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Anomalous diffusion and collapse of self-gravitating Langevin particles inD dimensions
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We address the generalized thermodynamics and the collapse of a system of self-gravitating Langevin
particles exhibiting anomalous diffusion in a space of dimenBiofhis is a basic model of stochastic particles
in interaction. The equilibrium states correspond to polytropic configurations similar to stellar polytropes and
polytropic stars. The inder of the polytrope is related to the exponent of anomalous diffusion. We consider
a high-friction limit and reduce the problem to the study of the nonlinear SmoluskigRwisson system. We
show that the associated Lyapunov functional is the Tsallis free energy. We discuss in detail the equilibrium
phase diagram of self-gravitating polytropes as a functio® @indn, and determine their stability by using
turning point arguments and analytical methods. When no equilibrium state exists, we investigate self-similar
solutions of the nonlinear Smoluchowski-Poisson system describing the collapse. Our stability analysis of
polytropic spheres can be used to settle the generalized thermodynamical stability of self-gravitating Langevin
particles as well as the nonlinear dynamical stability of stellar polytropes, polytropic stars and polytropic
vortices. Our study also has applications concerning the chemotactic aggregation of bacterial populations.
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[. INTRODUCTION mizes Boltzmann’s free energy at fixed mass. The equilib-
rium state is then determined by solving the Boltzmann-
In preceding papergl—4], we have studied a model of Poisson(or Emden equation, as in the case of isothermal
self-gravitating Brownian particles enclosed within a spheri-gaseous stars and isothermal stellar systgtB8sl9. How-
cal box of radiusR in a space of dimensioB. This model ever, depending on the value of the temperafjran equi-
can be considered as a prototypical dynamical model of sydibrium solution does not always exist and the system can
tems with long-range interactions possessing a rich thermaindergo a catastrophic collapse. We determined analytically
dynamical structure. For simplicity, we considered theand numerically self-similar solutions leading to a finite time
Smoluchowski-PoissofSP) system which is deduced from singularity[2,3]. In Refs.[3,4], we showed that the evolution
the Kramers-Poisson system in a high friction lir for  continues after the collapse until a Dirac peak is formed.
large time$. These Fokker-Planck-Poisson equations were | this paper, we propose to extend our study to a gener-
first proposed in Ref.1] as a simplified dynamical model of 4jized class of Smoluchowski equations proposed in Ref.
self-gravitating systems. Their relation with thermodynamics[zo]_ They can be obtained from the familiar Smoluchowski
(first and second principlgsvas clearly established in terms equation by assuming that the diffusion coefficient depends
of a maximum entropy production principle, and their rich on the density while the drift coefficient is constdot the
propl)_erties(lse_lf-o;]ganizelq §tates or i:(ollap;were ?}escribed f oppositg. They can also be obtained from standard stochas-
B e Touo S 1 o processes by consideing  specal o of mulplcatie
Refs.[2-4], complemented by rigorous mathematical results{'o'se[zo'zjJ oran ex_tended class qf tran5|t_|on probabllltl_es
(see Refs[5—9] and references thergin 22,23]. These equations are cqns_|stent with a gengrallzed
PlanckMaximum entropy production princip[€0]. For simplicity,

The Smoluchowski equation is a particular Fokker- P - .
equation involving a diffusion and a drffL0]. In our model we shall assume that the diffusion coefficient is a power

the drift is directed toward the region of high densities due tdaw of the density. In the absence of drift, this would lead
the gravitationa' force which is generated by the partic'eéo anomalous dlf‘fUSIOI’l. |f we take Into account a d”ft term
themselves. This retroaction leads to a situation of collaps@nd a self-attraction, we have to solve the nonlinear
when attraction prevails over diffusig@—4]. The SP system Smoluchowski-PoissonNSP) system. It can be shown
also provides a simplified model for the chemotactic aggref20,24 that the NSP system decreases continuously a free
gation of bacterial populatiorid1] and for the formation of energy associated with Tsallis entrof®b]. Accordingly, the
large-scale vortices in two-dimensional hydrodynanikd-  stationary solutions of the NSP system are given by a poly-
17]. It can be shown that the SP system continuously detropic distribution which minimizes Tsallis’ free energy at
creases a free energy constructed with the Boltzmann erixed mass. The equilibrium state is then determined by solv-
tropy [1,2]. Accordingly, the stationary solutions of the SP ing the Lane-Emden equation, as in the case of polytropic
system are given by the Boltzmann distribution, which mini-stars and stellar polytropg48,19. Depending on the value
of the control parameter and on the inderf the polytrope,
three situations can occui) the NSP system can relax to-
*Electronic address: chavanis@irsamc.ups-tlse.fr, ward an incomplete polytrope maintained by the walls of the
clement.sire@irsamc.ups-tise.fr confining box;(ii) the NSP system can relax toward a stable
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complete polytrope of radiuR, <R, unaffected by the box; ation, we give numerical evidence that «,, so that the
and (i ) the NSP system can undergo a catastrophic collapsemperaturel (t) is finite at the collapse timéthis observa-
leading to a finite time singularity. tion has been made independently in Rgf] for the SP
The paper has two parts that are relatively independent. I8ystem. However, the convergence to this value is so slow
the first part of the papetSecs. Il and I, we study the that the evolution displays a pseudoscaling regime with
dynamical stability of stellar systems, gaseous stars and two= @< anm, for the densities achieved. We explain the physi-
dimensional2D) vortices by using ahermodynamical anal- cal reason for this behavior and we conjecture that
ogy [20,23,28. Stellar polytropes maximize the Tsallis en- = amax Will be reached in more realistic models with a non-
tropy (considered as & function) at a fixed mass and uniform temperaturg34]. This paper closely follows the
energy. This is a condition of nonlinear dynamical stability Style and presentation of our companion paper for isothermal
via the Vlasov equation. Polytropic stars minimize the Tsallissphereg3]. These two papers complete the classical mono-
free energy(related to the star energy functiopalt a fixed graph of Chandrasekhar on self-gravitating isothermal and
mass. This is a condition of nonlinear dynamical stability viapolytropic spheres ifD =3 [18].
the Euler-Jeans equations. Polytropic vortices maximize the

Tsallis entropy(considered as Bl function) at a fixed circu- II. DYNAMICAL STABILITY OF SYSTEMS

lation and energy. This is a condition of nonlinear dynamical WITH LONG-RANGE INTERACTIONS

stability via the 2D Euler equation. These metaequilibrium

states can emerge in complex systems as a result of an in- A. Stellar systems

complete violent relaxatiop27]. Our dynamical interpreta- | et us consider a collection dfl stars with massn in

tion of the Tsallis entropy as a particuléd function [28]  gravitational interaction. They form a Hamiltoniadrbody
differs from the thermOdynamical interpretation proposedsystem with |ong_range|\]ewtoniar) interactions. We work
by Boghosiarj29] in 2D turbulence and by Taruya and Saka-in a space of dimensioP and enclose the system within a
gami [30-37 for self-gravitating systems. We perform an gpherical box of radiuR. Let f(r,v,t) denote the distribution
exhaustive study of the structure and stability of polytropicfynction of the system, i.ef(r,v,t)d°rd®v gives the mass
spheres by determining whether they are maxima or minimgs stars whose position and velocity are in the celiv(r

(or saddle pointsof the Tsallis functional. For sake of gen- | gPr v+ dPv) at timet. The integral off over the velocity
erality, we perform our study in a space of dimensidrWe  §etermines the spatial density
shall exhibit particular dimension® =2, 4, 2(1+v2) and
10 which play a special role in our problem. The dimension b
D=2 is critical because the results established r2 P:f fd"v. @
cannot be directly extended =2 [3]. On the other hand,
the nature of the caloric curve changes =4 and D The total mass of the configuration is
=10. This extends the study performed by Taruya and Saka-
gami[30,31 and Chavani$26,33 for D=3.

In the second part of the papéBec. I\), we study the |V|=f pd®r. 2
dynamics and thermodynamics of self-gravitating Langevin
particles experiencing anomalous diffusion. Their equilib-
rium distribution minimizes the Tsallis free energy at fixed
mass. This is a condition of thermodynamical stability in a
generalized sense. This is also a condition of linear dynami- 1 1
cal stability via generalized Fokker-Planck equatiginsthe E= _J fu2dPrdPv+ _J p®dPr=K+W, 3
present context the NSP systef,20,24. Thus, the stability 2 2
analysis of Sec. Ill can also be used in that context. When the
static solution does not exist or is unstable, the system uriwhereK is the kinetic energy and/the potential energy. The
dergoes a catastrophic collapse. In Sec. IV, we show that th@ravitational potentiald is related to the density by the
NSP system admits self-similar solutions describing the colNewton-Poisson equation
lapse and leading to a finite time singularity. The density
decreases at large distancepas . In the canonical situ- AP=5,Gp, 4
ation (fixed T), the scaling exponent ig,=2n/(n—1)
wheren is the polytropic index. We also consider a microca-whereSy is the surface of a unit sphere inCadimensional
nonical situation in which the generalized temperaflite) space ands is the constant of gravity.
varies in time so as to rigorously conserve energy. In that For fixed N>1 andt— + %, the system is expected to
case, the scaling equation has solutions fap<«  reach a statistical equilibrium state described by the classical
< amadnD) Where a,,(n,D) is a nontrivial exponent. The Boltzmann entropySg[ f]=— [ f In fd°rd®v. However, the
value of « effectively selected by the system is determinedrelaxation timet,e 5 due to “collisions” (more properly
by the dynamics. In Sec. V, we perform direct numericalclose encountejss in general considerably larger than the
simulations of the SP and NSP systems with higher accuracgtynamical timety so that this statistical equilibrium state is
than in Ref[2]. We confirm the scaling regime and discussoften not physically relevani35,3¢. This is the case in par-
the value of the scaling exponent. In the microcanonical situticular for elliptical galaxies whereé,q |2~ (N/In N)tp with

In the mean-field approximation, the total energy of the sys-
tem can be expressed as
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N~ 10'2, while their age is~ 100ty [19]. Fort<t,,,x and  The first term is the internal energy, the second the gravita-
N— +o0, the dynamics of stars is described by the Vlasovtional energy and the third the kinetic energy associated with
equation the mean motion. As argued in RgR6], the variational
problem

of  of of

STV HF =0, (5) MinW[p] atfixedM[p] (12)
determines a stationary solution of the Euler-Jeans equations
with strong (nonlineaj dynamical stability properties. We
shall not prove this result here but it is expected to follow
from relatively standard methods of stability theory. The so-
S[f]:_j C(f )dPrdPy, (6) lutions of this variational problem satisfy the condition of

hydrostatic balance

whereF=—V® is the gravitational force determined by the
Poisson equatio). For anyH function,

where C is convex, i.e.,C">0, it can be shown that the Vp=—-pVd, (13
variational problem
between pressure and gravity. The foregoing results can be

MaxS[f] atfixedE[f],M[f], (7) extended to barotropic stars rotating rigidly with angular ve-
locity Q [38].
determines a stationary solution of the Vlasov equation with
strong (nonlineaj dynamical stability propertie$28,37. C. Two-dimensional vortices

Such solutions can result from a procesgpdssibly incom-
pletg violent relaxatio 26]. Introducing Lagrange multipli-
ers, the first order variation8S— BSE— «6M =0 lead to

Let us finally consider a collection dfl point vortices
with circulationy in 2D hydrodynamics. They form a Hamil-
tonian system with long-rangéogarithmig interactions. We
call w the vorticity, ¢ the stream function, and=—-zXxXVy
—a. (8) the velocity field. We also not& = [wd?r the circulation
and E=1/2[ wyd?r the energy. For fixedN>1 andt—

) _ +0, the system is expected to reach a statistical equilibrium
Therefore,f=1f(e) wheree=(v/2)+® is the energy of & gtate described by the classical Boltzmann entrSglo]
star by unit of mass. These distribution functions, depending_ — fwIn wdr [39]. However, the relaxation time,,, due

only on the energy, form a particular class of stationary soyq, «collisions” is in general considerably larger than the dy-
lutions of the Vlasov equation. Other solutions can be conyamical timety,, so that this statistical equilibrium state is
structed with the Jeans theorefh9] but their stability is  jfen not physically relevarftl5,16]. For t<t,e|a, andN—

more difficult to investi_gat_e. The cpnservation c_)f an.gular+oo, the dynamics of point vortices is described by the 2D
momentum can be easily included in the foregoing discUsgjer-Poisson system

UZ
—+d

c'(f)=-p|5

sion[38].
Jw _
B. Barotropic stars It +u-Vo=0, (14)
Let us now consider a self-gravitating gaseous system de- _
scribed by the Euler-Jeans equations w=—Ay. (15
dp The Euler equation also governs the dynamics of 2D incom-
E+V(pu)=0, (9)  pressible and inviscid continuous vorticity fields. For aty
function,
au 1
i HUVu=—_Vp-va. (10 Stol=- | clod, (16

We assume that the gas is barotropic with an equation ofvhere C is convex, i.e.,C">0, it can be shown that the
statep=p(p). The most important examples of barotropic variational problem

fluids are those that are isentropic or adiabatic, that is those )

whose specific entropy is constantsk const, the first prin- MaxSw] atfixedE[w],I' o], (17)
ciple of thermodynamicslu= —pdv +Tds (wherev =1/p)
reduces talu= (p/p?)dp, whereu is the internal energy by
unit of mass. The total energy of the fluid is therefore

determines a stationary solution of the 2D Euler equation
with strong (nonlineaj dynamical stability propertief40].
Such solutions can result from a procesgpdssibly incom-
plete violent relaxatio{17]. Introducing Lagrange multipli-

W[p]zj pfp p(p,)dprdDHlf p(I)dDr'i-f pu_der ers, the conditionsS— B6E— a61'=0 leads to
o p'* 2 2 '
(1) C'lo)=-By-a. (18)
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Therefore,o=w(#), which is the general form of stationary 1

solutions of the 2D Euler equation for domains with no spe- Sq=— Tlf (f9—=f)dPrdPv (19

cific symmetries. The conservation of angular momentum q

a_nd impulse can be easily included in the foregoing discusz; 5 fixed mas#/ and energyE, whereq is a real number.

sion [20]. For g—1, Eq. (19) reduces to the ordinary Boltzmann en-

tropy describing isothermal stellar systems. We emphasize

) o ~ that, in the present context, Tsallis and Boltzmann entropies
Since the variational problentg), (12) and(17) are simi-  are particulaH functions(not true entropigsthat are related

lar to the usual variational problems that arise in thermodyyo the dynamics, not to the thermodynamics. Still, due to the

namics(with the Boltzmann entropywe can develop ther-  hermodynamical analogy discussed in Sec. 11D, we shall

modynamical analogyo analyze the dynamical stability of e 5 thermodynamical langage to study the dynamical sta-

stellar systems, gaseous stars, and 2D vorfit€20,23,28  jivy problem. In this analogy, the dynamical stability crite-

In this analogy, the functiond plays the role of a general- o "¢, stellar polytropes corresponds tordcrocanonical
ized entropy,3 is a generalized inverse temperatys¢g) a stability condition

generalized caloric curve etc.... The variational probl&n o : '

is similar to a condition of microcanonical stability. We can Jhe t%”tlcal g.?mts of entropy at fixed mass and energy
also introduce a generalized free enerdy|f]=E[f] satisfy the condition
—T9 f] which is the Legendre transform 8f f]. The mini- 5S.— BSE—\SM =0 20
mization of F[ f] at fixed T andM[f] is similar to a condi- 0B ' 20
tion of canonical stability. This is equivalent to first minimize where 8= 1/T and\ are Lagrange multiplieréT is the tem-
F[f] at fixed p(r) to get f,(r,v) and then to minimize perature and\ the chemical potential in the generalized

Flp]=F[f,], calculated withf, , at fixedM[p]. Now, it  gensp The variational principlé20) leads to the polytropic
can be showi26] thatF[ p] is precisely functionalll) with  istripution function

u=0. Therefore, the variational problefi2) is similar to a
condition of canonical stability. Since canonical stability im- (q—1)B
plies microcanonical stabilitgbut not the convergg20], we f(r,v)= { M=
conclude that “stellar systems are stable whenever corre- q
sponding barotropic stars are stable” which provides a ne 1 (A . P
interpretation of Antonov’s first la26]. Vﬁvfgsrteh;g rélztio(r? DI\ J/q. We define the polytropic index
In 2D hydrodynamics, the variational probleti?) is
similar to a condition of microcanonical stability. It is stron- D
ger than the maximization aff w]=S w]— BE[ w] at fixed n=- +
B and I'Tw] (canonical stability, which is just a sufficient
condition of nonlinear dynamical stability. It is not a neces-
sary condition of stability if the ensembles are inequivalentta
(i.e., if the “caloric curve” presents bifurcations or turning
pointg. Arnold’s theorems just provide sufficient conditions
of canonical stability(see, e.g., Ref.20]). Therefore, in the f=A
domain of inequivalencegcorresponding to a region of
“negative specific heatg”a flow can be nonlinearly dynami-
cally stable while it violates Arnold’s theorems. This has
:nm&)étz?lt implications in jovian fluid dynamics as discussed A (q—1)8]¥a-1 1—(g—1)r
4. =l— , = ————(———
The preceding arguments also apply to other systems with 4 (a-1)B
long-range interactions such as the HMF model, for exampl . ,
[42]. This opens the route to many generalizations by chang(?-f n>D/2 (i.e. q>1 and>0), {'(e) <0 wheree=(v?/2)
ing the potential of interaction and the “generalized entropy” T ® is the stellar energy. Therefore, high energy particles are
(H function). In this paper, we shall specialize in the case of€SS probable than low energy particles, which corresponds
particles interacting via a Newtonian potenti@.g., self- to0 the physical situation. Equatid@3) is valid for v <vmax
gravitating systems, 2D vortices). We shall also considera =v2(a—®). If v>vp=V2(a—P), we setf=0. This
special form of thed function, known as the Tsallis entropy, distribution function describes stellar polytropes which were

D. Thermodynamical analogy

U2

7+<D(r) , (21

] Uq-1)

1
q-1
We first consider the case{1)8/q>0 and allowp to
ke negative values. Then, E@1) can be rewritten

(22

n—(D/2)
, (23

02
a-®- %

where

(24)

leading to power-law distribution@olytropes. first introduced by Plummd#3]. If n=D/2 (i.e.,q— ), the
distribution f(€) is a step function. This corresponds to the
IIl. EQUILIBRIUM STRUCTURE OF POLYTROPIC self-gravitating Fermi gas at zero temperatuf@hite
SPHERES IN DIMENSION D dwarfg. In D=3, classical white dwarf stars are equivalent
to polytropes with index=3/2[18]. In D-dimensions, clas-
A. Stellar polytropes sical “white dwarf stars” are equivalent to polytropes with

Let us consider a particular class of stationary solutions ofn index
the Vlasov equation calledtellar polytropes[19]. Nonlin-
early dynamically stable solutions maximize the Tsallis en- n _E (25)
3/2— 2 .

tropy
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If n—+o (i.e.,, g—1), we recover isothermal distribution Using Egs.(24) and (28), the distribution function23) can

functions. If n<D/2 (i.e., q<1 andqB<0), high energy be written as a function of the density as

particles are more probable than low energy particles:

f’(€)>0. This situation is unphysical but it can be consid- o E

ered at a formal level. The distribution function diverges like " Z

(1— /v ma)™ P? asv — v max. The moments of converge if

and only ifn>D/2—1. Therefore, ifD/2—1<n<D/2 (i.e.,  with

g<0 andB>0), stellar polytropes exist mathematically but

they are not physical. Iih<D/2—1 (i.e., 0<q<1 and z=2P"?"15,B(D/2n+1-D/2)[K(n+1)]P2 (33

B<0), stellar polytropes do not exist. o ) . .
We now consider the case ¢ 1)8/q<0. Then, Eq(21) The distribution function32) can also be obtained by maxi-

n—D/2

2/2
1in v ' (3 2)

P T T DK

can be rewritten mizing Sy[ f] at fixedM, E, andp(r), or equivalently at fixed
K=1/2ffv2dPrdPv and p(r). It is then possible to express
p2|n— (D7) the energy(3) and the entropy(19) in terms ofp(r) andT.
f=Alat®+— . (26)  Using Eq.(32), it is easy to show that
D 1
where E=§f pdDr+§f p®@dPr, (34)
(1-q)p|HaY 1-(g=DA
= y a= W (27) D D
q q Silpl=— n- ,BJ pd°r—M|. (35

If n>D/2 (i.e., g>1 and B<0), the model is ill posed be-

causef (v) diverges forv— +o. If n<D/2, the distribution [N arriving at Eq.(35), we have used the identit(m,n
function goes to zero like~(®~2Y for y—+co. If 0<n  T1)=nB(m,n)/(m+n). Proceeding carefully, we can
<D/2 (i.e.,q<1-2/D), the densityo= [ fd°v does not ex- check that forg—1, Eq.(35) reduces to the Boltzmann en-
ist. If —1<n<0 [i.e., 1-2/D<q<D/(D+2)], thedensity  tropy expressed in terms of hydrodynamical .varlalim
exists but not the pressure=(1/D)[fv2dPv. If n<—1  EQ.(9) of Ref.[3]]. The problem of the stability of stellar
[i.e.,D/(D+2)<q<1 andB>0], the density and the pres- POlytropes now amounts to determiningaximaof Sq[ o] at

sure exist. fixed E[p] andM[p].
In conclusion, only positive temperatures states are physi-
cal. f n=D/2 (i.e., g>1), the system is described by the B. Gaseous polytropes

distribution function (23). If n<—1 [i.e., D/(D+2)<q
<1], the system is described by the distribution function
(26). In this paper, we shall only consider stellar polytropes
with index n=D/2. Using Eq.(23), the spatial densityp
=[fdPv and the pressur@=(1/D)[fv2d®v can be ex- 1

pressed as p=Kp?, y=1+_, (36)

We shall consider a particular class of barotropic stars
called gaseous polytropesThey are characterized by an
equation of state of the form

_oD/2-1
p=2 AS(a—@)"B(D/2n+1-Df2), (28 whereK is a constant. We recall that gaseous polytropes are

described by a local thermodynamical equilibrium condition

_ D/2—1 _ pan+l _ andnot by a distribution function of the forn21), except in
P n+12 ASp(a= @) B(D2n+1-D/2), the isothermal case— +« (see Ref.[33]). Their energy
(29 QD is

with B(a,b) being the beta function. In obtaining E®9), o, 1 5 u? 5
we have used the identitB(m-+1,n)=mB(m,n)/(m+n). W[P]:“f pd r+§f pdd r+f7d r. (37
Eliminating the gravitational potential between these two re-

lations, we recover the well-known fact that stellar poly- Using Egs.(34) and (35), we note that the free energy of
tropes satisfy the equation of state stellar polytroped,=E—TS, is

1 1
p=Kp?, y=1+ oy (30) Fq[p]=§fp<bdDr+nf pdPr, (39

like gaseous polytropesee below. In the present context, within an additional constant. Taking=0, we check on this
the polytropic constant is given by specific example thef [ p]=W[p]. In fact, this relation is
. general, as shown in RgR6]. Therefore, the dynamical sta-
_ D/2—1 _ —1hn bility of gaseous polytropes can be settled by studying the
K (n+1) {2 SpAB(D/2n+1-D/2)} =% (31) minimization of F¢[ p] at fixed mass. In the thermodynami-
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cal analogy of Sec. Il, this corresponds taca@nonicalde-
scription. We note finally that the free ener@38) can be
written explicitly:
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which is the D-dimensional generalization of the Lane-
Emden equatiofl8]. ForD>2 and

D

1 K n>
Folpl=5 f p@d°r+ = f (p"=p)d°r. (39 D-2

Eqg. (45 has a simple explicit solution, the singular poly-
tropic sphere

= n3 y (46)

This can be viewed as a free enefgy=E—KS, associated
with a Tsallis entropy in position spaceS,=[1/(y
—1)]1f(p?—p)dPr, wherey plays the role of the param-
eter anK the role of a temperature. The parametgendy
are related to each other by=1+2(q—1)/[2+D(q
—1)]. The equilibrium distribution can be written

_(2[(D—2)n—D]

1/(n—-1)
—-2/(n—1)

The regular solutions of Eq45) satisfying the boundary

y—1 U(y—1) conditions
A= Ky d , (40)

p=

=1, 6'=0 até=0, (49)

which is equivalent to Eq(28). When considering gaseous st pe computed numerically. F&r-0, we can expand the
polytropes, we shall allow for arbitrary value of the index ¢ tions in Taylor series and we find that

n=0.

1 n
g . i . —1_ 2 —
C. D-dimensional Lane-Emden equation 0=1-55¢ 8D(D+2) & (49

The configuration of a stellar polytrope is obtained by
substituting Eq.(23) in the Poisson equatiof) using Eq. To obtain the asymptotic behavior of the solutions for
(1). This yields a self-consistent mean-field equation for theé—+, we note that the transformatiori=In¢ 6
gravitational potentiafb. An equivalent equation can be ob- =¢~2("~1z changes Eq(45) in
tained by substituting the equation of st&89) in the con-
dition of hydrostatic equilibriun{13), as for gaseous poly- d?z (D—2)n—(D+2) dz

, 2[D+(2-D)n]
tropes (the equivalence between these two approaches isy;2 n—1 at - °

(n—=1)°

shown in Ref[26]). Using the Gauss theorem (50)
@: GM(r) (41) ForD=<2 or forD>2 and
dr P71
D+2
whereM (r)=fopSpr’P~1dr’ is the mass within the sphere n<g—5=ns, (52)

of radiusr, we can rewrite Eq(13) in the form

1 d (rDl dp

the density falls off to zero at a finite radi&s . This defines
"

a complete polytropef radiusR, . If we denote by¢,; the
value of the normalized distance at whiék-0; then, foré
— &1, we have

o1gr (42

which is the fundamental equation of hydrostatic equilibrium
in D dimensions. For the polytropic equation of st&36),

we have =—£10 ot D—1(§1_§>2
0 glel[ & T2 &
1 d D_ldpl/n 3
Kn+1) o= g, |10 g | =~ SoGp. (43 +—D(D_1)(§l_§) +} (52)
6 & .

The case of isothermal spheres with an equation of gate
=pT is recovered in the limin—+%. To determine the On the other hand, fob>2 andn>ns, Eq. (50) corre-
structure of polytropic spheres, we set sponds to the damped motion of a fictitious particle in a

otential
1/2 p

SGpo " s

K+ D)

p=pot",

_ D+(2-D)n 1

2 n+1
(n—1)2 z

+
n+1 ’

(2) (53

wherep, is the central density. Then, EG3) can be put in
the form wherez plays the role of position antthe role of time. For
t— +o0, the particle will come at rest at the bottom of the
well at positionzy={2[(D—2)n—D]/(n—1)2Y"" 1 Re-
turning to original variables, we find that

1 d d0)
=—0"

Dl_<§D_1—

£ dz (45)

Ay
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|2[(D—2)n—D]

1/(n—1)
(=12 ] g2 D=9, for ¢ +oo.

(54

PHYSICAL REVIEW E 69, 016116 (2004

gravitating Fermi gas at zero temperature forms a complete
polytrope only ifns,<ng, i.e.,D<2(1+v2)=4.83.

The Lane-Emden equation can be solved analytically for
some particular values of the polytropic index. For 0,

Therefore, the regular solutions of the Lane-Emden equatiowhich corresponds to a body with constant density, we have

(45) behave like the singular solution f@r—+«. To deter-
mine the next order correction, we setzy+2z' with 2’
<1. Keeping only terms that are linear m\, Eq. (50) be-
comes

dZZ/

+(D—2)n—(D+2) dz
dt®

2(0-2)n-D] ,
n—1 dt £=0

n—1

(59

1
—1_ 2 _
6=1- o5&, &=12D. (61)

Forn=1, Eq. (45) reduces to thé®-dimensional Helmholtz
equation. FoD =1,

0=cost, glzg. 62)

The discriminant of the second order polynomial associated

with this equation is

—(D—2)(10-D)n?>-2(D?-8D+4)n+(D—2)>?

A(n): (n_l)Z
(56)
For n—+ow, A(n)~—(D—-2)(10-D). Furthermore,
A(n)=0 for
—-D?+8D—-4+8\yD—-1
n.= (57

- (D—2)(10-D)

For 2<D<10, it is straightforward to check that_ <n,
<ng. Therefore, forn>n5, A has the sign of—(D—2)
X (10— D) which is negative. Thus

0= 0y (§—+),

(58)

C V—A
1+ EWCO{T”'I E+6

whereb=[(D—-2)n—(D+2)]/(n—1). The density profile
(58) intersects the singular solutio@?7) infinitely often at

ForD=2,

Finally, for D=3, performing the change of variablés /¢,
we get

£,=2.40482....

g L
The Lane-Emden equation can also be solved analytically in

any dimension of spac®>2 for the particular index value
ns. The solution is

B siné

1= (64)

1

& OEAL
1+ D(D—Z))

as can be checked by a direct substitution in &&). For
D=3, we recover the Schuster solutiph8]. We note that
05~ &2~ P for é—+o implying a finite mass. This contrasts
with the asymptotic behavior54) of the solutions of

points that asymptotically increase geometrically in the ratiche Lane-Emden equation with index>ns. For D=2,

1: exd2n/\—A} (see, e.g., Fig. 1 of Ref33] for D=3).
For D>10, we haven, <ngz<n_. Therefore, if ng<n
<n_, A has the sign of @ —2)(10-D) which is negative

ns— +o and we are led back to the isothermal case where
an analytical solution is also know}].
Finally, for D=1, the Lane-Emden equation reduces to

and the asymptotic behavior of the solutions is still given bythe form

Eq. (58). However, forn>n_, A(n) is positive and there-

fore

0= 0,

1+EE<A§~K’2+B§—"K’2>] (é—+=). (59

Finally, forn=n_, A=0 and we have

1+ E}W(Aln £+B)

ForD=10,n_— +« so that the asymptotic behavior 6is
given by Eq.(58) for n<+«. Sincedi~ & 2"("~1) at large

0= 04 (€— +00). (60)

&0 =—0" 66

=" 0
This equation corresponds to the motion of a fictitious par-
ticle in a potentialV(6)=6"*1/(n+1), whered plays the
role of position and¢ the role of time. The first integral of
motion is

1 de 2 0n+l

E=3 (d_g) ThrT 67

The “energy” E is determined by the boundary condition

distances, the configurations described previously have a#8) yielding E=1/(n+1). Thus, the solutiorg(§) can be

“infinite mass” which is clearly unphysical. In the following,
we shall confine these configurations within a “box” of ra-

diusR as for isothermal spher¢3]. Such configurations will

be called incomplete polytropesWe note that the self-

written in integral form as

f@(l_xn+l)l/2_ n+1

3 (68)
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Except forn=0 andn=1, it does not seem possible to ob- 10 . . .
tain A(¢) in a closed form. However, the ze of 6 is D=1
explicitly given by
8 -
r 2+n
nr1\2 _ M1 o 5 =1
1772 T 3tn | €9 N 6‘10 1
2(1+n) %
. 4 .
Therefore &, ~\/n/2 for n— +. Furthermore, according to Misotn
Eq. (67), we haved’ (&)= —[2/(n+1)]*2
2 L -
D. Milne variables
As is well known[18], polytropic spheres satisfy a ho-
mology theorem: if6(¢) is a solution of the Lane-Emden 00 0'2 od ole ols ]
equation, themrA?"~Dg(A¢) is also a solution, withA an ' T '
arbitrary constant. This means that the profile of a polytropic
configuration of indexn is always the samécharacterized FIG. 1. Phase portrait of the Lane-Emden equation in the

intrinsically by the functiorg), provided that the central den- plane forD<2 (specificallyD=1). The value of the polytropic
sity and the typical radius are rescaled appropriately. Beindex is indicated on each curve. For +oo, denotedniso, we
cause of this homology theorem, the second order differenf€cover the phase portrait of isothermal spheres.

tial equation(45) can be reduced to first order differential

equation for the Milne variables

o" o'
_§ and v=—§—.

T 0

Taking the logarithmic derivative af andv with respect to

¢ and using Eq(45), we get

ldu 1
Gd—g—E(D—nv_U),
1dv B 1 5

;d—g—g( —D+U+U).

Taking the ratio of the foregoing equations, we obtain

u dov u+tv—D+2
v du u+nv—D °

The solution curve in theu,v) plane is plotted in Figs. 1-4
for different values oD andn. The (u,v) curve is param-
etrized byé. It starts, até=0, from the point (,v)=(D,0)
with a slope @v/du)y=—(D+2)/nD. The points of the
horizontal tangent are determined byrv—D+2=0 and
the points of the vertical tangent hy+nv—D=0. These

two lines intersect at

(D—2)n—D 2
Us="h—1 = VUsTho1

which corresponds to the singular soluti@tv).

(71)

(72

(73

(70

=D = 252 75
u=bD, v= r_gg ( )
For n=ng, using Eq.(65), we have
D 1 & 76
U=——F7—, V== —F3
1+ 5—2 D 1+ 5—2
D(D-2) D(D-2)
Eliminating £ between these two relations, we get
8 T
D=2
n=1
6 I 5 1
10
> 50
T4 i
3
nisolh
2 L -
(74) % 05 1 15 2

FIG. 2. Phase portrait of the Lane-Emden equation in the

.The Milne V_ariab|95 can be expressed in Fermf@X' plane for D=2. At this dimensionns— +, so that the 2D
plicitly for particular values of the polytropic index. For ~ Schuster solutior(65) becomes equivalent to the 2D isothermal

=0, using Eq.(61), we have

solution[3]. In the (u,v) plane this corresponds to a straight line.

016116-8
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’ ' uw'~wpt,  wp=—& e (68, (79)
D=3
6 ~ Ns=5 n=4 n=1 q For n—+®, ¢&—+o, and we are lead to our previous
study[3]. ForD=2, ng— + .
5L _ For n—+=, it is easy to check that the Lane-Emden

function 6 (for polytropes is related to the Emden functian
(for isothermal spheredy the equivalent

2
t ’ 1
.10 | "~ —e . (79
n
2r 7 This suggests to introduce the variablds=u and V=(n
=6 N, 1 +1)v instead of Eq(70). Forn— +o, U andV tend to the
1 . Milne variablesu, v defined in the case of isothermal spheres
] (see Ref.[3]). We could have introduced these variables
0 . ‘ since the beginning but we prefer to respect the notations
0 1 2 3 used by Chandrasekhar in his classical monogtagh
u
FIG. 3. Phase portrait of the Lane-Emden equation in the ) E. Thermodynamical parameters

plane for 2<D <10 (specificallyD =3). For an incomplete polytrope confined within a box of ra-

dius R, the solution of Eq(45) is terminated by the box at
the normalized radiugsee Eq.(44)]

v+u=D. (77)
D-2 .
SDGpé 1/n11/2

K(n+1) (80

a=

More generally, using the asymptotic behaviorétf) de-

termined in Sec. Il C, we can deduce the form of the solu- :
tion curve in the (1,0) plane. For (2D <10n>ng) and for We shall now relate the parameterto the polytropic con

(D>10n5<n<n_), the solution curve spirals indefinitely ;tta;::ilgg((f)rrogr;ﬁrgﬁgarlgzgotﬁmperatuF@ and to the energy.
around the limit point {s,vs). For (D>10h>n_), the

curve reaches the poinuf,vs) without spiraling. ForD R K(1+n) P2 (e
=10, n_—+%» and ng=3/2. ForD<2 and for O>2n M:f pSprPtdr=Sppol =11 f P 1de,
<nsg), the (u,v) curve is monotonic and tends ta,p) 0 SoGpo 0

=(0,+») as £&—¢&;. More precisely, using Eq52), we (8D

have, forn< -+, . .
ave, forn * and using the Lane-Emden equati@), we get

K | | | | M= S D 1 o1p @2
_ = —9pPol & ~ 1-1h a ).
35 11.3076 D=15 PPOl SyGpl 1M
n=1
30 (s . Expressing the central density in termsafusing Eq.(80),
1.2 we obtain, after some rearrangements,
25 b .
n/(n—1)
‘%20 - i S M RI(D-2)n-DJ/(n-1)
3 " G
i5 1.321 - Xa(n+1)/(n—1)0/(a). (83)
10 ¢ 1 For a complete polytrope with raditR, <R, we need to
1.30775 147 stop the integration af=¢;. Thus, the equivalent of the
51 | foregoing equation is the “mass-radius” relation
Misath
0 1 1 1 Il 1
0 25 5 75 10 12.5 15 _ _ K(1+n) N
, M(n_l)/nREfD 2)(ng—nm]/n_ stbn wgn l)ln’ (84)

FIG. 4. Phase portrait of the Lane-Emden equation in the )
plane for D>10 (specifically D=15). For D=10, n_— +. where w,, is defined by Eq(78). For n=n3, the mass is
Therefore, fom>ns=3/2, the phase portrait is always a spiral ex- independent on the radius. This mathematical property is re-
cept for the indexn= + o« for which the spiral is reduced to a point. lated to the limiting mass of Chandrasekhar for relativistic
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white dwarf stard18]. For n=1, the radius is independent The potential energy of a polytrope can be calculated as fol-
on mass. For incomplete polytropes, the parameter lows. Combining the condition of hydrostatic equilibrium
i (13) with the equation of staté30), we get

n/(n— 1

RL(D—-2)n-DJ/(n-1)" (85) (n+1)i(g):— do

M
s

SpG
K(1+n)

ar (93
can be considered as a normalized inverse tempergg8fe _ o _
Indeed, for a given masM and box radiusR, it simply ~ This equation integrates to give
depends on the polytropic constaftwhich is itself related
to B via Egs.(31) and (24). In addition, forn— +, the _ p_p(R)
_ . ) (n+1) +d(R) (99
parameter, reduces to the corresponding one for isothermal p(R)
spheres ¢~ 7../n,7.=BGMmM/RP =2 B=1kT) [3]. In

terms of this parameter, E¢83) can be rewritten Inserting this relation in the integréB) defining the potential
energyW and recalling that the kinetic energy can be written
n=—aM V=D gr (4 (86) K=(D/2)fpd°r, we obtain
This relation can be expressed in terms of the values of the . P(R) 1
Milne variables at the normalized box radius. Writing W———(n+1)K+ ( +1) p(R )M+ M®(R).
=u(a) andvy=v(a), we get (95
= (U M-, (87) ForD#2,®(R)=—-GM/[(D—-2)R" ?] and forD=2, we

take the conventio® (R) =0 (see Appendix A Eliminating
For a given box radiuf and a given polytropic constait  the kinetic energy between Eq81), (92), and(95), we ob-
(or generalized temperatumi®, this equation determines the tain, for D # 2,
relation between the madgl and the central densityg

(through the parametew). For D<2 and for ©>2n _ - D
<ng), the normalized box radius is necessarily restricted W= D+2—(D-2)n (n+1VoR7p(R)
by the inequalitya<¢;. For the limiting valuea=¢,, cor- )
responding to a complete polytrope with radRs=R, we —(n+1) P(R) M + GM (96)
have p(R) (D_Z)RD—Z ’
(€)= wy. (89  and, forb=2,
More generally, for complete polytropes with radiis, 21
<R, we have W=-(n+1)— —§(n+1)7TR2p(R)
R, |[n(P-2)-Dl(n-1) p(R)
— | =X +=(n+1 9
nwn(R) (89 ( )() (97)
Coming back to incomplete polytropes, we note that for the=or complete polytropes for whigh(R,.)/p(R, ) =0, we ob-
indexn=nsg, Eq.(87) can be written explicitly as tain theD-dimensional generalization of the Betti-Ritter for-
mula[18]:
aD+2)2
n= o2 o (90) B -D GM? (D#2), (98
Dl 1+ m) D+2-(D-2)n (D-2)R0"? ’
2
For a— +, we observe thay~ (3/a)? for D=3. _ 1 o [Re B
The computation of the energy is a little more intricate. W=-—(n+1) * ZGM In R (D=2). (99
We first recall the expression of the virial theorem in dimen-
sionD #2 (see Appendix B We note that forD>2, the potential energy is infinite for
=nsg (while the mass is finie Returning to incomplete poly-
2K+ (D—-2)W=DV;pRPp(R), (91)  tropes, the total energE=K+W can be written, forD
#2,
whereVp =S, /D is the volume of a hypersphere with unit
radius. ForD =2, the expression of the virial theorem(g&ee -1 D(4—D)[GM?2
Appendix B “Dr2-(D-2)n|2(D-2) |Ro2 (NTHO-2M
M? ) PR 5
2K — > =27Rp(R). (92 (R) —-DVpR®(n+1-D)p(R) ¢, (100
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and, forD=2,
2 1
E=—(n-1)—g —E(n—l)szp(R)
1 pP(R)
+§(n+1)mM (101

Expressing the pressupgR) in terms of the Lane-Emden
function 6(«) using Egs.(30) and (44), using Eqs{(80) and
(83) to eliminate the central density, and the polytropic
constantK (or temperaturel), and introducing the Milne
variables(70), we finally obtain, forD # 2,

A ERP™? -1

-~ GM?Z (D-2)n—(D+2)
D(4-D) D-2\ n+1-D u,

1— —|, (102
2(D-2) o n+1 v,
and, forD=2,

A . 1n-1u, 1 103
"D I, 20 09

ForD=2 and for D>2,n<ng), the normalized box radius
a in necessarily restricted by the inequality< ¢, . For the
limiting value = ¢,, corresponding to a complete polytrope
with radiusR, =R, we have

A(€1)=N\p, (104)
with
B ~D(4-D)
M30 20D 20 (0r2)] (P72 (109
1
N=g(n—1) (D=2). (106)

More generally, for complete polytropes with radiis,
<R, the dimensionless energy is

R D-2
A=)\n<R—) (D#2), (107
1 1 (R*> _
A—g(n—l)—iln F (D—Z) (108)

Eliminating R, between Eqs(89), (107), and(108), we ob-
tain

A 7("=1)(P~2)J[n(D~2)-D]

[(n=1)(D-2)])/[n(D-2)-D]

= Aol (D#2),

(109

A

142 In(l” (D=2). (110
w

n

1
g(n—1)

PHYSICAL REVIEW E 69, 016116 (2004

This defines the branch of complete polytropes in te
plane. Coming back to incomplete polytropes, we note fi-
nally that, forD>2, Eq. (102 is undetermined fon=ns.
Calculating the kinetic energiK =(D/2)fpd°r with Egs.
(30), (44), and (65), and using the virial theoren®l) to
obtain the potential energy, we find, after simplification, that

D2 2 D 1
A527(4_D) 1+ D(D_Z) aD+2
a §D71 D
on §2 Ddg_ﬁ- (111
Y b5b-2)
For D=3, the integral is explicitly given by
Ja &2 o 9a(a2—3)+3¢§ a2
= ——arctan —|.
0 1+§_2 s 8(a’+3)? 8 V3
3
(112

We note that fora— +o, the energy diverges like\g
~(mV3/64)a for D=3.

F. Minimum temperature and minimum energy

The curven(a) presents an extremum at pointg such
thatdz/da(a,) =0. Using Eqs(87), (71), and(72), we find
that this condition is equivalent to

_(D-2)n-D _

u Ug.
0 n—-1 s

(113

Therefore, the points wherg is extremum are determined
by the intersections between the solution curve in the )
plane and the straight line defined by Efj13). The number
of extrema depends on the value®fandn. It can be deter-
mined easily by a graphical construction using Figs. lam
explicit construction is made in Fig. 20; also see R&8] for
D=3). ForD=2, ug<0 for n>1 andug>D for n<1 so
that there is no extremurftase A. For 2<D=<10, there is
no extremum forn<ns; (caseA), there is one maximum
for n;<<n=ng (caseB) and there is an infinity of extrema
for n>ng (caseC). They exhibit damped oscillations to-
wards the valuerg corresponding to the singular solution
(47). Asymptotically, o follow a geometric progressioa,
~exp{2kn/\— A} (see Ref.[33] for D=3). For D>10,
there is no extremum fan<nj (caseA), there is one maxi-
mum for ng<<n<njg (caseB), there is an infinity of extrema
for ns<n<n_ (caseC), and there is no extremum far
=n_ (caseD). This last case corresponds to an overdamped
evolution towards the valug, (in our mechanical analogy of
Sec. Il Q. For n=ng, using Eq.(90), we find that the ex-
tremum is located a,=D(D+2). For incomplete poly-
tropes, the parametey is restricted by the inequalitigsee
Figs. 5 and §

(case A), (119

NS wp
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25 The curveA(@) presents an extremum at pointg such
D=3 that dA/da(«a,)=0. Using Egs.(102), (71), and (72), we
find that this condition is equivalent to
2 L
2(n+1-D)u3+(n+1)(n+1-D)ugvg
15 | 1
+2(D—n—-1)(D—1)up+ 5D(D—4)(n+1)uo
=
1+t 1 1
+ED(D—4)(n+1)v0+ED(D—4)(2—D)(n+ 1)=0.
(117
05 -
We can check that the poinu{,vs) is a solution of this
equation. On the other handyg=D — 2 for uy=0 andvy~
0 . 0 5 10 —2ug/(n+1) for ug— *. Finally, vg—o for us—u,
In(e) where
FIG. 5. Mass-central density profiles for polytropic configura- ~ D(4-D)
tions in a space of dimension<2D <10 (specifically D=3). A Us _2(n+ 1-D)° (118
mass peak appears for the first time for the indgxForn>ng the
profile displays an infinity of peaks. Far<1,  is a decreasing More precisely, for,—u, , we have
function of a. For D<2, the 5(«) curves are monotonic.
D(D—-4)(D-2)
7<7(a;) (casesB and C), (115 (U0~ U )vo™ 5Ty (D —n—1)? ("~ Ne2)(N~Ns)
=A,(n). (119

n<mns (caseD). (116

. N . ) ) The two roots ofA,(n) aren=n5, andn=ng. They coin-
These inequalities determine a maximum mdes given T cide at the particular dimensidd=2(1+v2). We note also
andR) or a minimum temperatur@for given M andR) be- ¢ u,=0 for D=4. ForD>2 andn=D—-1, Eq. (117)
yond which the system will either converge toward a com-rgqyces tai+v =D — 2.
plete polytrope with radiui, <R (if it is stable) or collapse. The points wheré\ () is extremum are determined by the
This dynamical evolution will be studied in Sec. IV for the jhtersections between the solution curve in tev) plane
nonlinear Smoluchowski-Poisson system. and the curve defined by E¢L17). The number of extrema

can thus be determined by a graphical construction using

2 Figs. 1-4. This graphical construction depends on the values
D=15 of D andn and the different cases are shown in Figs. 7-10.
For D<2, there is no extremunicaseA'). For 2<D <4,
5l there is no extremum fon<ng (caseA’) and there is an
' infinity of extrema for n>ng (case C'). They exhibit
damped oscillations toward the valde, corresponding to
the singular solutiori47). For 4<D <10, there is one maxi-
g 4| mum forn<ns (caseB’) and there is an infinity of extrema
ol for n>ng (caseC’). For D>10, there is one maximum for
n<ns (caseB’), there is an infinity of extrema fong<<n
<n_ (caseC’), and there is no extremum for>n_ (case
05 - D"). This last case corresponds to an overdamped evolution
towards the value\g (in our mechanical analogy of Sec.
IIIC). The appearance of a maximum foxng when D
>4 was a surprise in view of preceding analysis e 3
0 * . * * [26,30,33. The parameteA is restricted by the inequalities
- 1.5 4 6.5 9 11.5 (see Figs. 11 and 12
In(cr)
FIG. 6. Mass-central density profiles for polytropic configura- A<\, (caseA’), (120
tions in a space of dimensidd> 10 (specificallyD =15). Forns
<n<n_ (specificallyn=1.321) the profile displays an infinity of A<A(a@;) (casesB’ and C'), (129
peaks. Fom>n_ (specificallyn=2.5) the functiony(a)— 7 for
a— + without oscillating. A<Ag (caseD’). (122
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FIG. 7. Graphical construction determining the extrema af) FIG. 9. Same as Fig. 7 for<4D<2(1+v2) (specifically D
for D<2 (specificallyD=1). The solid lines correspond to the =4.5). The geometrical construction changesrerns,, n=ns,
solution curves and the dashed lines to the curves defined by E@ndn=D—1. Typical cases are represented. The indices label both
(117). The curves are labeled by the value of the polytropic imlex the solid curve and the closest broken curve.
The vertical lines correspond to the asymptoteu, . ForD<2,

there is no intersection so thAf«) has no extremum. G. Generalized thermodynamical stability

We now come to the generalized thermodynamical stabil-

These inequalities determine a minimum engifgy givenM ity problem. We shall say that a polytrope is stable if it cor-
andR) below which the system will either converge toward aresponds to a maximum of the Tsallis entrgfinee energy
complete polytrope with radiu®, <R (if it is stable or  ata fixed mass and energ¢gmperaturgin the microcanoni-
collapse. cal (canonical ensemble. The stability analysis has already

In Figs. 13—-18, we have plotted the generalized calorideen performed fob =3 [26,30,31,33and is extended here
curve A — 7, giving the inverse temperature as a function oft0 @ space of arbitrz_ary Qimension. This stabjl_ity analysis can
the energy, for different dimensior and polytropic index € used to settle eitht) the dynamicalstability of stellar
n. This extends the results of our previous analysisDin and gaseous polytropésee Sec. Ji or (ii) the generalized
=3 [33]. The number of turning points as a function Bf thermodynamlcaBtablllty of self-gravitating Langevin par-
andn is recapitulated in Fig. 19. ticles (see Sec. IV.
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FIG. 10. Same as Fig. 7 for 2{1v2)<D <10 (specificallyD
=6). The geometrical construction changes forns, n=ngy,,
andn=D — 1. Typical cases are represented. The indices label both
the solid curve and the closest broken curve.

FIG. 8. Same as Fig. 7 for2D <4 (specificallyD=3). The
geometrical construction changes forng,, n=D—1, andn
=ng. Typical cases are represented.

016116-13



P.-H. CHAVANIS AND C.

SIRE

PHYSICAL REVIEW E69, 016116 (2004

0 I

In{or)

-1 -0.7

-0.4

-0.1

A

FIG. 11. Evolution of the energy along the series of equilibria  FIG. 13. Generalized caloric curve f@<2 (specifically D
(parametrized byr) for 2<D<4 (specificallyD=3). Forn<ns, =1). Note that according to E¢98), the potential energy is nec-

the curve has no extremum. FBr<2, the A(a) curves are mono- €ssarily positive forD<2, so the regionA=0 is forbidden. We
tonic. have plotted in dashed line the branch of complete polytropes with

R, <R defined by Eq(109.

We start by the canonical ensemble which is simpler in a
first approach. A polytropic distribution is a localinimum  This is the condition ofgeneralizefithermodynamical sta-
of free energy at fixed mass and temperature if, and only ifpility in the canonical ensemble. Introducing the function
the second order variatiorisee Appendix D q(r) by the relation

n+1
F=——

P 20D Ef b
on | 52902+ 5 | dpabd®r (123

2 S50 1 dg 12
p_ASDerl&’ (129

are positive for any perturbatiofp that conserves mass, i.e.,

and integrating by parts, we can put the second order varia-

Dy _
f opd7r=0. (124 tions of free energy in the quadratic form

1t

-3 1 I I
-1 1 3 5 7 9 ,

In{o)) -7 -4 -1 2 5 8 11

FIG. 12. Evolution of the energy along the series of equilibria
(parametrized byw) for 4<D<10 (specifically D=4.5). Forn
<ns, the curve has one maximum. Ade> 10, theA(«) curves are
similar to then(a) curves in Fig. 6.

FIG. 14. Generalized caloric curve fbr=2. We have plotted in
dashed line the branch of complete polytropes With<R defined
by Eg. (110.
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0.)29 ] 11 T T T T
7r Y - ]
28— complete 10 1
- polytropes
6 L n=2.9 ne3 | 9 .
D=3 8 I
5 r 7 7 R
c4r 1 e ® |
c | n=4 € 5 §
3L complete E 4 i
S~ polytropes
2 8 |
2 -
nisoth
1 1r 1
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0 ; . | -1.05 -0.85 -0.65 -0.45 -0.25 -0.05
-2 0 2 4 A

FIG. 17. Continuation of Fig. 16. For;,<n<njs (specifically
FIG. 15. Generalized caloric curve for<D <4 (specifically  n;=2.6) both the energy and the temperature present an extremum
D=3). Fornz<n<ng, the inverse temperature presents a maxi-and the curve rotates clockwigthe curve makes a “loop. The
mum but not the energy. Far>ng, there exists a region of nega- region of negative specific heats is now unstable in the canonical
tive (generalizefispecific heat€=dE/dT<0 in the microcanoni- ensemble, as it should. For>ng (specificallyng= 2.6), the energy
cal ensemble. We have plotted with the dashed line, the branch efnd temperature present an infinity of extrema.
complete polytropes witlR, <R defined by Eq(109.
The second order variations of free energy can be negative

d ( p?"? d ) G (implying instability) only if the differential operator which

Yar Soro-Tdr + 01| occurs in the integral has positive eigenvalues. We therefore
(126) need to consider the eigenvalue problem
80 Pl L. A 12
—\ls— =13/ T =1 r)y= r
Yar SorP-Tdr) " yPT A (r)=\ay(r), (127
************ ———— with g, (0)=q,(R)=0, in order to satisfy the conservation
60 L D=45 of mass. If all the eigenvaluesare negative, the polytrope is
175 a minimum of free energy. If at least one eigenvalue is posi-
n=1.
4 T T
€40 1 D=5.1
n=D/2
3 [ 4
20 n=2 ]
s
N=nNg, A,
2 r T
0 Il Il Il Il Il
-0.6 -0.5 -0.4 -0.3 -0.2 -0.1
A
FIG. 16. Generalized caloric curve fo<dD <10 (specifically 1 i
D=4.5). Forn<nj (specificallyn;=1.8), the energy presents a
minimum but not the inverse temperature. gk n<ng, (specifi-
cally ng,=2.25), both the energy and the temperature present &
minimum and the caloric curveyA) rotates anticlockwise. This 0_2 _1' 5 _‘1 _65 0
implies that equilibrium states with positive as well asgative ) A '

specific heat€=dE/dT are stable in the canonical ensemble. This

“thermodynamical anomaly” arises because, as discussed in Sec. FIG. 18. Generalized caloric curve f@>2(1+v2) (specifi-
Il A, stellar polytropes withn<ng, are unphysicalthe tempera- cally D=5.1) andn=n,. For this particular index, the curve pre-
ture is negative For n=ns, (white dwarfg, the curve makes an sents an infinity(becausen;;,>ns) of angular points towards the
angular point(see Appendix € singular spherésee Appendix €
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5

_(D-2)n-D _

Up=———7—=Us. (133

45
4 This relation determines the points at which a new eigen-
value becomes positive\0"). Comparing with Eq(113),
we see that a mode of stability is lost each time that
extremum in the series of equilibria, in agreement with the
turning point criterion of Katz[44] in the canonical en-
semble. When the curve(«) is monotonic(casesA andD);
the system is always stable because it is stable at low density
contrasts &—0) and no change of stability occurs after-
ward. When the curvey(a) presents extremécasesB and
C), the series of equilibria becomes unstable at the point of
minimum temperaturéor maximum massa;. In Fig. 15,
this corresponds to a point of infinite specific heat
0 > 4 6 8 10 12 14 16 =dE{dT—>oo, just before entering the region of negative
D specific heatsC<0. When the curvey(a) presents several
extrema(caseC), secondary modes of instability appear at
FIG. 19. This figure summarizes the structure of the caloricva|ue3a2, as,... (see Ref[33] for D=3). We note that
curve as a function of_the d_imensicmand the p_ol)_/tropic index. complete polytropegwith n<ns if D>2) are stable in the
;hg . fygﬁg?c;rest(;ﬁgpesoStrf)hpee;etﬁ ':e‘giir:';ng, O:r:(s)s\ll}’:;”;() canonical ensemble D=2 and if (D>2n=ny). They are
thermodynamical anomaly” is not accessible unsta_ble otherwise. Ir_l thmermoo!ynamlcal a_nalogsdevel- _
' oped in Refs[26,33 this is a condition of nonlinear dynami-
]cal stability for gaseous polytropes with respect to the Euler-
Jeans equations. In particular, the self-gravitating Fermi gas
at zero temperatur@ classical white dwarf stais dynami-
cally stable ifng,<ns, i.e.,D<4, and unstable otherwise.
According to Eq.(125), the perturbation profile that trig-

35
3

c 25

1.5

0.5

tive, the polytrope is an unstable saddle point. The point o
marginal stability in the series of equilibria is determined by
the condition that the largest eigenvalue is equal to z&ro (
=0). We thus have to solve the differential equation

d({ pr2 dF GFE gers a mode of instability at the critical point=0 is given
Rl R b
KYdr SprP~tdr o1 =0, (128 y
. . L op 1 dF
with F(0)=F(R)=0. The same eigenvalue equation is ob- — = =1 o5 (139
tained by studying the linear stability of the Euler-Jeans po  Spé d¢

equation26,33. Introducing the dimensionless variables de-

fined previously, we can rewrite this equation in the form Where F(¢) is given by Eq.(132. Introducing the Milne

variables(70), we get
d

dé
with F(0)=F(a)=0. If

o dF>+ nF =0 (129 Sp nc

T —p=s—l(vs—v). (135
p D

The density perturbatiofip becomes zero at poiisl & such

d/et" d n thatv (&) =vs. The number of nodes is therefore given by

d_g D1 d_g) + D1 (130 the number of intersections between the solution curve in the

(u,v) plane and the lines=v4. It can be determined by
denotes the differential operator occurring in E129), we straightforward graphical constructions in the Milne plane,
can check by using the Emden equatid) that

using Figs. 1-4see, e.g., Fig. 20When the solution curve

is monotonic(caseB), the density perturbation profile has

L(P719')=(n—1)0", L(26")=[(2—D)n+D]6'. only one node. In particular, for=ng, the perturbation pro-
(13D file at the point of marginal stability is given by

L=

Therefore, the general solution of E€L29 satisfying the sp _(D+2)cy D(D—2)- & (136
boundary conditions a§=0 is p 25y D(D—-2)+¢&
D-2)n—-D ; _ — .
F(f)=c, §D0n+( ) Ol (132 It vanishes for¢(;)=VD(D—2). When the solution curve
n—-1 forms a spiral(caseC), the density perturbatiodp corre-

sponding to thekth mode of the instability hak zeros
Using Eq.(132 and introducing the Milne variabl€g0), the  &;,&,,....&<a,. In particular, the first mode of the insta-
conditionF(«) =0 can be written bility has onlyone node. For high modes of the instability,
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7 T T T R
| ’ ’ N —
o\ | Do fo drK(r,r)ay(r)=xay(r), (140
JENAN -
: ! with g,(0)=q,(R)=0. The point of marginal stability N
5 | | 1 =0) will be determined by solving the differential equation
I | o n=4 L )
d v+ dF GF K d
>4r | | N — P— — |+ == _’)’ — 7*2_p
SR e Kydr(SDrD‘1 dr) rP-1 DnSD(2n D)Ve™ “4r
£33l [ J (141
&\ | BN S v with
2+ | .
| ]
dp
[ _
1r I Im2 n=6 4 Spy ZWFdr
Lo | V=—p—5—1— (142
| | R y.D—-1
o | Lu | Sop?r® dr
0 1 2 3 o ) ) )
u In arriving at this expression, we have used the relation
FIG. 20. Location of the turning points of temperature in the D " Ky dp
(u,v) plane for systems with dimension<eD < 10 (specificallyD b+ EKyp“Vl) = E(D—Zn)p’/’zm, (143

=3). The lineu=ug determines the extrema of and the linev

=uv, determines the nodes of the density profiles that trigger the . . . S
instabilities in the canonical ensemble. which results from the condition of hydrostatic equilibrium

(13) with the polytropic equation of stat@0). Introducing
the zeros asymptotically follow a geometric progression withthe dimensionless variables defined previously, Eg41)

ratio 1:exg2m/\— A} (see Ref[33] for D=3). and (142 can be rewritten
In the microcanonical ensemble, a polytrope isnaxi- 1on
mumof entropy at fixed mass and energy if, and only if, the i( o d_F) n nF L (144)
second order variationsee Appendix [ de\ePtde) &Pt ’
1 5p)? 1 i
525=ﬂ‘——yf p %) dDr——f 3p oD dOr with
2 p 2
2 1 D 2 1( +1)(2n—D) [507Fde (145
n p b x=g(n N=D) e n10-15;
_ — = D 0 d
D(2n—D) JpdPr HCD’Lsz)‘spd ' ] Joom e de

(137 and F(0)=F(a)=0. Using identities(131), we can check
) o ~ that the general solution of E(L44) satisfying the boundary
are negative for any variatiofp that conserves mass to first conditions foré=0 andé=a is

order[the conservation of energy has already been taken into

account in obtaining Eq(137)]. Now, using Eq.(125 and Y
integrating by parts, the second variations of entropy can be F(é)= (n—1)uy+D—(D=2)n (EP0"+upeP1e").
put in a quadratic form 0 (146

R (R
523:j J drdr’g(r)K(r,r"Hqg(r’), (138 The point of marginal stability is then obtained by substitut-
0.J0 ing the solution(146) in Eq. (145. Using the identitiegsee

with Appendix B
D pr 2
2n D ! © b1 gz X 0 (@) ( @_@)
K(r,r’)z—D(Zn_D) TpdPr ¢>+§K7p7 1) jof (67)7dg D+2—(D—-2)n n+1+200 vo )’
(147
D y—1 , ’ 1 ’
x(r) CI>+EK7p (r )+§5(r—r ) fagnﬂgofldg— aDg'(a)z
d( p2 d 0 - D+2—-(D-2)n
< K7 ar sDrDlﬁ)’LrDl' (139 Uo (D—2)(n+1))
X{n+1+2—— ———|,
The problem of stability can therefore be reduced to the vo vo
study of the eigenvalue equation (148
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@ 5 aPo' (a)? where®,;=®(r;,t) is the self-consistent gravitational poten-
fo 0"0'¢"dé= D+2—(D-2)n tial created by the particles; v, is a friction force originat-
ing from the presence of an inert medium, aRdt) is a
o D(D-2) white noise satisfying(R;(t))=0 and (R; o(t)R; x(t"))
X —D—(D—Z)U—0+ e ) =6, 6apd(t—1"). To simplify the problem, we consider the

high friction limit é—+o, where¢ is the friction coefficient
(149 [2]. This regime is achieved for timgs> £~ 1. In the mean-

_ _ ) . field approximation, the evolution of the density of particles
which result from simple integrations by parts and from the;g governed by the Smoluchowski equatidi]
properties of the Lane-Emden equati@®), it is found that

the point of marginal stability is determined by condition 1
(117). Therefore, the series of equilibria becomes unstable at V(Dp)+ EPV‘b
the point of minimum energy in agreement with the turning

point criterion of Katz[44] in the microcanonical ensemble. coupled to the Newton-Poisson equatigh). In the usual
When the curve\(a) is monotonic(casesA’ andD’), the  case[2-4], the diffusion coefficienD is constant and the
system is always stable. When the curvew) presents ex-  condition that the Boltzmann distributign—e~®'T is a sta-
trema (casesB’ and C'), the series of equilibria becomes tjonary solution of Eq(152) is ensured by the Einstein rela-
unstable at the point of minimum energy . In Fig. 15, this  ion ¢D=T. It can be showr[2] that the SP system de-
corresponds to the point where the specific @atdE/dT  creases the free energy=E—TS constructed with the

=0, passing from negative to positive values. Note that thegoltzmann entropy. Hence, the equilibrium state minimizes
branch of negative specific heats between the points CE and

MCE is stable in the microcanonical ensemble although it is 1 b b
unstable in the canonical ensemble. When the cutye) FZEJ pod r+TJ pInpd=r (153
presents several extrenteaseC’), secondary modes of in-
stability appear at valuea;,aj,... Wenote that complete at fixedM andT.
polytropes(with n<ng if D>2) are stable in the microca- Here we want to consider a more general situation in
nonical ensemble iD<4 and unstable iD=4. Owing to  which the diffusion coefficienD depends on the densify
the thermodynamical analogyhis is a condition of nonlin-  while the drift coefficient is still constant. In the absence of
ear dynamical stability for stellar polytropes with respect todrift, this would lead to a situation @nomalous diffusiann
the Vlasov equatiori26]. The difference between the dy- the presence of drift, a notion gfeneralized thermodynam-
namical stability of gaseous polytropes<tn;) and stellar ics emergeg20]. Indeed, writing the diffusion coefficient in
polytropes =<ng) was related in Ref§26,33 to a situation  the formD(p)=(1/£)p(p)/p with p’(p)>0, we obtain the
of ensemble inequivalendand the existence of a negative generalized Smoluchowski equation
specific heat regionin thermodynamics. Since the caloric
curve is monotonic inD=2, we also conclude that poly- f?P_V 1
tropic vortices [20] are always nonlinearly dynamically gt €
stable with respect to the 2D Euler equation.

According to Egs(134) and (146), the perturbation pro- In Ref. [20], it is shown that generalized Smoluchowski
file that triggers a mode of instability at the critical point  equations of this type satisfy a form of the canonidetheo-

ap
=V

: (152

(Vp+pVd)

. (1549

=0 is given by rem. The Lyapunov functional, decreasing monotonically
with time, is
*_X - (D )
> S (n— (D= ~Nv=Uo), rp(p’) 1
(150 P,z de S|P . (159

where we have used the Emden equati#) and introduced This can be interpreted as a free energy associated with a
the Milne variableg70). The number of nodes in the pertur- generalized entropy functionésee Ref[20] for more de-
bation profile can be determined by a graphical constructiofails). The equilibrium state minimizeB at fixed M. In the
similar to the one described in Ref8,45] for n== (iso-  present context, this is a condition of generalized thermody-

thermal case namical stability in canonical ensemble.
The generalized Smoluchowski equatid@®4) can be ob-
IV. SELF-GRAVITATING LANGEVIN PARTICLES tained by combining the ordinary Fokker-Planck equation

with a Langevin equation of the form
A. Nonlinear Smoluchowski-Poisson system

Let us consider a system &f self-gravitating Brownian ar 1 [2p(p)
particles described by the stochastic equatiarsl...N) dt qu)+ ép R(D), (156
dr; dy; . . . . . .
i —v,, avi —V®i—§vi+\/ﬁ§Ri(t), (151) whereR(t) is a white noise. This generalized class of sto

dt dt chastic equations was introduced in R&0]. Whenp(p) is
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a power law, Eq(156) reduces to the stochastic equationsthe nonlinear Smoluchowski-Poisson system is dynamically
studied by Borland21] in connexion with Tsallis thermody- stable for small perturbatior{z <0) if and only if it is a local
namics. Since the function in front &(t) depends om, the  minimumof free energy §°F>0). In addition, it is shown
last term in Eq.(156) can be interpreted as a multiplicative in Refs.[2,20] that the eigenvalue problem determining the
noise. Note that the noise dependsrotihrough the density growth ratex of the perturbation is similar to the eigenvalue
p(r). Kaniadakig[22] also introduced a generalized Fokker- problem(128) associated with the second order variations of
Planck equation arising from a modified form of transition free energy(they coincide for marginal stabilityThis shows
probabilities. In these works, the Langevin particles evolvethe equivalence between dynamical and generalized thermo-
in an external potential. The case of Langevin particles irdynamical stability for self-gravitating Langevin particles
interactionwas considered by Chavarjig0]. He introduced exhibiting anomalous diffusiofthis result was obtained in-

a generalized Fokker-Planck equatim®e in particular Eq. dependently by Shiing24] in the specific context of Tsallis
(81) of Ref.[20]] valid for an arbitrary equation of stag  thermodynamics In fact, our formalism is valid for more
=p(p), or diffusion coefficientD(p), and for an arbitrary general functionals than the Boltzmann or the Tsallis entro-
binary potential of interactiomi(r—r’). This equation was pies[20]. These functional§155 arise when the diffusion
studied recently in Ref$1-4] for an isothermal equation of coefficient is of the general forrd(p), not necessarily a
statep=pT (constanD) and a gravitational interaction. This power law. We note that the NSP system satisfies a form of
study was extended in Re#6] to a Fermi-Dirac equation of virial theorem[20]. For D #2, it reads

state. In this paper, we consider the case where the function

D(p) is a power law and writgD(p)=Kp”~ 1. This corre- 1. dl
sponds to a polytropic equation of stateKp?. Then, Eq. Ega_ZKHD_Z)W_ DpyV, (161
(152 can be rewritten
where
ap 1
E:V E(Kpr-l-pV(D) . (157
|=f pr2d®r, (162

For the nonlinear Smoluchowski-Poisson system, the
Lyapunov functional decreasing monotonically with time isjs the moment of inertia ang, the pressure on the box
[20] (assumed uniforin ForD =2, the term D — 2)W is replaced
K 1 by —GM?/2. For a stationary solutiod!/dt=0, we recover
EF= _J (py_p)dDr+ _J pq)dDr_ (158) the virial theorerT(91). o . -
y—1 2 Our model of self-gravitating Browniatfor Langevin

) ) , . particles has no clear astrophysical applications, so it must
This can be interpreted as a free energy associated with thg, regarded essentially astay modelof gravitational dy-

Tsallis entropy. In this context, the polytropic indexplays  npamics. It may find application for the formation of plan-
the role of theq parameter and the polytropic constdtt  gtesimals in the solar nebula since the dust particles experi-
plays the role of the temperatutsee Ref[20] for details  gnce a friction with the gas and a noise due to small-scale
and subtleties Therefore, keeping fixed corresponds to a ,rhylence[47]. However, even in this context, the model
canonical situatior{33]. For y—1, we recover the Boltz- haq tg be refined so as to take into account the attraction of
mann free energy studied in Ref&,3]. For y=5/3, i.e.n  the Sun and the rotation of the disk. In any case, the self-
=3/2, Eq.(1_57) describes self-gravitating Brownian fermi- gravitating Browniar(or Langevin gas model is well posed
ons atT=0 (in D=3) [46]. _ _ ~ mathematically, and it possesses a rigorous thermodynamical
The nonlinear Smoluchowski equation can be obtainedyrycture corresponding to theanonical ensemble. There-
from a variational principle, called Maximum Entropy Pro- fore, it can be used as a simple model to illustrate some
duction Principle, by maximizing the rate of free eneffgy aspects of the thermodynamics of self-gravitating systems.
for a fixed total mas$/ [1,20]. It is straightforward to check Since Eq.(154 minimizesF=)[p] at a fixed mass, it can
that the rate of free energy dissipation can be put in the fornalso be used as a powerful numerical algorithm to construct
nonlinearly dynamically stable stationary solutions of the
Euler-Jeans equatiorisee Sec. Il B Coincidentally, the SP
system also provides a simple model for the chemotactic
aggregation of bacterial populatiofikl]. The name chemo-
For a stationary solutiorF =0, and we obtain a polytropic taxis refers to the motion of organisms induced by chemical
distribution which is a critical point oF at fixedM. Consid- ~ signals. In some cases, the biological organisms secrete a
ering a small perturbation around equilibrium, we can estabsubstance that has an attractive effect on the organisms them-
lish the identity[20] selves. This is the case for the bactdfischerichia coli In
the simplest model, the bacteria have a diffusive motion and
SPF=2)\6%F=<0, (160 they also move systematically along the gradient of concen-
tration of the chemical they secrete. Since the derBity,t)
where\ is the growth rate of the perturbation defined suchof the secreted substance is induced by the particles them-
that 8p~ €. This relation shows that a stationary solution of selves, the drift is directed toward the region of higher den-

: 1
F:—fE(Kvpuchb)derso. (159
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sity. This attraction triggers a self-accelerating process until &he two situations have been considered in the case of self-
point at which aggregation takes place. If we assume in gravitating Brownian particlesn(— +) in Refs. [1-4].

first step thatb(r,t) is related to the bacterial densijpyr,t) Note that a more correct microcanonical description of par-
by a Poisson equation, this phenomenon can be modeled liigles in interaction is furnished by thgeneralizefl Boltz-

the SP system. Now, it has been observed in many occasiomsann and Landau equatiofi3].

in biology that the diffusion of the particles is anomalous The NSP system is equivalent to a single differential
[11]. This is a physical motivation to study the NSP systemequation

in which the diffusion coefficient is a power law of the den-

sity. In Sec. IV B we show that the NSP system admits self- M ( 1 aM)l’”[&ZM D—1 oM M oM

similar solutions describing the collapse of the self- 5 =\ D=1 5| | r2 " "1 ‘o t -1 or
gravitating Langevin gas or of the bacterial population. (169
These theoretical results are confirmed in Sec. V, where we
numerically solve the NSP system. for the quantity
B. Self-similar solutions of the nonlinear ro D1,
Smoluchowski-Poisson system M(r’t):fo p(r’,t)Spr dr’, (170
From now on, we seM=R=G=¢=1 without loss of
generality. The equations of the problem become which represents the mass contained within the sphere of
; radiusr. The appropriate boundary conditions are
p
— = Y4+
o~ V(KVPTHpVD), (163 M(0t)=0, M(1t)=1. (171)
Ad=Spp, (164 It is also convenient to introduce the functios(r,t)

=M(r,t)/rP satisfyin
with boundary conditions (r.t) ing
Js Js

od 1 ap? @ _
=-(0D=0, ()= K&—pr(l)—i-p(l):O, at (rar+Ds

2-D’
(169

for D#2. ForD=2, we taked®(1)=0 on the boundary. We FOrn—+, these equations reduce to those studied in Refs.
restrict ourselves to spherically symmetric solutions. Inte{2—4] in the isothermal case. We look for self-similar solu-

grating Eq.(164) once, we can rewrite the NSP system in thetions of the form
form of a single integrodifferential equation

@:Li erl
at P Lor

P TW +|r—+Ds

Inis2s D+14ds Js
- s.

(172

r 1/2

®
P(f,t)=Po(t)f(m), fo=(p(1)——1/ﬁ

173
ng 2P
(Spp) 'O ar

The radiusry defined by the foregoing equation provides a
p ot 1D=14, typical value of the core radius of an incomplete poly-
+ 51 1 . - .
rb-1 jo p(r)Sor dr “ (166 trope (with n>ns). It reduces to the King's radiugl9] as
n— +o. In terms of the mass profile, we have
where we have set

_ o - _ D
K(1+n) 1 (167 M(r,t)—Mo(t)g(ro(t) with Mo(t)=porg ,

nS:Ij/n = n nlflln . (174

The quantity® can be seen as a sort of generalized temperagq

ture (sometimes called a polytropic temperat{i8]) and it

reduces to the ordinary temperaturdor n— +o. We note X

that the proper description of a gas of Langevin particles in g(x)=f f(x")Spx'P~tdx'. (179
interactions is the canonical ensemble whéeis fixed. 0

However, we can formally set up a microcanonical descrip- .

tion of self-gravitating Langevin particles by letting the tem- [N terms of the functiors, we have

perature® (t) depend on the time so as to conserve the total

Q)

. r X
energy: s(r,t>=p0<t>s(—) with s00=25 . 179
D sy Fo(t) X
- _ - 1+(1/n)~4D - D
E 2 1+n f O®)p d"r+ 2 f pPd-r. Substitutingansatz(176) into Eq. (172, and using the

(168 definition ofrg in Eq. (173, we find that
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dpo Podlo o 5 o Doin
dat —EWXS—[)O(XS +DS)

D+1
S+ —=8
X

+p3(xS' +DS)S, 77
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V). It is easy to see that the maximum value éofteads to

the maximum divergence of the temperature and entropy.
Therefore, it is natural to expect that the valg,, will be
selected by the dynamics except if some kinetic constraints
forbid this natural evolutiorisee below In fact, as already

where we have set=r/r,. We now assume that there exists noted in Ref[2], a value ofa> «,, poses problem with re-

a such that
po~To“. (178
Inserting this relation into Eq177), we find
dpo 1 ’ 2 ’ nl or D+1 ’
at S+;XS =pg| (XS +DS) S+TS
+ (xS + DS)S}, (179

which implies that (]pig)(dpoldt) is a constant that we ar-

bitrarily set equal tax. This leads to

1
Po(t)=;(tcon—t)7l, (180

spect to the conservation of energy. We re¢afid general-
ize) the argument below. According to Eq4.73), (178 and
(180, during collapse, the temperature behaves as

@NPéfl/rI*Z/aN(tcoll_t)f(Z/anfﬂa), (184)
and the kinetic energy34) behaves as
1
K~®f p?(r,t)r® 1dr
0
1 1
~®(p0r§)7f rD‘l‘V“dr~®f rP-1=veqr,
"o "o
(189

First consider the case>ng. If a<D/vy (which is the case
in practice sincea,<D/vy implies n>ns), the integral is
finite and the kinetic energy behaveskas ©. Therefore, it

so that the central density becomes infinite in a finite timedivergesatt., for any a>a,. On the other hand, the scal-

teon - The scaling equation now reads

D+1
aS+xS =(xS + DS)””( S+ TS’ +(xS' +DS)S.

(181

For x— +, we have asymptotically
S(x)~x"*,

In the canonical ensemble wheteis constant, EqQ173
and (178 lead toa= «,, with

gx)~xP7e  f(x)~x"* (182

(183

Note that forn—c, we recover the result of Ref3], a..
=2. Equation(182 implies that for largex, p~(D—«a)S

ing contribution to the potential energy behaves as
1M2(r,t)
W~ | —p=7—dr
o I

1
rD+1‘2“dr~f rPri-2eqr. (186

To

1
“(Porg)zf

"o
If a<(D+2)/2 (which is the case in practice sinae,
<(D+2)/2 impliesn>ng), the scaling part ofV remains
finite att.,) . Energy conservation would then imply that
=a,. In a first series of numerical experiments reaching
moderately high values of the central dengi2y}, we mea-
sured (by different methods a scaling exponentw=2.2
>a,,=2 (for the isothermal case= ). Combined with the
fact that the Smoluchowski-Poisson system must lead to a
diverging entropy, we argued that,,,, is selected by the
dynamics(while being careful not to rigorously reject the

>0, which enforcesr<<D (this also guarantees that the masspossibility thata=a.,=2). Then, in order to account for

of the power-law profilep=Cr™ ¢ at t=t, is finite). The

limit value «,,=D corresponds ta=n5. Therefore, there is
no scaling solution fom<ns. This is consistent with our

finding that the collapse occurs only fae>n;. Forn<n,

energy conservation, we proposed a heuristic scenario show-
ing how subscaling contributions could lead to a divergence
of the potential energy. In fact, the numerical simulations
were not really conclusive in showing the divergence of the

and 7> w,, the system converges toward a complete polytemperature, as the expected exponent is very smadl,(2/

trope with radiusR, <1 which is stablgsee Sec. Il G and
Fig. 15. For nz<n<ng and > n(«a4), we can formally
construct a complete polytrope with radiRg <1, but this

—2lap=0.09491..., foD=3 andn— +x). Recently, we
conducted a new series of numerical simulations allowing us
to achieve much higher values of dengisge Sec. Y. These

structure is unstabléSec. 11l G so that the system undergoes simulations tend to favor a value af= a, leading to a finite

a gravitational collapse.
In the microcanonical ensemble, the valueact o, can-

value of the temperature §t,,. However, the convergence
to the valuea,, is obtained for values dfvery close tat.

not be obtained by a dimensional analysis. It will be selectednd, at intermediate times for which the temperature has not

by the dynamics. In the case— + %, we found in Ref[3]

reached its asymptotic value, the numerical scaling function

that Eq.(181) for the scaling profile has physical solutions tends to display aeffective exponeritetweena,, and a .

only for 2<sa<ama(D) (with an(D=3)=2.209733...).
For arbitraryn, such aam.(D,n)=aq, also exists(see Sec.

This situation is reminiscent of theD(=2n=+x) case
studied in Ref.[3], although the situation is not exactly
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equivalent. Numerical simulations of théDE3n=+x) should now be selected in a unique way. Equat{@80
case were conducted independently in R8f, and also fa- shows that temperature scales as the potesitisince
vor a value ofa= «,. Note that there is no rigorous result
proving thata= «, in the microcanonical situation, so this B(r,t)=d(1)— fls(r’ tyr'dr’
point remains an open mathematical problem. ' r '
Forn<ng, the kinetic and potential energies diverge in a

H 1

consistent way as d(1 zf
~ — pol

(1)—porp )

+
0S(x)xdxa—Tof S(X)xdx.
0 rirg

r
1
K~®f Pl redr~@rg v~ p5~ P2 (187) (191
"o
The scaling function forb(r,t) is then

WNJ‘er+172adr~r8+272a~p37(D+2)/a. (188) t+o
o ¢(X)=—j S(X)x"dx' ~x>~*  when x— +.
X

However, in the microcanonical ensemble, the system is ex- (192

pected to reach a self-confined polytrope forns and A £ 1 aiong190), (191), and(192) imply that both the kinetic
>\ since it is stabldsee Sec. lll G and Fig. 35Probably, ar?d potential),énerg}es remeiin Ft)n))/unded for all tintes

the choice of evolution will depend on a notion ledisin of <t_y,, at least fora<(D+2)/2, even if the central tem-

att@:“ﬂgvavsfglieg%z]s'e”_ ravitating Brownian particles ( peratureTy(t) diverges. Indeed, the temperature increases in
9 g bl Ah part the core but the core mass goes to zero so that the kinetic
=x). In the case of collapse, the previous discussion showgnergy of the core-M,T, goes to zero. On the other hand

ltha(tj_thetsystg_m has thm?trﬁtot ach|ev? a Vallée °?>2’ Th.the temperature remains of order unity in the halo leading to
cading to a divergence o the temperature and entropy. 1 gie inetic energy in the halo. This “core-halo” structure

is indeed a natural evolution in a thermodynamical sens or the temperature is more satisfactory than a model in

;I'hlts lshal_sctJ cgnSISdte_nttr\:wth thf ntotlfonl gbfalvothlerr?éaga- which the temperature is uniform everywhere, even in the
5als] rOH%ng:/;? tuhC:erI:;r egg:g?r); i&GQS)OSéJe?;SC ,[L:)S rev;nt collapse phase. Before introducing a precise equation for
i ' 9y P T(r,t) [34], we make the reasonable claim that the tempera-

:E'S nattural evolqun amd enf(?[rceﬁzz (the q[:xgg_?ﬂ.ce. of ture and potential energy are simply proportional in the core
© entropy occurs In te post-colapse regime. ThiS 1S region as they exhibit similar scaling relations. Defining

related to the assumption that the temperaturengorm, _ : :
although this assumption clearly breaks down during the IatérO(t) such thatg(0)=1, we end up with the hypothesis

stage of the collapse. Therefore, we expect that if the tem- H(X) N [+

perature is not constrained to remain uniform, the system 0(x)=m=5f S(x")x"dx’, (193
will select a value ofa>2 as in other models of microca- X

nonical gravitational collaps¢49-51. Below, we give a ith

heuristic hint as to how this can happen. We consider the

Smoluchowski equation D D

MNTS00) T TS X

(194

17

VIV (Tp)+pV ], (189 | | | |
ot Using Eq.(193), we find that the scaling equation f8¢x) is
now

whereT=T(r,t) is now position dependent. In any model

where the temperatufg(r,t) satisfies docal conservation of , A . D+1_| N )
energy, we expect the following scaling: aS+xS =g ¢(X)| §'+ — =5 |+|1-5|SXS+DS9).
(199
r
— . 2—«
T(r't)_TO(t)a( fo(t)) with 6(x)~x=" whenx— . £or 5 given, this equation is an eigenvalue problensinin

(190  the limit of large dimension and proceeding exactly along the

lines of Ref.[3], it can be seen tha$~O(D 1) and \
Such a scaling is indeed observed in the globular cluster-O(D°). Using the method of Ref3], S(x) and« can be
model of Ref[51]. The decay exponent is obtained by usingcomputed easily up to ord€@(D 1), as a function of and
the definition ofTy~ por3 and the fact that the temperature at z=D$(0)/2. Now, imposing the constraint of EL94), this
distances >r, should be of order unity. The precise density selects auniquevalue for «. After straightforward calcula-
and temperature profiles and the valueaoflepend on the tions, we find a simple parametrization ofinda as a func-
model considered for the energy transport equation. It is noion of z=DS(0)/2>2:
our purpose to discuss a precise model in the present paper
and we po_stpone this stL_de for a future Wcﬁﬂ(l]. However, a—2= i(l_zf H+0(D7?), (196
we can give an analytical argument showing whay-2 D

016116-22



ANOMALOUS DIFFUSION AND COLLAPSE OF SELF. ..

p(r,t)

FIG. 21. Evolution of the density profilg(r,t) for n=3/2 and
0®=0.1(corresponding ta;> w,). The profile converges to a com-
plete polytrope strictly confined inside the bdthick line). The
dashed line is the initial uniform density profile.

A=2(1-z"YH(1-2zH+0O(D ™Y, (197
which can be recast in the forms

a—2=§(\/1+4)\—1)+O(D_2), (198

S(O)=§(3—\/1+4)\)*1+O(D’2). (199

Equation(197) implies that forn=2 [up to orderO(D ~1)],
there is no solution to the scaling equation, and that\for
<2, there is a unique: corresponding to a physical solution.
In general, the actual value afwill be selected dynamically

PHYSICAL REVIEW E 69, 016116 (2004

S(r,t)/S(0,t)

1 AT N S AR R
0 1 2

I 10 10
r/r o®

FIG. 22. Forn=4 (a,=8/3) and®=0.1 (canonical descrip-
tion), we plotS(r,t)/S(0,t) as a function of /ry(t), wherery(t) is
defined by Eq.(173), for different times corresponding to central
densities in the range210°—4x 10° (bottom data collapseThis
is compared to the scaling function obtained by solving @81
numerically (dotted ling. The same is plotted in the cage=~
(a.=2), for which the scaling profile is known analyticallg]:
S(x)/S(0)=(1+x2)~?! (upper data collapgeThe two curves have
been shifted for clarity. In the=c case, the asymptotic scaling
profile (dotted ling is almost indistinguishable from the data col-
lapse. Dashed lines have the respective slop@8 and—2.

the canonical ensembléixed ®). In Fig. 21, we show the
different steps of the formation of a self-confined polytrope
of indexn=3/2<n3;=3 similar to a classical “white dwarf”
star. In this range of, the system always converges to an
equilibrium state(see Fig. 1b If n<w, the equilibrium
state is confined by the baincomplete polytropewhile for
7> w, the density vanishes & <R (complete polytrope

by an additional evolution equation for the temperature proq, Fig. 22, we illustrate the collapse dynamics at low tem-

file. However, assuming =1 is natural(although this point
needs to be confirmedsince it corresponds naively to a
local energy conservation condition

DT 1CI> 200

0 (r,t)~—§ (r,t). (200
In that case, we obtain
2

a—2=5(£—1)+0(0—2). (201)

The above argument is a strong indication that if the uniform
temperature constraint is abandoned, a nontrivial value for
a>2 will be selected. We conjecture that this eigenvalue

will be close to ap.=2.21, as found in other models of

microcanonical gravitational collapse with a nonuniform

temperaturg49-51].

V. NUMERICAL SIMULATIONS

peratures fon=4e[nz,n5] andn=o>nz=5. This is com-
pared to the predicted scaling profiles. The convergence to
scaling is slower fon=4 (a=8/3) than forn=x (a=2).
This is expected since, in the former casgf,vpgl’“ de-
creases more slowly asis larger. Thus, the scaling regime
ro<1 is reached in a slower way. For instance, for compa-
rable final densities of order $0and for the considered
temperatures, we find that the minimury obtained forn

=4 is roughly four times bigger than in the=o simula-
tions. Forn=c0 and in the largeD limit, we showed in Ref.
[3] that the scaling functio®(x) takes the form

1aX21

where Xy is such that S(xo)=a/D. The quantitiesz
=DS(0)/2 and a(z) have been exactly calculated in this
limit. In the present case, and for a given[yielding «,
=2n/(n—1)], we computeS(0), by assuming the above

x2 L
—+
Xi

(%

D1+

S(x)

(a/Z)l}—l

(202

In this section, we numerically illustrate some of the the-functional form. The parameters,, x;, and S(0) are nu-
oretical results presented in the previous sections, but wmerically calculated by imposing the exact value 8(0)

restrain ourselves tb = 3. We first consider the dynamics in

extracted from Eq(181), as well as the two conditions that
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100

S(0)-4

0.01

FIG. 23. We plotS(0) as a function of (full line), and compare
it to a simple theory explained in the text, which is inspired by the

10

o MR |
100 1000

large D perturbation introduced in Reff3] (dashed ling Note that
S(0)=4+C/n+0(n~?) for largen with C=19.

Xo must satisfy(see Ref[3] for more details The compari-
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S(,t)/S(0,t)

2 4
10 10p O(t) 10 10
] L1

10°

I/r 0(t)

FIG. 25. Forn=+o and E= —0.45 (microcanonical descrip-
tion), we plot S(r,t)/S(0t) as a function ofr/ry(t) wherery(t)
~ po(t)¥e, for times corresponding to central densities in the range
2X10°—4x 10° (for comparison, our previous simulatiof@] did
not exceedoy~1000). We try both values,.=2 (bottom dashed

son of this approximate theory with actual numerical data igine) anda = a,,,,=2.209733..(top dashed ling and compare both
satisfactory(see Fig. 28 Note that we have been unable to data collapses to the associated scaling funditmted lines. The
develop a large perturbation theory in the same spirit as thetwo curves have been shifted for clarity. The scaling associated to
large D expansion scheme derived in RE3].
As explained in Sec. 1V, the situation in the microcanoni-large distances. However, our simulations also suggest@lggt

cal ensembléwhere® =0 (t) evolves with time in order to

conserve energyis less clear. As in the case= oo studied in
Ref.[3], the scaling equation admits a physical solution forey®). so that the asymptotic scaling should corresponel#@®. This
any a,< a<ana{D,n). In Fig. 24, we ploty,,,(D=3,n), as
well as the corresponding value §(0), as afunction ofn.

g
13
I

—
(o
I

In[S(0))/4, o

o =2.209733..
max

20 30 40
n

FIG. 24. We plota,,{D=3,n) as a function of (top ploY, as
well as the associated value of 1/43{®) (bottom plo}. The hori-
zontal dashed line represents the asymptotic valuegf, for n

— + 00,

and we find a¢pnp(D=3N)~an,{D=3n=x)+Cs/n

+0(n~?) for large n, with C3~2.7. Forn<ng=5, ama,=D"
=3~ (strictly speaking, the scaling solution associatedate D
=3 does not exist belown;=5). We observe that I1§0)~(n
—5)"Y provides an excellent fit 0B(0) for ne[5,10]. We have
also plotteda,=2n/(n—1) (thick line). The scaling equatio(i181)

amax IS Clearly more convincing than that fer=2, especially at

~ po(t)r~?emax does not diverge at, (see the insert where a line
of slope 1-2/a,~0.09491... has been drawn as a guide to the

apparent “paradox” clearly shows that the convergence to the limit
value o= a, is extremely slow, suggesting an intermediate pseudo-
scaling regime withe, < o< a -

As explained previously, it is doubtful that a scaling actually
develops with a>a, when the temperature is uniform.
However, a pseudoscalingshould be observed withy
=amax- IN Fig. 25, we present new simulation® € 3,n
=) confirming that the observed scaling dynamics is better
described bya= ap,, than by a=2, in the time/density
range achieved. Such a value @implies that the tempera-
ture would diverge with a small exponenf®(t)

~ po(t)Zemax with 1— 2/a,=0.09491...]. However, in
the range of accessible densitjgs=2x 10" 1~ 10°, numeri-

cal data tend to suggest that the temperature converges to a
finite value with an infinite derivatived®/dt)(t.q) =+
ast—t.,. This convergence of the temperature was ob-
served independently in RgB]. Thus, we conclude that the
system first develops an apparent scaling with «,, ., be-
fore slowly approaching the asymptotic scaling regime with
a=2.In any case, it is clear that if the=2 scaling is the
relevant one, the scaling regime is approached much more
slowly than in the canonical ensemblimmpare Figs. 25 and
22). This is a new aspect of the inequivalence of statistical
ensembles for self-gravitating systems.

VI. CONCLUSION

admits solutions fow,< a<a,. The two curves intersect when
a,=D which corresponds ta=n5. There is no scaling collapse
solution forn<ns.

In this paper, we have discussed the structure and stability
of self-gravitating polytropic spheres by using a formalism
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of generalized thermodynami¢&0]. This formalism allows to prevent gravitational collapse, even in the nonrelativistic
us to present and organize the results in an original manneregime. In this sensé) =4 is a critical dimension. There-
What we mean by generalized thermodynamics is an exterfore, the dimension of space of our universe 2=3<4 is
sion of the usual variational principle of ordinary thermody- bounded by two critical dimensions. It seems that this re-
namics (maximization of the Boltzmann entrop$s at a Mark has never been made before. The description of phase
fixed massM and energ}E) to a |arger class of functionals transitions in the Self-graVitating Fermi gas at a nonzero tem-
(p|ay|ng the role of “generalized entropieﬁ”ThiS varia- perature in dimensioD will be considered in a future paper
tional prob]em can arise in various domains of phygm [53] Other pOSSible extensions of our work would be to
bio|ogy, economy,_)_for different reasons. In any case, itis consider different equations of state such as the modified
relevant to develop &hermodynamical analoggnd use a isothermalp=—TIn(1-p/py) associated with an “entropy”
vocabulary borrowed from thermodynamiésntropy, tem-  functional S[p]=—[{pIn p+(po—p)In(po—p)}d°r or the
perature, chemical potential, caloric curve, free energy, milogotropic equation of statp=p.[1+ A In(p/p;)] [54] asso-
crocanonical and canonical ensembléseven if the initial  ciated withS[p]=p.AS In pd°r.
problem giving rise to this variational problem is not directly =~ The concept of generalized thermodynamics is rigorously
connected to thermodynamics. Thus, we can directly trangustified in the case of stochastitangevin particles expe-
pose the methods developed in the context of ordinary thefiencing anomalous diffusion. This happens when the diffu-
modynamics(e.g., Legendre transforms, turning point argu-SiOl’] coefficient in the Fokker-Planck equation depends on
ments, bifurcations,).to a new context. For example, in the the density of particles while the friction or drift is constant.
present study, the maximization of the Tsallis entropy at dn this paper, we have explicitly studied the nonlinear
fixed mass and energy is a condition of nonlinear dynamicaPmoluchowski-Poisson systeffior self-gravitating Langevin
stability for stellar polytropes via the Vlasov equation andparticles corresponding to a power-law dependence of the
for polytropic vortices via the Euler equation. On the otherdiffusion coefficient. This particular situation is connected to
hand, the minimization of the Tsallis free energy at a fixedTsallis generalized thermodynamics, but more general
mass is connected to the nonlinear dynamical stability offokker-Planck equations can be constructed and studied
polytropic stars via the Euler-Jeans equations. It is also &20]. The connection between thermodynamical and dynami-
condition of thermodynamical stabilityin a generalized cal stability for this type of generalized Fokker-Planck equa-
sensg for self-gravitating Langevin particles experiencing tions was established in a general case in R2@]. The
anomalous diffusion and a condition of dynamical stabilitynonlinear Smoluchowski-Poisson system can have physical
for bacterial populations. Although the formalism is the sameapplications for the chemotaxis of bacterial populations. The
for all these systems, the results have a very different physicollapse and aggregation of bacterial populations are similar,
cal interpretation. Our results may also have unexpected ap? some respects, to the phenomenoncofe collapsein
plications in other domains of physics that we are not awar@lobular clusters(or to the Jeans instability in molecular
of. clouds and the neglect of inertia is justified in biology, at
From a technical point of view, we have provided thevariance with astrophysics. In addition, biological systems
complete equilibrium phase diagram of self-gravitating poly-are likely to experience anomalous diffusion so that the NSP
tropic spheres for an arbitrary value of the polytropic index System can provide an interesting and relevant model for the
and space dimensidd. Our study, generalizing the classical problem of chemotaxis. We have shown that the solutions of
studies of Emdefi52] and Chandrasekh#i8], shows how the NSP system can either converge toward a complete poly-
the phase portraits previously reported in the literafioe  trope or an incomplete polytrope restrained by a box, or lead
particular dimensions and particular polytropic indijcesn- 10 a situation of collapse. The determination of the scaling
nect to each other in the full parameter space. From the ge@xponente in the microcanonical ensemblgonstant en-
metrical structure of the generalized caloric curves, we ca@rgy is difficult due to the extremely slow entry of the sys-
immediately determine the domains of stability of the poly-tem in the scaling regime. However, it seems to be given
tropic spheres by using the turning point mettidd]. These asymptotically by a,=2n/(n—1) (a=2 for isothermal
stability results have been confirmed by explicitly evaluatingspheresas in the canonical ensemigleonstant temperature
the second order variations of the entropy and free energyVe expect that an exponeat> «, will be selected when the
This eigenvalue method provides, in addition, the form of thetemperature is allowed to vary in space and time. This prob-
density profile that triggers the instability at the critical lem will be considered in a future studg4].
points. Interestingly, this study can be performed analytically
or by using simple graphical constructions in the Milne
plane. We have found that complete stellar polytrojveish APPENDIX A: GRAVITATIONAL FORCE
n<ns=(D+2)/(D—-2) if D>2] are stable foD<4 and IN D DIMENSIONS
unstable forD>4. On the other hand, complete gaseous
polytropes are stable foD<2 and for [D>2n<nj3
=D/(D—2)] and unstable for @>2n>n;). Polytropes
with index ng,=D/2 correspond to classical white dwarf
stars(i.e., a self-gravitating Fermi gas at=0). They are N
self-confined only forD<2(1+v2) and thgy are stable F=—> Gm 5.
only for D<4. For D>4, quantum mechanics is not able i=1 Ir—ri

The gravitational field produced mby a distribution ofN
particles with massn in a space of dimensiobD is

(A1)
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For D=1, the gravitational field created by a particle is in-

dependent on the distance. Thus, an object locateder-
periences a forcgby unit of masy F=Gm(N*—N7),
whereN™ is the number of particles in its righk(>x) and
N~ the number of particles in its leftx(<x).

The external gravitational field created by a spherically

symmetric distribution of matter with ma$4 is

GM
F:_VCD:_I,D_—ler- (AZ)
For D # 2, the gravitational potential is
o= CM A3
G ED TR (A3)

where the constant of integration has been taken equal to

zero(this implies® =0 at infinity forD>2). ForD=2, we
have
d=GMIn(r/R), (Ad)

where we have takef (R)=0.

APPENDIX B: VIRIAL THEOREM IN D DIMENSIONS
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W=1f ®dPr= jd)ACDdDr (B7)
2)° 25,G '
Integrating by parts, we obtain
W= ®(R d< R)SpRP 1
=35.6 ( )W( )Sp
R(dd)2
—f (—) rD‘lstr]. (B8)
0 dr

The gravitational force and the gravitational potential at the
edge of the box are given by Eq#2) and(A3). Introducing
these results in EqB8) and comparing with Eq(B6), we
obtain
Vp=—(D—-2)W, D=#2. (B9)
By using the virial tensor method introduced by Chan-
drasekhaf19], we can show that the foregoing relation re-
mains valid if the system is not spherically symmetric.

If now the system is in hydrostatic equilibrium, we have

Vp=—pVd. (B10)

Inserting this relation in the viria(B1) and integrating by

We define the virial of the gravitational force in dimen- parts, we get

sion D by

szf pr-VadPr. (B1)

Vo=— 31@ pr-dS+ 2K, (B11)

where we have used=(D/2)[pdPr. This is the expression

For a spherically symmetric system, the Gauss theorem cag¥ the virial theorem in its general form. Assuming now that

be written

dd GM(r r

—=D—_(1), M(r)=f pSpr’PMdr’. (B2

dr r 0
Therefore, the virial is equivalent to

_ (RdM GM(r)d _ G (RdM? 1 g

b= |, dr P2 =5 o dr P2 r. (B3
In D=2, one has, directly,

GM?
sz 2 (B4)

If now D # 2, we obtain, after an integration by parts,

B M2 1 5 2fRGM(r)Zd a5
VD—ZRTﬂ‘i( -2) , o dn (B5)

or, using Eq.(B2),
~GM? 1 5 szdq)zD—ld 56
Vo=5gp2t 55(D~2) Jar) ' r. (B6)

Now, using the Poisson equati¢f), the potential energy can
be written

Py is uniform on the domain boundatwhich is true at least
for a spherically symmetric systenmwe have

fﬁ pr-dS=p, fﬁ r-dsS= pbf V-rd®°r=p,DVpRP.
(B12)

Therefore, for a spherically symmetric system, the virial
theorem reads

2K —Vp=p(R)DVpRP, (B13)

where ) is given by Eqs(B4) and(B9).
It is interesting to consider a direct application of these
results. InD =2, the virial theorem reads

2

2K-— =27R’p(R). (B14)
For an isothermal galk=MT so that
2
2MT— =27R’p(R). (B15)

2

From this relation, we conclude that there exists an equilib-
rium solution withp(R)=0 at T,=GM/4. We therefore re-
cover the critical temperature of an isothermal self-
gravitating gas in two dimensiorisee, e.g., Ref3]). At T
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=T,, the density profile is a Dirac peak so thgR) =0. For D o 1 5 5
T<T,, there is no static solution and the system undergoes a 0=JE= ff opd-r+ Ef opodd Y+J @ opd-r.
gravitational collapse. This collapse was studied in R&f.

: Ry (D6)
with the Smoluchowski-Poisson system.

Inserting Eqs(D2) and(D4) into Eq.(D6), we obtain
APPENDIX C: SPECIAL PROPERTIES

OF ng, POLYTROPES D-2n[ yD J Sp o
—pd-r
In this appendix, we consider polytropes with indey, 2 D—2n A P P
=D/2 in a space of dimensioD=4. They correspond to (8p)2 D
D-dimensional “white dwarf” stars. According to E4113), 3J p2 dPr + _f 5BpdPr
the curven(a) is extremum for 2”(D 2n) 2n
D(D—4n) (5B)? yD 5p
D(D—4) f o, YP f % o
Uo=—p—5 - (CD BT part on 0B ) & pd
D-2
1
It is easy to check that this particular value is also solution of + Eﬂf 5p5(1>dDr+,8f ® 5pdPr=0. (D7)

Eq. (117) determining maxima of\(«). We conclude there-
fore that the functions)(«) and A(«) achieve extremal val- ) ) )
ues for the same values afin the series of equilibria. This Subtracting this relation from EGDS), we get
implies that the generalized caloric curyeA) of ng, poly-
tropes displaysingular points(see Figs. 16 and 18

5S=—Bynf—pd'3 5By

APPENDIX D: SECOND ORDER VARIATIONS OF
GENERALIZED ENTROPY AND FREE ENERGY

D(D—2n) (6B 2
According to Eq(35), the variations of entropy up to

1
second order are _ Eﬁf 5p5<I>dDr—Bf ® 5pdPr. (D8)
P ﬁf 5pdDr+5ﬁj pdDr+j 5,85pdDr)
2 ' Now, to first order, Eq(D7) yields
(DY)
. . . D op
On the other hand, according to the polytropic equation of f ® 5pdPr+ —7f — pdPr
state(30), we have Sp__ 4n 2 p
B D(D—2n) 5
5 Sp P (5p)2+ 5K 5K Sp oo pd-r
P=y Pt 52 K Pt 7Kpp-() (D9)
From Egs.(24) and(31), Substituting this relation in EGD8), we find that the second
b o2 order variations of entropy are given by Eq37). To com-
K~ pP—2min, (D3)  pute the second order variations of free enefgyE— TS,
we can use EqgD5) and (D6) with §8=0. This yields Eq.
so that to second order (123).
K D-2n 5ﬂ+(D—2n)(D—4n) 5B\2 o
?— >n F an? F . (D4 APPENDIX E: SOME USEFUL IDENTITIES

. _ In this appendix we establish identiti€s47)—(149 that
Inserting Eqs(D4) and (D2) in Eq. (D1), we get are needed in the stability analysis of Sec. Il G. Using an
integration by parts, we have

D—2n op p
85=——| By f pd r+—f 5 (8p)2dPr i
D gn D — Dpn+1

D 5 9D 5 fﬁfadgfgdg nr1/% T nrre ? (@

+zfp5/8d r+%5,817pd r
D— 10n+ld E1
D(D—2n)(5,8)2f o . n+1f ¢ & (ED)
8n2 B p r ( )
Using the Lane-Emden equatio@5) and integrating by
Now, the conservation of enerd®4) implies that parts, we obtain
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fa0n+1gD—1d§_—:_aD—la(a)e/(a)+J’a(a/)2§D—1dg_
0 0
(E2

Using the relation

a (1+D)/20/ d
JO g g d_§(§(1+D)/20/)d§

a§(1+D)/207 d
— . Dgr 2_ _
=a6'(a) fo & dé

X (PR dé+ f £271(0")%d¢, (B3
0
which results from a simple integration by parts, we get

JoagD—l(e/)ngz _ aDg/(a)Z

+ ZJag(D_l)/2£(§(1+D)/20’)0’d§,
0 dé

(E4)

or, equivalently,

Dj gD—l( 6’)2d§=aD0’(a)2—2J fDH"G’dg.
0 0

(E9)
Using the Lane-Emden equatida5), we find that

(D—2)f gD—l(a')ngz—aDe'(a)z—zf &P’ odé.
0 0

(E6)
We have three equatiori§€l), (E2) and (E6) for three un-

PHYSICAL REVIEW E69, 016116 (2004

APPENDIX F: DYNAMICAL STABILITY
OF GASEOUS SPHERES

In this appendix, we assuniz>2. According to Eq(37),
the energy of a polytropic star at equilibriufa=0) can be
written

2n
W= —K+W,

5 (FD)

whereK is the kinetic energy andlv the potential energy.
Now, for a complete polytropep,=0), the virial theorem
reads

2K+ (D-2)W=0. (F2
Combining the foregoing relations, we get
n
W= ( 1- —) W. (F3)
N3

According to Poincare theorem, a gaseous star willy
>0 is unstablg[18]. For polytropic stars, this condition is
equivalent ton>n;.

More generally, the internal energy of a massof gas at
temperatureT is dU=C,dmT. Its kinetic energy isdK
=(D/2)dmRT=(D/2)(C,—C,)dmT whereR is the con-
stant of perfect gases ari@],, C, are the specific heats at

constant volume and constant pressure, respectively. Thus,

we get

2

R T

K, (F4)

where y=C,/C,. For a monoatomic gasy=(D+2)/D
andU =K. Using the virial theorentF2), the total energy of
the starlwW=U +W can be written

_Dy—2(D-1)

D(7—1) (F5)

known integrals. Solving this system of algebraic equationsThe star is unstable foy<<y.;;=2(D—1)/D. For D=3,

and introducing the Milne variabl€30), we obtain the iden-

tities (147)—(149.

we recover the well-known resujt.;;;= 4/3. For a polytropic
gas, we recover the resulti;=1+ 1/n;.
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