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Topology of large-scale engineering problem-solving networks
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The last few years have led to a series of discoveries that uncovered statistical properties that are common
to a variety of diverse real-world social, information, biological, and technological networks. The goal of the
present paper is to investigate the statistical properties of networks of people engaged in distributed problem
solving and discuss their significance. We show that problem-solving networks have profsgéieseness,
small world, scaling regimesthat are like those displayed by information, biological, and technological
networks. More importantly, we demonstrate a previously unreported difference between the distribution of
incoming and outgoing links of directed networks. Specifically, the incoming link distributions have sharp
cutoffs that are substantially lower than those of the outgoing link distributisometimes the outgoing
cutoffs are not even presenThis asymmetry can be explained by considering the dynamical interactions that
take place in distributed problem solving and may be related to differences between each actor’s capacity to
process information provided by others and the actor’s capacity to transmit information over the network. We
conjecture that the asymmetric link distribution is likely to hold for other human or nonhuman directed
networks when nodes represent information processing and using elements.
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I. INTRODUCTION Characterizing theeal-world structure and, eventually, the
dynamics of complex PD networks may lead to the develop-
Distributed problem solving, which often involves an in- ment of guidelines for coping with complexity. It would also
tricate network of interconnected tasks carried out by hunSuggest ways for improving the decision making process and
dreds of designers, is fundamental to the creation of comple{'® Search for innovative design solutions. .
manmade systemgl]. The interdependence between the The last few years have w@nessed substantial and dra-
various tasks makes system developmineferred to as matic advances in understanding the large-scale structural

. . ; properties of many real-world complex networl®-10].
g:ggg; ?se\:jerli?/gnmigptr?()a] :gggt?triz?g\:vao”ryloltgfr e:g\sl,%]dzglio The availability of large-scale empirical data on the one hand

S ) . and advances in computing power and theoretical under-
the availability of new informatiotigenerated by other tasks  gianding have led to a series of discoveries that uncovered

such as changes in input, updates of shared assumptions, Qhistical properties that are common to a variety of diverse
the discovery of errors. In such an intricate network of inter-rea|-world social, information, biological, and technological
actions, iterations occur when some development tasks afgtworks including the worldwide wepll], the internet
attempted even though the complete predecessor informatign2], power grids[13], metabolic and protein networks
is not available or known with certainfg]. As this missing  [14,15, food webs[16], scientific collaboration networks
or uncertain information becomes available, the tasks are r§17-2Q, citation networkg21], electronic circuit§22], and
peated to either verify an initial estimate or guess or to com&oftware architectur¢23]. These studies have shown that
closer to the design specifications. This iterative process pranany complex networks exhibit the “small-world” property
ceeds until convergence occui-5|. of short average path lengths between any two nodes despite
Design iterations, which are the result of the PD networkbeing highly clustered. They also have found that complex
structure, might slow down the PD convergence or have aetworks are characterized by an inhomogeneous distribu-
destabilizing effect on the system’s behavior. This will delaytion of nodal degreeghe number of nodes a particular node
the time required for product development and thus comprois connected tp with this distribution often following a
mise the effectiveness and efficiency of the PD process. Fqiower law(termed “scale-free” networks if24]). Scale-free
example, it is estimated that iteration costs about one-third ofietworks have been shown to be robust to random failures of
the whole PD time6], while lost profits result when new nodes, but vulnerable to failure of the highly connected
products are delayed in development and shipped[l&te noded25]. A variety of network growth processes that might
occur on real networks and that lead to scale-free and small-
world networks have been proposg10].
*Electronic address: brahad@bgumail.bgu.ac.il Planning techniques and analytical models that conceive
"Electronic address: yaneer@necsi.org the PD process as a network of interacting components have
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been proposed befol8,26,27. However, others have not system if they exchange information between themot
yet addressed the large-scale statistical properties of reatecessarily reciprocalWe see that this network is sparse
world PD task networks. In the research we report here, wg2L/N(N—1)=0.011491 ] with the average total degree
study such networks. We show that task networks have promf each node only 5.34, which is small compared to the
erties(sparseness, small world, scaling regiiést are like number of possible edge®N—1=465. A clear deviation
those of other biological, social, and technological networksfrom a purely random graph is observed. We see that most of
We also demonstrate a previously unreported asymmetry ithe nodes have a low degree while a few nodes have a very
the cutoffs between the distribution of incoming and outgo-large degree. This is in contrast to the nodal degree homoge-
ing links. neity of purely random graphs, where most of the nodal de-
The paper is organized as follows: In Sec. Il we describegrees are concentrated around the mean. The software devel-
the data on PD tasks. In Sec. Il we present an analysis of thepment network also illustrates the “small-world” property,
PD task networks, their small-world property, and node conwhich can be detected by measuring two basic statistical
nectivity distributions. We demonstrate the distinct roles ofcharacteristics. The first characteristic is the average distance
incoming and outgoing information flows in distributed PD (geodesitbetween two nodes, where the distad¢gj) be-
processes by analyzing the corresponding in-degree and outveen nodesy; and v is defined as the number of edges
degree link distributions. In Sec. IV we present our conclu-along the shortest path connecting them. The characteristic

sions. path lengthL is the average distance between any two verti-
ces:
Il. DATA
B 1
We analyzed distributed product development data of dif- L= N(N—1) ; djj - @)

ferent large-scale organizations in the United States and En-

gland involved in vehicle developme[®8], operating soft- The second characteristic measures the tendency of verti-
ware developmerj29], pharmaceutical facility development ¢es to cluster in interconnected modules or regions. The clus-
[30], and a 16-story hospital facility developméB0]. APD  (ering coefficientC; of a vertexv; is defined as follows. Let
distributed network can be considered as a directed grapfiertex 1, be connected t&; neighbors. The total number of
with N nodes and. arcs, where there is an arc from task edges between these neighbors is at rkgét — 1)/2. If the

to ta_\skv]- if task Vi feeds i_nformation tdaskv;. The infor-  5ctual number of edges between théseneighbors isn;,
mation flow forming the directed links between the tasks ha?,hen the clustering coefficie@; of the vertexy, is the ratio

been based on structured interviews with experienced engi-

neers and design documentation dégay., design process 2n;
models and module/subsystems dependency diagyrames| Ci “ k=1
cases, the repeated nature of the product development i(ki=1)
projects and the knowledgeable people involved in elicitin . - _
the information flow dependences reduce the risk of error in "€ clustering coefficient of the graph, which is a measure of
the construction of the product development networks. Mord€ network's potential modularity, is the average over all
specifically, Cividanteg28] obtained the vehicle develop- Vertices:

ment network bydirectly questioning at least one engineer N

from each task: where do the inputs for the task come from o EE C 3)
(e.g., another tagkand where do the outputs generated by Ni< T

the task go to(e.g., another tagR The answers to these

questions were used by him to construct the network of ingmall-world networks are a class of graphs that are highly
formation flows[2$]. The operating software development cjystered like regular graph€fes Candor), but with small
network was obtained from module/subsystems dependen@haracteristic path length like a random grapi.f
diagrams compiled by Denkg28] and both the pharmaceu- ~¢ . For the software development network, the net-
tical facility development ar]d the hospital facility develop- york is highly clustered as measured by the clustering coef-
ment networks were compiled by Newton and Au§®®]  ficient of the graph Ceppyar=0.327) compared to a random
from data flow diagrams and design-process model diagramgraph with the same number of nodes and edg&sdom
[31] deployed by the organizations. An example of a diagram_ 021), but with small characteristic path length like a
from the pharmaceutical facility and 16-story hospital facil- ;5nqom graph Csottware= 3-700= € rangon= 3.448).

2

ity process models is shown in Fig. 1. In Table | we present the characteristic path length and
clustering coefficient for the four distributed PD networks
Ill. RESULTS examined in this paper and compare their values with ran-

dom graphs having the same number of nodes and edges. In

all cases, the empirical results display the small-world prop-
An example of one of these distributed PD networkserty (C;ea® Crandom@nd € ear= < random -

(operating software networkis shown in Fig. 2. Here we An interpretation of the functional significance of the ar-

consider the undirected version of the network, where therehitecture of PD networks must be based upon a recognition

is an edge between two taskse., develop module/sub- of the factors that such systems are optimizing. Shorter de-

A. Small-world properties
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velopment times, improved product quality, and lower devel-work). A modular architecture of the PD process is aligned
opment costs are the key factors for successful complex PWith this strategy.

processes. The existence of cycles in the PD networks,

readily noted in the network architectures investigated, B. In-degree and out-degree distributions

points to the seemingly undeniable truth that there is an in- o compared the cumulative probability distributions
herent, iterative nature to the design prodeds Each itera- P;,(k) andP.(Kk) that a task has more th&rincoming and
tion results in changes that must propagate through the PBytgoing links, respectivelysee Fig. 3 [33]. For all four
network requiring the rework of other reachable tasks. Connetworks, we find that the in-degree and out-degree distribu-
sequently, late feedback and excessive rework should bgons can be described by power laws with cutoffs introduced
minimized if shorter development time is required. at some characteristic scak&: k™ 7f(k/k*) (typically, the
The functional significance of the small-world property function f corresponds to exponential or Gaussian distribu-
can be attributed to the fast information transfer throughoutions). More specifically, we find scaling regime@.e.,
the network, which results in an immediate response to thetraight-line regimésfor both P;,(k) and P, (k); however,
rework created by other tasks in the network. The high clusthe cutoffk* occurs lower(by more than a factor of)2for
tering coefficient of PD networks suggests an inherentlyP; (k) than for P, (k).
modular organization of PD processes; i.e., the organization The presence of cutoffs in the in-degree and out-degree
of the PD process in clusters that contain most, if not all, ofdistributions is consistent with a conjecture by Amagahl.
the interactions internally and the interactions or links be{17] that the physical costs of adding links and the limited
tween separate clusters is eliminated or minimiz@e3].  capacity of a node should lead to a power-law regime fol-
The dynamic model developed [B] shows that a speedup lowed by a sharp cutoffthis conjecture has been tested for
of the PD convergence to the design solution is obtained byindirected networks Our empirical results are also consis-
reducing or “ignoring” some of the task dependendes.,  tent with Mossaet al. [34] who suggest that making deci-
eliminating some of the arcs in the corresponding PD netsions on new Internet links, based on filtered information,
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thus increases the likelihood of converging to a successful
solution. This empirical observation is found to be consistent
with the dynamic PD mode({using linear systems theoyy
developed if5]. There it was shown that additional rework
might slow down the PD convergence or have a destabilizing
effect on the system’s behavior. As a general rule, the rate of
problem solving has to be measured and controlled such that
the total number of design problems being created is smaller

FIG. 2. Network of information flows between tasks of an op- than the total number of design problems being solved.

erating system development process. This PD task network consists 1he scale-free nature of the outgoing communication
of 1245 directed information flows between 466 development taskdinks means that some tasks communicate their outcomes to

Each task is assigned to one or more aciddesign teams” or ~many more tasks than others do and may play the role of
“engineers” who are responsible for it. Nodes with the same de-coordinatorgor product integrators; s¢&]). Unlike the case
gree are colored the same. of large numbers of incoming links, this may improve the
integration and consistency of the problem-solving process,
leads to an exponential cutoff of the in-degree distributionthus reducing the number of potential conflicts. Product in-
for networks growing under conditions of preferential attaCh-tegratorS put the Separate de\/e|0pment tasks together to en-
ment. Both Amaraét al.[17] and Mossat al.[34] comment  gyre fit and functionality. Since late changes in product de-
that, in the context of network growth, the presence of costl;gign are highly expensive, product integrators continuously

connections, limited capacity of a node, or limited check unfinished component designs and provide feedback to
information-processing capability of a node are not unlike, large number of tasks accordingly.

the so-called “bounded rationality” concept of Sim@85].
Our findings suggest that although the cutoff may be attrib-

uted to constraints on the information-processing capacities IV. CONCLUSIONS
of the actors carrying out the development prod@ssccor-
dance with the “bounded rationality” conceptthere is an The study of complex network topologies across many

asymmetnpetween the distributions of incoming and outgo- fie|ds of science and technology has become a rapidly ad-
ing information flows. The narrower power-law regime for vancing area of research in the last few yd8&rs10). One of
Pin(k) suggests that the costs of adding incoming links andpe ey areas of research is understanding the network prop-
limited in-degree capacity of a task are hlg_he_r than _the'rerties that are optimized by specific network architectures
counterpart out-degree links. We note that this is con3|ster\[t17 23,34,36,3] Here we analyzed the statistical properties
with the realization that bounded rationality applies to in—Of r’eal,—wo'rld'networks of people engaged in product devel-
.c;qmig%infortn}ation ar?d o qut%oingtinfrc]) rma}ttipn (?m}(. ngeg opment activities. We show that complex PD networks dis-

it is different for each recipient, not when it is duplicated. . L

This naturally leads to a weaker restriction on the out-degreg:j’j‘é’i f?g:glrir osrti?;tilr?;m?rlm [tjr?éti?r?téitOgri)rrczgslc;’vgg\(/jelr:)e;mgﬁs

distribution. ) ;
An additional functional significance of the asymmetric What is the meaning of these patterns? How do they come to

topology can be attributed to the distinct roles of incomingP® What they are? We propose several explanations for these
and outgoing links in distributed PD processes. The narrovPatterns. _ - _

scaling regime governing the information flowing into a task  Successful PD processes in competitive environments are
implies that tasks with large incoming connectivity are prac-often characterized by short time-to-market, high product
tically absent. This indicates that distributed PD networksperformance, and low development coft$ An important
strive to limit conflicts by reducing the multiplicity of inter- trade-off exists in many high technology industries between
actions that affect a single task, as reflected in the incomingninimizing time-to-market and development costs and maxi-
links. This characteristic reduces the amount and range ahizing the product performance. Considering the PD task
potential revisions that occur in the dynamic PD process andetwork, accelerating the PD process can be achieved by

TABLE |. Empirical statistics of the four large-scale PD networks.

Network N L C 4 Crandom € andom
Vehicle 120 417 0.205 2.878 0.070 2.698
Operating software 466 1245 0.327 3.700 0.021 3.448
Pharmaceutical facility 582 4123 0.449 2.628 0.023 2.771
Sixteen-story 889 8178 0.274 3.118 0.024 2.583

hospital facility*

ANe restrict attention to the largest connected component of the graphs, which inelg@&sof all tasks for
the operating software network areD2% of all tasks for the 16-story hospital facility network.
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FIG. 3. Degree distributions for four distributed problem solving networks. The log-log plots of the cumulative distributions of incoming
and outgoing links show a power-law regirffeearson coefficieR>0.98,p<<0.001) with or without a fast decaying tail in all cases. The
in-degree distribution has a lower best visual fit cutdffin each casea) Vehicle development with 120 tasks and 417 arcs. The exponents

of the cumulative distributions arg’;...— 1 andy%. ..~ 1, whereyl, . ~2.82+0.25 andy%:, .= 2.97+ 0.24 denote the exponents of the

associated probability density functiori) Software development with 466 tasks and 1245 arcs, Whsg .= 2.08+0.13 andy2% .
~2.25+0.15. (c) Pharmaceutical facility development with 582 tasks and 4123 arcs, WHRLE, aceuicar 1-92+0.07 and ypamaceutical

~1.96+0.07.(d) Hospital facility development with 889 tasks and 8178 arcs, wheg,,~ 1.8 0.03 andypogia~ 1.95+-0.03.

“cutting out” some of the links between the tasks]. Al- observed that in many technical systems design tasks are
though the elimination of some arcs should result in acommonly organized around the architecture of the product
speedup of the PD convergence, this might worsen the pef26]. Consequently, there is a strong association between the
formance of the end system. Consequently, a trade-off exisiaformation flows underlying the PD task network and the
between the elimination of task dependenégseeding up design network composed of the physi¢ai logical) com-
the processand the desire to improve the system’s perfor-ponents of the product and interfaces between them. If the
mance through the incorporation of additional task depentask network is a “mirror image” of the related design net-
dences. PD networks are likely to be highly optimized whenwork, it is reasonable that their large-scale statistical proper-
both PD completion time and product performance are acties might be similar. Evidence for this can be found in re-
counted for. Recent studies have shown that an evolutionargent empirical studies that show some design networks
algorithm involvingminimization of link density and average (electronic circuitd 22] and software architectur¢23]) ex-
distancebetween any pair of nodes can lead to nontrivialhibit small-world and scaling properties. The scale-free
types of networks including truncated scale-free networks—structure of design networks, in turn, might reflect the strat-
i.e., p(k)=k™*f(k/k*) [23,36. This might suggest that an egy adopted by many firms of reusing existing modules to-
evolutionary process that incorporates similar generic optigether with newly developed modules in future product ar-
mization mechanismge.g., minimizing a weighted sum of chitectureg2]. Thus the highly connected nodes of the scale-
development time and product quality lossesght lead to  free design network tend to be the most reusable modules.
the formation of a PD network structure with the small-world Reusing modules at the product architecture level has also a
and truncated scale-free properties. direct effect on the task level of product development; it
Another explanation for the characteristic patterns of PDallows firms to reduce the complexity and scope of the prod-
networks might be related to the close interplay between thact development project by exploiting the knowledge embed-
design structuréproduct architectujeand the related orga- ded in reused modules and thus significantly reduce the prod-
nization of tasks involved in the design process. It has beenct development time.
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Of greatest significance for the analysis of generic netflects communication of information between human beings
work architectures, we demonstrated a previously unreporteds a natural and direct outcome of Simon’s bounded-
difference between the distribution of incoming and outgoingrationality argument. It would be interesting to see whether
links in a complex network. Specifically, we find that the this property can be found more generally in other directed
distribution of incoming communication links always has ahuman or nonhuman networks. It seems reasonable to pro-
cutoff, while outgoing communication links is scale free with pose that the asymmetric link distribution is likely to hold for
or without a cutoff. When both distributions have cutoffs thesuch networks when nodes represent information processing
incoming distribution has a cutoff that is significantly lower, and using elements.
in the cases studied by more than a factor of 2. From a
product development viewpoint, the functional significance ACKNOWLEDGMENTS
of this asymmetric topology has been explained by consid-
ering a bounded-rationality argument originally put forward This work was conducted while D.B. was at the Massa-
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