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Topology of large-scale engineering problem-solving networks
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The last few years have led to a series of discoveries that uncovered statistical properties that are common
to a variety of diverse real-world social, information, biological, and technological networks. The goal of the
present paper is to investigate the statistical properties of networks of people engaged in distributed problem
solving and discuss their significance. We show that problem-solving networks have properties~sparseness,
small world, scaling regimes! that are like those displayed by information, biological, and technological
networks. More importantly, we demonstrate a previously unreported difference between the distribution of
incoming and outgoing links of directed networks. Specifically, the incoming link distributions have sharp
cutoffs that are substantially lower than those of the outgoing link distributions~sometimes the outgoing
cutoffs are not even present!. This asymmetry can be explained by considering the dynamical interactions that
take place in distributed problem solving and may be related to differences between each actor’s capacity to
process information provided by others and the actor’s capacity to transmit information over the network. We
conjecture that the asymmetric link distribution is likely to hold for other human or nonhuman directed
networks when nodes represent information processing and using elements.

DOI: 10.1103/PhysRevE.69.016113 PACS number~s!: 89.75.Hc
n-
un
le

he

s
er
a
ti

r
m
pr

r
e
ay
ro
F

d

e
op-
o
and

dra-
tural

nd
er-
red

rse
al

s

at
y
spite
lex
ibu-
e

s of
ed
ht
all-

ive
ave
I. INTRODUCTION

Distributed problem solving, which often involves an i
tricate network of interconnected tasks carried out by h
dreds of designers, is fundamental to the creation of comp
manmade systems@1#. The interdependence between t
various tasks makes system development@referred to as
product development~PD!# fundamentally iterative@2#. This
process is driven by the repetition~rework! of tasks due to
the availability of new information~generated by other tasks!
such as changes in input, updates of shared assumption
the discovery of errors. In such an intricate network of int
actions, iterations occur when some development tasks
attempted even though the complete predecessor informa
is not available or known with certainty@3#. As this missing
or uncertain information becomes available, the tasks are
peated to either verify an initial estimate or guess or to co
closer to the design specifications. This iterative process
ceeds until convergence occurs@3–5#.

Design iterations, which are the result of the PD netwo
structure, might slow down the PD convergence or hav
destabilizing effect on the system’s behavior. This will del
the time required for product development and thus comp
mise the effectiveness and efficiency of the PD process.
example, it is estimated that iteration costs about one-thir
the whole PD time@6#, while lost profits result when new
products are delayed in development and shipped late@7#.
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Characterizing thereal-world structure and, eventually, th
dynamics of complex PD networks may lead to the devel
ment of guidelines for coping with complexity. It would als
suggest ways for improving the decision making process
the search for innovative design solutions.

The last few years have witnessed substantial and
matic advances in understanding the large-scale struc
properties of many real-world complex networks@8–10#.
The availability of large-scale empirical data on the one ha
and advances in computing power and theoretical und
standing have led to a series of discoveries that uncove
statistical properties that are common to a variety of dive
real-world social, information, biological, and technologic
networks including the worldwide web@11#, the internet
@12#, power grids @13#, metabolic and protein network
@14,15#, food webs@16#, scientific collaboration networks
@17–20#, citation networks@21#, electronic circuits@22#, and
software architecture@23#. These studies have shown th
many complex networks exhibit the ‘‘small-world’’ propert
of short average path lengths between any two nodes de
being highly clustered. They also have found that comp
networks are characterized by an inhomogeneous distr
tion of nodal degrees~the number of nodes a particular nod
is connected to! with this distribution often following a
power law~termed ‘‘scale-free’’ networks in@24#!. Scale-free
networks have been shown to be robust to random failure
nodes, but vulnerable to failure of the highly connect
nodes@25#. A variety of network growth processes that mig
occur on real networks and that lead to scale-free and sm
world networks have been proposed@9,10#.

Planning techniques and analytical models that conce
the PD process as a network of interacting components h
©2004 The American Physical Society13-1
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been proposed before@3,26,27#. However, others have no
yet addressed the large-scale statistical properties of
world PD task networks. In the research we report here,
study such networks. We show that task networks have p
erties~sparseness, small world, scaling regimes! that are like
those of other biological, social, and technological networ
We also demonstrate a previously unreported asymmetr
the cutoffs between the distribution of incoming and outg
ing links.

The paper is organized as follows: In Sec. II we descr
the data on PD tasks. In Sec. III we present an analysis o
PD task networks, their small-world property, and node c
nectivity distributions. We demonstrate the distinct roles
incoming and outgoing information flows in distributed P
processes by analyzing the corresponding in-degree and
degree link distributions. In Sec. IV we present our conc
sions.

II. DATA

We analyzed distributed product development data of
ferent large-scale organizations in the United States and
gland involved in vehicle development@28#, operating soft-
ware development@29#, pharmaceutical facility developmen
@30#, and a 16-story hospital facility development@30#. A PD
distributed network can be considered as a directed gr
with N nodes andL arcs, where there is an arc from taskn i
to taskn j if task n i feeds information totaskn j . The infor-
mation flow forming the directed links between the tasks
been based on structured interviews with experienced e
neers and design documentation data~e.g., design proces
models and module/subsystems dependency diagrams!. In all
cases, the repeated nature of the product developm
projects and the knowledgeable people involved in elicit
the information flow dependences reduce the risk of erro
the construction of the product development networks. M
specifically, Cividantes@28# obtained the vehicle develop
ment network bydirectly questioning at least one engine
from each task: where do the inputs for the task come fr
~e.g., another task! and where do the outputs generated
the task go to~e.g., another task!? The answers to thes
questions were used by him to construct the network of
formation flows @28#. The operating software developme
network was obtained from module/subsystems depende
diagrams compiled by Denker@28# and both the pharmaceu
tical facility development and the hospital facility develo
ment networks were compiled by Newton and Austin@30#
from data flow diagrams and design-process model diagr
@31# deployed by the organizations. An example of a diagr
from the pharmaceutical facility and 16-story hospital fac
ity process models is shown in Fig. 1.

III. RESULTS

A. Small-world properties

An example of one of these distributed PD networ
~operating software network! is shown in Fig. 2. Here we
consider the undirected version of the network, where th
is an edge between two tasks~i.e., develop module/sub
01611
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system! if they exchange information between them~not
necessarily reciprocal!. We see that this network is spars
@2L/N(N21)50.011 491 1# with the average total degre
of each node only 5.34, which is small compared to
number of possible edges,N215465. A clear deviation
from a purely random graph is observed. We see that mos
the nodes have a low degree while a few nodes have a
large degree. This is in contrast to the nodal degree homo
neity of purely random graphs, where most of the nodal
grees are concentrated around the mean. The software d
opment network also illustrates the ‘‘small-world’’ propert
which can be detected by measuring two basic statist
characteristics. The first characteristic is the average dista
~geodesic! between two nodes, where the distanced( i , j ) be-
tween nodesn i and n j is defined as the number of edge
along the shortest path connecting them. The character
path lengthL is the average distance between any two ve
ces:

L5
1

N~N21! (iÞ j
di j . ~1!

The second characteristic measures the tendency of v
ces to cluster in interconnected modules or regions. The c
tering coefficientCi of a vertexn i is defined as follows. Let
vertexn i be connected toki neighbors. The total number o
edges between these neighbors is at mostki(ki21)/2. If the
actual number of edges between theseki neighbors isni ,
then the clustering coefficientCi of the vertexn i is the ratio

Ci5
2ni

ki~ki21!
. ~2!

The clustering coefficient of the graph, which is a measure
the network’s potential modularity, is the average over
vertices:

C5
1

N (
i 51

N

Ci . ~3!

Small-world networks are a class of graphs that are hig
clustered like regular graphs (Creal@Crandom), but with small
characteristic path length like a random graph (, real
', random). For the software development network, the n
work is highly clustered as measured by the clustering co
ficient of the graph (Csoftware50.327) compared to a random
graph with the same number of nodes and edges (Crandom
50.021), but with small characteristic path length like
random graph (,software53.700', random53.448).

In Table I we present the characteristic path length a
clustering coefficient for the four distributed PD networ
examined in this paper and compare their values with r
dom graphs having the same number of nodes and edge
all cases, the empirical results display the small-world pr
erty (Creal@Crandomand, real', random).

An interpretation of the functional significance of the a
chitecture of PD networks must be based upon a recogni
of the factors that such systems are optimizing. Shorter
3-2
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FIG. 1. Example of a diagram
from a design process model use
to construct the pharmaceutical fa
cility and the 16-story hospital fa-
cility networks ~adapted from
@32#!.
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velopment times, improved product quality, and lower dev
opment costs are the key factors for successful complex
processes. The existence of cycles in the PD netwo
readily noted in the network architectures investigat
points to the seemingly undeniable truth that there is an
herent, iterative nature to the design process@2#. Each itera-
tion results in changes that must propagate through the
network requiring the rework of other reachable tasks. C
sequently, late feedback and excessive rework should
minimized if shorter development time is required.

The functional significance of the small-world proper
can be attributed to the fast information transfer through
the network, which results in an immediate response to
rework created by other tasks in the network. The high cl
tering coefficient of PD networks suggests an inheren
modular organization of PD processes; i.e., the organiza
of the PD process in clusters that contain most, if not all,
the interactions internally and the interactions or links b
tween separate clusters is eliminated or minimized@1–3#.
The dynamic model developed in@5# shows that a speedu
of the PD convergence to the design solution is obtained
reducing or ‘‘ignoring’’ some of the task dependences~i.e.,
eliminating some of the arcs in the corresponding PD n
01611
l-
D
s,
,
-

D
-

be

t
e
-

y
n
f
-

y

t-

work!. A modular architecture of the PD process is align
with this strategy.

B. In-degree and out-degree distributions

We compared the cumulative probability distributio
Pin(k) andPout(k) that a task has more thank incoming and
outgoing links, respectively~see Fig. 3! @33#. For all four
networks, we find that the in-degree and out-degree distr
tions can be described by power laws with cutoffs introduc
at some characteristic scalek* : k2g f (k/k* ) ~typically, the
function f corresponds to exponential or Gaussian distrib
tions!. More specifically, we find scaling regimes~i.e.,
straight-line regimes! for both Pin(k) andPout(k); however,
the cutoffk* occurs lower~by more than a factor of 2! for
Pin(k) than forPout(k).

The presence of cutoffs in the in-degree and out-deg
distributions is consistent with a conjecture by Amaralet al.
@17# that the physical costs of adding links and the limit
capacity of a node should lead to a power-law regime f
lowed by a sharp cutoff~this conjecture has been tested f
undirected networks!. Our empirical results are also consi
tent with Mossaet al. @34# who suggest that making dec
sions on new Internet links, based on filtered informatio
3-3
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leads to an exponential cutoff of the in-degree distribut
for networks growing under conditions of preferential attac
ment. Both Amaralet al. @17# and Mossaet al. @34# comment
that, in the context of network growth, the presence of co
connections, limited capacity of a node, or limite
information-processing capability of a node are not unl
the so-called ‘‘bounded rationality’’ concept of Simon@35#.
Our findings suggest that although the cutoff may be att
uted to constraints on the information-processing capac
of the actors carrying out the development process~in accor-
dance with the ‘‘bounded rationality’’ concept!, there is an
asymmetrybetween the distributions of incoming and outg
ing information flows. The narrower power-law regime f
Pin(k) suggests that the costs of adding incoming links a
limited in-degree capacity of a task are higher than th
counterpart out-degree links. We note that this is consis
with the realization that bounded rationality applies to
coming information and to outgoing information only whe
it is different for each recipient, not when it is duplicate
This naturally leads to a weaker restriction on the out-deg
distribution.

An additional functional significance of the asymmet
topology can be attributed to the distinct roles of incomi
and outgoing links in distributed PD processes. The nar
scaling regime governing the information flowing into a ta
implies that tasks with large incoming connectivity are pra
tically absent. This indicates that distributed PD netwo
strive to limit conflicts by reducing the multiplicity of inter
actions that affect a single task, as reflected in the incom
links. This characteristic reduces the amount and range
potential revisions that occur in the dynamic PD process

FIG. 2. Network of information flows between tasks of an o
erating system development process. This PD task network con
of 1245 directed information flows between 466 development ta
Each task is assigned to one or more actors~‘‘design teams’’ or
‘‘engineers’’! who are responsible for it. Nodes with the same d
gree are colored the same.
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thus increases the likelihood of converging to a succes
solution. This empirical observation is found to be consist
with the dynamic PD model~using linear systems theory!
developed in@5#. There it was shown that additional rewor
might slow down the PD convergence or have a destabiliz
effect on the system’s behavior. As a general rule, the rat
problem solving has to be measured and controlled such
the total number of design problems being created is sma
than the total number of design problems being solved.

The scale-free nature of the outgoing communicat
links means that some tasks communicate their outcome
many more tasks than others do and may play the role
coordinators~or product integrators; see@5#!. Unlike the case
of large numbers of incoming links, this may improve th
integration and consistency of the problem-solving proce
thus reducing the number of potential conflicts. Product
tegrators put the separate development tasks together to
sure fit and functionality. Since late changes in product
sign are highly expensive, product integrators continuou
check unfinished component designs and provide feedbac
a large number of tasks accordingly.

IV. CONCLUSIONS

The study of complex network topologies across ma
fields of science and technology has become a rapidly
vancing area of research in the last few years@8–10#. One of
the key areas of research is understanding the network p
erties that are optimized by specific network architectu
@17,23,34,36,37#. Here we analyzed the statistical properti
of real-world networks of people engaged in product dev
opment activities. We show that complex PD networks d
play similar statistical patterns to other real-world networ
of different origins. In the context of product developme
what is the meaning of these patterns? How do they com
be what they are? We propose several explanations for t
patterns.

Successful PD processes in competitive environments
often characterized by short time-to-market, high prod
performance, and low development costs@7#. An important
trade-off exists in many high technology industries betwe
minimizing time-to-market and development costs and ma
mizing the product performance. Considering the PD ta
network, accelerating the PD process can be achieved

sts
s.

-

1

TABLE I. Empirical statistics of the four large-scale PD networks.

Network N L C , Crandom , random

Vehicle 120 417 0.205 2.878 0.070 2.698

Operating softwarea 466 1245 0.327 3.700 0.021 3.448

Pharmaceutical facility 582 4123 0.449 2.628 0.023 2.77

Sixteen-story
hospital facilitya

889 8178 0.274 3.118 0.024 2.583

aWe restrict attention to the largest connected component of the graphs, which includes;82% of all tasks for
the operating software network and;92% of all tasks for the 16-story hospital facility network.
3-4
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FIG. 3. Degree distributions for four distributed problem solving networks. The log-log plots of the cumulative distributions of inc
and outgoing links show a power-law regime~Pearson coefficientR.0.98,p,0.001) with or without a fast decaying tail in all cases. T
in-degree distribution has a lower best visual fit cutoffkin* in each case.~a! Vehicle development with 120 tasks and 417 arcs. The expon
of the cumulative distributions aregvehicle

in 21 andgvehicle
out 21, wheregvehicle

in '2.8260.25 andgvehicle
out 52.9760.24 denote the exponents of th

associated probability density functions.~b! Software development with 466 tasks and 1245 arcs, wheregsoftware
in '2.0860.13 andgsoftware

out

'2.2560.15. ~c! Pharmaceutical facility development with 582 tasks and 4123 arcs, wheregpharmaceutical
in '1.9260.07 andgpharmaceutical

out

'1.9660.07. ~d! Hospital facility development with 889 tasks and 8178 arcs, whereghospital
in '1.860.03 andghospital

out '1.9560.03.
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‘‘cutting out’’ some of the links between the tasks@5#. Al-
though the elimination of some arcs should result in
speedup of the PD convergence, this might worsen the
formance of the end system. Consequently, a trade-off ex
between the elimination of task dependences~speeding up
the process! and the desire to improve the system’s perf
mance through the incorporation of additional task dep
dences. PD networks are likely to be highly optimized wh
both PD completion time and product performance are
counted for. Recent studies have shown that an evolution
algorithm involvingminimization of link density and averag
distancebetween any pair of nodes can lead to nontriv
types of networks including truncated scale-free network
i.e., p(k)5k2g f (k/k* ) @23,36#. This might suggest that a
evolutionary process that incorporates similar generic o
mization mechanisms~e.g., minimizing a weighted sum o
development time and product quality losses! might lead to
the formation of a PD network structure with the small-wo
and truncated scale-free properties.

Another explanation for the characteristic patterns of
networks might be related to the close interplay between
design structure~product architecture! and the related orga
nization of tasks involved in the design process. It has b
01611
a
r-
ts

-
-

n
c-
ry

l

i-

e

n

observed that in many technical systems design tasks
commonly organized around the architecture of the prod
@26#. Consequently, there is a strong association between
information flows underlying the PD task network and t
design network composed of the physical~or logical! com-
ponents of the product and interfaces between them. If
task network is a ‘‘mirror image’’ of the related design ne
work, it is reasonable that their large-scale statistical prop
ties might be similar. Evidence for this can be found in r
cent empirical studies that show some design netwo
~electronic circuits@22# and software architectures@23#! ex-
hibit small-world and scaling properties. The scale-fr
structure of design networks, in turn, might reflect the str
egy adopted by many firms of reusing existing modules
gether with newly developed modules in future product
chitectures@2#. Thus the highly connected nodes of the sca
free design network tend to be the most reusable modu
Reusing modules at the product architecture level has al
direct effect on the task level of product development;
allows firms to reduce the complexity and scope of the pr
uct development project by exploiting the knowledge emb
ded in reused modules and thus significantly reduce the p
uct development time.
3-5
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Of greatest significance for the analysis of generic n
work architectures, we demonstrated a previously unrepo
difference between the distribution of incoming and outgo
links in a complex network. Specifically, we find that th
distribution of incoming communication links always has
cutoff, while outgoing communication links is scale free wi
or without a cutoff. When both distributions have cutoffs t
incoming distribution has a cutoff that is significantly lowe
in the cases studied by more than a factor of 2. From
product development viewpoint, the functional significan
of this asymmetric topology has been explained by con
ering a bounded-rationality argument originally put forwa
by Simon in the context of human interactions@35#. Accord-
ingly, this asymmetry could be interpreted as indicating
limitation on the actor’s capacity to process information p
vided by others rather than the ability to transmit informati
over the network. In the latter case, boundedness is less
parent since the capacity required to transmit informat
over a network is often less constrained, especially when
replicated~e.g., many actors can receive the same inform
tion from a single actor by broadcast!. In light of this obser-
vation, we expect a distinct cutoff distribution for in-degr
as opposed to out-degree distributions when the network
:

rr
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flects communication of information between human bein
as a natural and direct outcome of Simon’s bound
rationality argument. It would be interesting to see wheth
this property can be found more generally in other direc
human or nonhuman networks. It seems reasonable to
pose that the asymmetric link distribution is likely to hold f
such networks when nodes represent information proces
and using elements.
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