer to Reff25,26]. An appropriate renormal-
ization scheme is

A. Modelling directed percolation

B. Renormalization and scaling

A Lon(x,t) =V2n(x,t) — Tn(x,t)— gn(x,t)2+ (x,1),

(1a) s—s=7s T 5=7V%, (4a)
LXDEX ) =N () St =) 8(x—X"). (1b) NoN=ZTIZ\\, ToT=Z'Z,, (4b)
The parametet is essentially the rate difference mentioned g—g=2, tz"V2zYG V2 iyt (40)

in the Introduction and hence specifies the deviation from

criticality. N represents a kinetic coefficienf(x,t) is a  where the symbol ° indicates unrenormalized quantities. The
Gaussian random field that subsumes reaction noise and otfactor u*/?, whereu is an arbitrary external inverse length
erwise neglected microscopic details: stands for averag- scale ande=4—d measures the deviation from the upper
ing over the distribution of the noise. The right-hand side ofcritical dimension, makes the renormalized coupling constant
Eq. (1b) goes to zero for vanishing(x,t) to enable the udimensionless. The quanti§,=I"(1+&/2)/(4m7)%? natu-
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rally appears in the computation of Feynman diagrams and is C. General form of the logarithmic corrections
included here for later convenience. In minimal renormaliza-
tion the critical point valuer= 7. is formally set to zero by
the perturbation expansion. In general, howevgr,is a
nonanalytical function of the coupling constant. Thus, an im
plicit additive renormalizationr— 7.— 7 is concealed in the
minimal renormalization procedure. The renormalization fac'meaning of the coefficients,, f;, and so on to be evident.
torsz,Z,, Z;, andZ, are known to two-loop ord€7,9]. The characteristic for the dimensionless coupling constant
The critical behavior of the Green's function§, y uis given by
=([s]"[3]™™ where (- - - )™ denotes the cumulants

Now we will state and solve the characteristics directly
for d=4. The Wilson functions cited in Eq§7) are central
ingredients of the characteristics. To make the notion more
“economic, we will writef (u)="fy+ f,u+f,u?+- .. with f
standing ambiguously for, ¢, k, and B. We expect the

with respect to the statistical weight €xp7), is governed dw
by the Gell-Mann—Low renormalization group equation Ly =Bw), 9
(RGB

where we abbreviatedv=u(l). Solving this differential

n-+n i —0 Vi
D+ v Gor({r thi 7 Uik, 1) =0 (5) equation fore=0 yields
=] =| ~B31B5 _1
with the RG differential operatdP,, given by =1(w)=low 2exp — ,32W+O(W) ' (10
D,=pud,+N{o\+ 7K+ B (6) wherel, is an integration constant. The remaining character-
) ) ) istics are all of the same structure, namely,
The Wilson functions featured in the RGE are known to two-
loop order[7,9], dinQ(w)
I—dl =q(w). (12)
S (P 4| o o(u® 7
y=-g 1679z ) 55 O, (73 Here,Q is a placeholder foZ, Z., andZ, , respectivelyq
is a wildcard fory, «, and ¢, respectively. Exploitindd/dI
U (17 o 4\ u? oL - = Bd/dw we obtain the solution
{==gt|17=2Ing] 55+ 0O(u%), (7b) .
i Q(W):Qowawzexr{%wO(Wz)l,
- _ - 3 2
K=-g 7+ 10In§) 256+O(u ), (70 (12)
342 AL whereQ, symbolizes a nonuniversal integration constant.
B=—cu+ ——(169+ 106In§) —+0(u%. (7d The flow parameter introduced via the characteristics is
2 128 arbitrary. This arbitrariness has an important virtue, Miz.,

The RGE can be solved by the method of characteristics(.:"i"f be chosen S0 t_hat one .Of the rel_evant varlgk),let_s or
effectively acquires a finite value in the scaling limit. In

The idea behind this method is to consider all the scalian. g L o
: . his paper we are interested in time-dependent quantities and
parameters as a function of a single flow paraméténe hence we choose
sets up characteristic equations that describe how the scaling
parameters transform under a changé. dthe characteristic Z, (W) (1 )2\ t=X,q (13)
for the momentum scalg is particularly simple and has the
solution u(l)=wul, i.e., a change ol corresponds to a whereX, is a constant of order unity. With this choiaeand
change of the external momentum scale. With help of the tend to zero fom u?t—o. Instead of using the origina)

solution to the remaining characteristics one obtains we find it convenient to use
Gra({Xthmun, ) =[(w)9Z(H ] W26, 5 ({1 wx,Zy (1) 3
nn ne ! s= %ln(t/to)z ZIn(t/to), (14)

X ()M Z() 7/ (uh)?,ul);1,2).

(8)  as our time variable. Herg, is a nonuniversal time constant

] ] ] . proportional toX,. From Eqgs.(10) and (12), specialized to
as a solution to the RGE. At this stage the scaling squtlorZA we obtain

(8) is still rather formal sincez(l), Z,(1), Z(1), andu(l)

require specification. Below the upper critical dimension, s=w l—agnw+O(w). (15
these quantities display power law behavior described by the

well-known critical exponents of the DP universality class.The constanty is given by

Directly in d=4, they depend logarithmically drand hence

their behavior is qualitatively different from the lower di- a 23251_233_ 157+ Ealnf=0.976 533. (16)

mensional case. 0 2B, 192 96 3
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Finally, we find by using Eq(15) q_p

2
Wzslexr{aom?erO(ln—zS,m—zs,izH (17) q q

S s® S

for the dimensionless coupling constant as a function of
time.

Ill. LOGARITHMIC CORRECTIONS FOR THE NUMBER
OF ACTIVE PARTICLES, ETC. FIG. 1. Self-energ)E(q,t) at one-loop order.

A. Number of active particles For details of our calculation we refer to the Appendix.

At criticality (r=0), the number of active particles gener- Eventually we find

?stedvti);/ a seed at the origin is related to the Green’s function G11(q=0X0;0W;1,1) =1+ Ay(Xo)w+O(W?), (23)
11
whereAy(Xp) is an amplitude given by

N(t)=f d% Gy y(X,t;0,U;\, ). (18) Au(Xo)=L(2+1). (24)

Using the general scaling rest®) we can express the scal- Here, we used the shorthand notatiBer In(2Xg) +Cg with
ing behavior ofN(t) as Cg being Euler’s constant.
Now we know all the ingredients that contribute to the

leading and the next to leading logarithmic correction to

N(t)=Z(w)f ddx('ul)dGl'l(I“r'Z”(W)(IM)ZM;O‘W;l’l) N(t). Collecting from Eqgs(19), (12), and(23) we find

=Z(W)G14(q=0Xo;0w;1,1) (19 N(t)=Ng(w ™+ By) Yexf — cyw+ O(w?)]
with Z(w) given by Eq.(12) specialized taQ=7Z. bylns+cy In%s Ins 1
Note that the Green’s function in the last line of E9) =Ng(s+By" 1— ——— BCECEIT]
depends on the renormalized coupling constarif we were s s S
interested only in the leading logarithmic correctionN(t) (25

we could ignore this subtlety. The higher logarithmic correc- ] ] ) .

tions, however, are influenced by the specifics of the Green'¥hereNo is a nonuniversal constaril; is a nonuniversal
function. For the second logarithmic correction, we have tgconstant slightly different fronNo, andBy=6Ay . The first

calculateG, 4(x,t) to one-loop order. The diagrammatic ele- oW of Eq. (25 and the resul(15) constitute a parametric

ments required in this calculation are the Gaussian propag&€ePresentation of the tuplé\(s) that is suitable for compari-
tor son to numerical simulations. The parametric representation
has the advantage that it represents a nicely systematic ex-
G(q,t)=6(t)exd —\(7+g?)t], (200  pansion in terms of the coupling constantThe second row
of Eqg. (25 shows the more traditional form. The constants
where 6 stands for the step function, and the two three-legh,, c\, andBy are given by
verticeshg and —\g. In contrast to the calculation of, for 157 53 4
example, critical exponents, it is not sufficient for our current 3o
purposes to consider Feynman diagrams with amputated ex- NTe T 1152 5_76|n§ =0.162755, (269
ternal legs becauge, ; is determined by the Dyson equation

t n_vz_ 2> 1614 02113
t’ =P335 = oz =V
Gl,l(q,t)zG(q,t)JrJdt’J’ dt’ G(qg,t—t') CN ﬁ“‘ﬁg B, 1152 576'3 ’
0 0 (26b)
*EE UG @D By=3(Z+1) (260
N™ 4 .

Here,>(q,t) stands for the self-energy that is given to one-

loop order by Equationg14) and(25) show directly that we may eliminate

the arbitrary constang by a rescaling of the nonuniversal
242 time constant,. However, we keep this constant in our for-

2(q,t)=— 29 pr(p,t)G(q—p,t), (22)

q q q q
Ir——=<0 = O—e—<0 + t)—4—<\ }——c0
where [, stands for (2r) ~%2d%p. Diagrammatic represen-

tations of the self-energy and the Dyson equation can be
found in Figs. 1 and 2, respectively. FIG. 2. Dyson equatiofi21) to one-loop order.
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mulas because it can mimic higher, neglected powers in our
expansions, i.e., it represents a further constant that can be

fitted to simulation results.

B. Radius of gyration

PHYSICAL REVIEW B9, 016125 (2004

The mean square distance of the active particles from the

origin, also known as their radius of gyration, is defined by

dy 32
2_fd XX° Gy 4(X,t)  9InGyya)
R(t)?= Di— 27
2df d% Gy y(x,t) q 4=0
The general scaling solutiai8) implies that
NGy (1)~ 1a,Zy (W) (1 )®At;0w; 1,1
Rty NCuil(w) ' x<2 )(1) )
Jq _
q=0
aInG Xo:0w;1,1
— ()2 1,100, Xg )‘ 28)

2

79 laco

for 7=0. Equation(28) shows that the radius of gyration is,
like N(t), affected by the dependence @f ; on the renor-
malized coupling constanw. Here, however, we need the
part of G, , that is quadratic in the momentum. In the Ap-
pendix we calculate that

J
——InGy4(9,Xp;0w;1,1)|,-
o2 1,114, %o lq=0

=Xo(14+ Ag(Xg)W+ O(W?)). (29)
The amplitude that appears here is given by
Ar(Xo)=15(Z-1), (30)

Combining Egs(28), (29) and (30) as well as the solutions
to the appropriate characteristics we obtain

t 'R2=R3(w '+ Bg)"*%exd — crw+ O(W?)]

brlns+c
=R62(S+BR)1’12{1——R SR
In%s Ins 1
e o

with R andR}? being nonuniversal amplitudesg, cg, and
Br=12AR are constants that have the following values:

_B_ 157 53 4 0813777, (32
R=127 23041 115273 - ., (329
UBs (67 4
CR_IB_g_ ,3_2_ m-i‘ TSZ|I’]§—O.O43 8136, (32b
Bg=2(2—1). (320

a) —é—
q
b)

FIG. 3. (a) The new vertex—\2gM(t) and (b) the one-loop
tadpole diagrani (t).

C. Survival probability

Recently it was demonstrated that the survival probability
P(t) of an active cluster emanating from a seed at the origin
can be expressed in terms of the order parameter and the
response field a27]

P(t)=— lim (e *Vs(—1)),

K— 0

(33

where = [d% s(x,0). This formula is fundamental in that
it relates the survival probability unambiguously to the fields
inherent in the dynamic functional. In actual calculations,
however, the term exp(k\) has to be incorporated into the
dynamic functional and one is led to

jk=j+f dt k(t)Mt) (34)

instead of the original7. Here,k(t) =k4(t) is a source con-
jugate to the fields. Having introduced7,, one can write

P(t)=—lim (S(—t)) ;= — Goi( —t, 7. k=0,u;\, ),

K—s o0
(35

where (- - -}, denotes averaging with respect {§. Note
that the explicit term expfkV\) is gone.

At this point we find it worthwhile to annotate an inter-
esting implication of the time reflection symmet(). Due
to this symmetry the survival probabilify(t) is identical to
the mean particle density(t)=(s(t)) of the dual process
starting with a fully occupied initial statge(0)=co.

To avoid tadpoles in our perturbation calculation, we
carry out the shif§—3%+M so that(3)=0 is restoredGy

is then nothing buM. The entire procedure leads to the new
response functional

~ J ~ ~
jk=J ddx dt[)\s )\‘15+(r—gM—V2)+g(s—s))s

A
R

N <2
2Ms+

. _ AQ-
— oM +7\TM—7gM2+|(

s] . (36)

The diagrammatic elements implicit iffy, comprise the
two vertices encountered in Sec. Il A. In addition, there is a

third vertex, viz.,—\2gM(t) as depicted in Fig. @). The
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Gaussian propagator for the new functional has to be deter- ap, 157
mined from the differential equation bp=7 384 @In§ 0.488 266, (458
[N"19+ 7—gM(t) +q2]G(q,t,t" ) =N "18(t—t'). - 260, i
Cp= +
To avoid tadpolesM (t) must satisfy the differential equa- 7 7 4
tion T T
~ 384 192In3 0.007 242 68, (45b)
~ ~ Ng~ ~
atM(t)—)\TM(t)+79M(t)2—k(t)+T(t)=O. (39 3 3
szz<z— E) (45C)

At one-loop order, the tadpol&(t) is given by the diagram

shown in Fig. 8b).

Upon solving the differential equatior{87) and (38) at

The constang might be eliminated by the same rescaling of
the nonuniversal time scatg as discussed above.

the mean-field level we find that the modified Gaussian

propagator read€or details see the Appendix

ol —1)

= )> exfd A (7—ag?)(t—t")],

Go(a,t,t") = 6(t—t’ )(
O

IV. LOGARITHMIC CORRECTIONS TO THE EQUATION
OF STATE

A. General considerations

It is well known (see, e.g., Ref.26]) that the generating

(39 functional W[ 3J,J] of the Green’s functions
where o~
~ S"TWLI,J
Guatbeth )= I o
Ko(t)= %_(e”‘—l). (40) ’ ’ J=J=0

is related to the dynamic free energy functiohdB,s] by

Having the modified Gaussian propagator at our disposal wthe Legendre transformation
are in the position to calculate the diagram depicted in Fig.
3(b). This calculation leads eventually to 1“+W:J d dt[s(x,t)J(x,t)+~s(x,t)3(x,t)], (47)
Go(—Xo,0k=22,w;1,)c w1+ Ap(Xo)w+O(w?)].

(41)  with SWI8d=s, SWIS8I=3, 6T'/6s=J, and 6T/ 58=J. T
is of great importance in dlagrammatlc perturbation theory
because it is the generating functional of the irreducible ver-
tex functions. The dependence Ibfupon the coupling con-
stantg can be written in the form

with the amplitudeAp(X,) reading

3

3
Ap(Xo)= g (Z— 5)- 42

I'[s,s;g]=g 2®[gs,gs;u]. (48)
For details on this calculation we refer to the Appendix.

Little further work is required to extract the logarithmic The expan5|on of the functiond[,¢;u] into a series of
corrections to the survival probability. Recalling the scalingu=G.x °g® yields the loop expansion. The zeroth-order
form (8) and our choice for the flow parameter we deducetermg™ 2d[gs,gs;0] is nothing else then the response func-
that for =0 tional 7 (2) itself. Hence,J constitutes the mean-field part
of the dynamic free energy. From the RGQB) for the
Green’s functions it follows that the RGE for the renormal-
ized dynamic free energy is given by

D ——fddxdt S(X,t) ——— 0 +3(x,t) 0
Is(x,t) T S(x,)

XT[3,s;7,u;\, u]=0. (49

P(t)=—Z(W)"(ul)?Go(—Xo,02,W;1,1). (43

Inserting our results for the characteristics as well as(&1).
combined with Eq(42) we obtain

tP(t)=Py(w 1+ Bp)Y%exd — cpw+ O(W?)]

=Py(s+Bp)3 1 33

S Exploiting the findings of Sec. Il C, the solution the RGE

(49) is found to be

s® S

bplns+cpjL (Inzs Ins 1)

(44)

PP _ —1 —1/2.
Po and P are nonuniversal factors. The constabts cp, P{s,simuik, w]=T[Z(W) 5. 2(w) 52 (w)
andBp=2Ap are given by X 7,W; Zy (WA, ]. (50
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Now we revisit the Langevin equatiqda). If the simple  wherec is a convenient dimensionless positive constant. De-
epidemic process is supplemented by an additional constafihing
particle sourceén, Eq. (1a) is modified to

P(W)=Z,(w) " *Z(w) a2y (w) (59
A" Loin(x,t) =V2n(x,t) — Tn(x,t)— gn(x,t)2+ h+ Z(x,t). we arrive at
(51) 4mhl p2=R?Z, (W)Z (W) wZ(w)] Y22
The extra term in the Langevin equation induces an extra X F(cp(w)6,c(1— 6),w). (60)

term in the response functioné),
Next we determine the functionp(w) so that
~7—>jh=j—f dIxdtARS(x,1). (52) _F(cp(w)_a,c(l— #),w) is analytic in6 and has_ an exp_ansion
in w. Using the one-loop resul55) we obtain readilyd,
- _ =2+0(w?) and
Hence, the sourcé is shifted by\h, and, to obtain the true

generating functional of the irreducible vertex functions, we p(w)=1+w(1—Inc)/4+0O(w?). (61)
have to translate the fielslby its mean valuévl. Then it is
not difficult to sed[13] that It follows that

ST 2¢ 2F(cp(w)f,c(1—60),w)=60(2— 6)+O(w?). (62

Ah= =T ¢M,7)=g d, (gM,7, _ _ o
55(X,t) X 0sM 1dM.7)=g 1dgM.7.U) Using Eqgs.(10), (12), and(58) in conjunction with a res-
e (53  caling of the arbitrary dimensionless variatitewe get

constitutes the EQS that relates the particle source to a con- r=—3inR=w"'—a;Inw+O(w). (63)

stant mean particle densityl for a givenr. By simple di-

mensional considerations we find thiby ; obeys the scaling The constana, is given by

relation Bak1t 23 133+ 53| 4 0.851533. (64)
- = —IN=—=0. .
Dy (M, 7,U; N, ) =A@y (gM/ 2, 7/ n?,u;1,1) ' 28> 1929673
—\ w (M 2, 7l u2,0). (54)  Exploiting Eq.(15) we obtain for the dimensionless coupling

constant as a function afthe asymptotic expression

L Inr o In?r Inr 1
w=r"lexga,—+0| —,—,—
1y ;2’22

A one-loop calculatiorf13] yields

(x+y) ) (65)

2

F(X,y,u)/x=(y+x/2)+u [In(x+y)—1]+0(u?).

(59 Collecting our results we get finally the equation of state in

Exploiting now Eqgs.(50) and(54) we get the result parametric form:

h= G, /w(l )"z, (w)Z(w) YF
X (VW/G,Z(W) " Y2M /(1 )92, Z (W) 7/ (1 )2, w),  (56)

for the general scaling form of the EQS. Hefesl(w) is =RO(r+Y 1/3[1_

1l 79=R(1—6), (663
M/Mo=RO(w ™+ ) Yexg —cyw+O(w?)]

bylnr+c In%r Inr 1
um( )

given by Eqs(9) and(10). 222
B. Behavior at the upper critical dimension d=4 (660)
In four dimensions we havé,_,=1/(47)2. Following h/ho=R?6(2— 6)ex{ —w/6+O(w?)]
our work ford<4 in Ref.[13] we will cast the EQS in a

parametric form. To this end we make the ansatz =R26(2— )

1 ! +0 int 66
“Br r_2 . (660
Tu?=R(1-6), 47M/u?=fy,(w)R6 (57)

The constant®y,, ¢y, andc, are given by
so thatR=0 corresponds to the critical point. The parameter

0 describes the crossover from the absorbing to the active a, 133 53 4
phase. The source is zero fé+0 and6= 6,>1. We expect bu=73 = 576" 2gg"3 ~0-283844, (674
that 6,=2. After inserting the ansat7) into the scaling
form of the Eqs(56) we choose the parameterso that Ky ke 71 17 4
Cm=——Ba—5 = 5=a— =a:INZ =0.079712. (67b)
|72Z (w)R=c, (58) B2 B2 768 3843
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Equations(65) and (66b) show directly that the arbitrary mensionful nonuniversal constafli;. Only in the limit
constant) can be eliminated by a rescaling of the nonuni-|In(h/hy)|— we obtain the mean-field equation of state al-

versal constantsy, My, andhy. However, we keep’ in our

though with the logarithmically corrected scaling variables

formulas for the same reasons for which we kept the nonuni¢72). This intricacy may indeed be relevant for the explana-

versal constang in Sec. Ill .

To the order we are working here it is possible to elimi-

nate the parameté& completely. Exploiting Eq963), (663),
and(66¢) we can expresR in terms ofr andh as

R=[1+O(w)]\(7/70) 2+ h/ho.

Using Eq.(68) we can recast our results stated in E@5)
and(66) as

T R =wiSexg — o0 +0(w, (69

(68)

and
/ 1—6
I\/IT/ICI) = (W) T 1+ eyw+ O(w?)],
0
(709
hihy  2—6
(M/MO)2: 5~ (W) T L (o~ UG)w+O(w?) ],
0

(70b)

tion of simulation result$12].

V. CONCLUDING REMARKS

In summary, we have investigated logarithmic corrections
to scaling in DP by using renormalized dynamical field
theory. We calculated the leading and the next to leading
logarithmic correction for the numbéi(t) of active sites at
timet generated by a seed at the origin, the radius of gyration
R(t) of the corresponding cluster, as well as its survival
probability P(t). Moreover we determined the logarithmic
corrections to the mean-field equation of state that describes
the dependence of the stationary particle denbityr,h)
upon 7 and an auxiliary external homogeneous source

Our result involve two nonuniversal scales. The dynamic
observables depend on the nonuniversal time ggaad our
asymptotic expansions are valid for timest,. Note thatt,
may serve as a measure of quality for microscopic models of
DP with respect to their suitability for numerical simulations.
The smallerty is for a given model, the less computer time
will be required in order to get good statistics on the critical
behavior of DP. Our results for the EQS define the nonuni-

_Finally, we recast our results in yet another form. As weyersal scald, associated with the auxiliary source. The EQS
will see shortly, this form highlights an interesting and prob-depends ot unless the limifIn(h/hy)|— is reached. Only

ably important intricacy. If we take only the leadifg loop)
terms in Eqgs.(69) and (70) into account, our results boil
down to the EQS

1/3
, (7D

M
Mg

7)2 h

S
n T_0+h_0

which is appealingly simple in staturél ;= (3/4)}3M, is

7o ho 7o

in this limit one can expect logarithmically corrected mean-
field behavior of the EQS. This should and probably has to
be taken into account when numerical data on the EQS are
analyzed. The existence of the nonuniversal sdglesdh

can be regarded as two examples for Coleman’s concept of
dimensional transmutation in naively scale-independent field
theories. In other wordd, andhg are akin to the hadroni-
zation scale of quantum chromodynamics.

another nonuniversal constant. Now we switch to the scaled From the experience one has with other systems at their

variables

B 7l 79 B M/Mé 72
Jhihy' JVhiho|In(h/hg) |3

respective upper critical dimension, in particular, linear poly-
mers ind=4, we expect that logarithmic corrections are of
clear significance with respect to numerical simulations of
DP ind=4. This expectation is corroborated by recent simu-
lations[12]. The aforementioned experience and the fact that

By incorporating the corrections coming from the two-loop W& Went up to the second logarithmic correction make us

order we obtain

Y:(W—X){H % 1/3{ 1- % 4a,Inr
Jr12cM—1—L +o<ﬁ)]. (73
J1+Xx2 r2
In this formula the variable is given by
3 In(1+X?)
r=§|ln(h/ho)|[1+m}. (74

Note that this asymptotic EQ&J) is not only a relation
between the scaling variabl€g2) but it also includes a di-

confident that our results will compare well with simulations,
perhaps even quantitatively. We hope that our analytical es-
timates trigger an increase effort to determine logarithmic
correction for DP numerically with high accuracy.

Note added in proofln the meantime we have learned
that F. van Wijland, K. Oerding, and J. Z. Hilhorst have
calculated the leading logarithmic correction for the mean
density of the active particles starting from a homogeneous
initial distribution [28].
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APPENDIX: CALCULATION OF GREEN’'S FUNCTIONS é‘l 1=ZGy =

1+ % Gy, (A73)
In this appendix we outline our one-loop calculations of

scaling functions belonging to the Green’s functi@hgs, and . u

Gop,1. These calculations provide us with the amplitudes A=Z"1Z,\= ( 1- —))\, (A7b)

An(Xo), Ar(Xp), andAp(X,) that enter the second logarith- e

mic corrections for the dynamic observables.

u
1+—

R _
NT=Z""ZN\T .

AT, (A7c)

1. The Green’s function G, ;

Here we provide some of the details of the calculation thatind using the intermediate results in E42) combined with
leads from the Dyson equatiof2l) to our result forG;;  Eq. (A4) we obtain the renormalized Green’s function
stated in Eq(23). First, we carry out the momentum integra-
tion in the self-energy22). This step leads to u

o9z P G.4a0=6(a.)| 1+ 311+ @)in2ru

Ng)Zexd — N (27+g?%/2

_ 0o oM@re2]

S(g,t)= .
(@t 2(8mt)9? +Ce—lgfa)]+atexpd—a)}|. (A8)

Next, we substitute EqAL) into Eq.(21). After an integra-

tion we obtain Note that thes poles are indeed removed by our renormal-

U(2A w2t)#72 Iza:[Il\(/)vr:). results important for the_logarithmic _correction can
lel(q,t)=G(q,t)[1— m be extracted fron{A8). Upon settingae=0 we find
L G11(q=0Apt=Xq;7=0w;1,) =1+ §(Z+1)w,
><J’ dx(1-x)x Pexp —ax)|. (A2) (A9)
’ and hence the amplitudg(X,) as stated in Eq23). More-
Here, we introduced the shorthand notation over, we get
9° J
a=<7—7 At. (A3) —Xala—qzlnGlll(q,)\,uztzxo;T=0,W;1,1)|q2:0
The remaining integral is calculated in dimensional regular- 1+ 2(Z- 1w, (A10)

ization. A subsequent expansion yields

> which leads to our result fohg(Xy) given in Eq.(30).
- g =1+ exp( a)

1
f dx(1—x)x~Y%exp —ax)=(1+a)
0 2. The Green'’s function G,
+1-exp—a)+O(e), Here we provide selected details on our one-loop calcula-
(A4) tion of Gg ; as required in Eq(35). We start by solving the
differential equation37) and(38). The initial and terminal
where the entire exponential integral is given by conditions for the fields necessitate the ansatz

o

C[rlmexaey) & (0K
o= [y S e e

M(t)=—6(—t)K(—t)" ™. (A11)

The type of the source ternk(t) =ké(t) with k—o, de-

, , mands the initial conditioiK(0)=0. With this information,
The next step is to remove thepoles by emplaying the  ihe gifferential equation(38) can be transformed without

renormalization schem@). We letG; ;—Gy 1, A=\, 77, much effort into the integral equation

and use the one-loop results

t , -
u u K(t)+g=e)‘“< J dt’ e Mt K(t')ZT(—t')+g )
Z=1+—+---, Zy=1+=—+---,  (A6a) 27 0 27
4g 8e (A12)
B u ., 2u At mean-field level, the solution to E¢A12) is given by Eq.
Zr=lt oot Zu=la e (AGD) (40). Inserting the correspondinilo(t)=—Ko(—1t) ! into

016125-9



H.-K. JANSSEN AND O. STENULL

the differential equatiori37) we find the modified Gaussian

propagator as stated in E9).

Now to the computation of the diagram depicted in Fig.

3(b). After some intermediate steps we obtain

e[l

Ko(t")3exg 2 r(t—1")]
[8mA(t—t)]9?

K(t)2T(— t)—

(A13)

The further evaluation of EQA1J) is fairly straightforward
for 7=0. After ¢ expansion we find
)\93(2)\':)5/2

KT (~t)=~ 164m

( 6 3
‘g+§)- (A14)

Insertion of this intermediate result into EEA12) yields

PHYSICAL REVIEW B69, 016125 (2004

g)\t

B u(2aplt)?( 3
K(t)= 1+ (— -*3 (A15)

4T (1+¢/2)

Next, we renormaliz&(t). Indicating the consistency of our
previous steps, the appropriate combination of renormaliza-
tion factorsZY/?Z~*=1+3u/(4¢)+--- cancels the: pole in
(A15). The renormallzedK(t) reads

Kity= 2t g)\t

3u 3
1- —( IN(A w?t)+Cg— 5” (A16)

Exploiting Gg 1(—t) =K(t) ~* and A u?t=X, as well as re-
calling the definition ofZ we finally obtain

27XoGo 1 — N pPt=Xo;7=0w;1,1)

3
w1+ 2
w Z[l 8

2
Z-5|w|. (A17)
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