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Oscillatory epidemic prevalence in growing scale-free networks
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We study the persistent epidemic prevalence with oscillatory behavior and the extinction of computer viruses
via e-mails on a contact relational network growing with new users, for which scale-free structure is estimated
from real data. Typical oscillatory phenomenon is simulated in a stochastic model for the execution and
detection of viruses. The conditions of extinction by random and targeted immunizations for hubs are derived
through bifurcation analysis for simpler deterministic models by using a mean-field approximation without the
connectivity correlations. We can qualitatively understand the mechanisms of the spread in linearly growing
scale-free networks.
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[. INTRODUCTION tion, we analyze simpler growing models in deterministic
equations. By using a mean-field approximation without the
In spite of different interactions between social, techno-connectivity correlations, we derive bifurcation conditions
logical, or biological elements, many complex networks infrom the extinction to the recoverable prevaleicethe op-
real worlds have a common structure. It is based on a uniPosite, which is related to the growth, infection, and im-
versal self-organized mechanism: network growth and prefmune rates. Moreover, we verify the effectiveness of the tar-
erential attachment of connectiofi,2]. The structure is geted immunization for hubs by antiviruses even in the
called scale-fre€SF) network, which exhibits a power-law growing system.
degree distributioP (k) ~k™ 7, 2<y<3, for the probability
of vertex withk connections. The topology deviates from the
conventional homogeneous regular lattices and random
graphs. Many researchers are attracted to a new paradigm of A. The state transition for infection

';hreeaheterogeneous SF networks in this active and fruitful We consider a network of contact relations whose vertices

Il. E-MAIL NETWORK

The struct £ SE networks also h ¢ . ¢ node$ and edgeglinks) correspond to computers and the
€ structure of Sk networks aiso has a strong Impact 0, .,y njcation via e-mails between users, respectively. Each
the dynamics of epidemic models for computer viruses, HIV,

. vertex has two degrees, an in-degree for a received mail,
and others. Recently, it has been shoy8] that g 9

L ) which is the number of edges that point into the vertex, and

Eusceptlblganfef:tetcrl]-sushc?gfub_ia}lS)tmodel on EF net\lq;ork? dan out-degree for a sent mail, which is the number pointing

as no epidemic threshold, intections can be proliierateq,, 1, e mailing processes, the state at each computer
whatever small infection rate they have. This result disprove

S . . . .

. : . =1,... N is changed from the susceptible, hidden, infec-

the threshpld theory |n.ep|dem|olo@4].. The hetgrogeneous tious, and to the recovered by the removal of viruses and
structure is also crucial for spreading the viruses on th

analysis of susceptible-infected-recoveré8IR) models Snstallation of antiviruses. We make a realistic model in sto-
y P ) ) chastic state transitions with probabilities of the execution
[5,6]. In contrast to the absence of epidemic threshold, a

. . X _A%nd the detection of viruses. Figure 1 shows the state transi-
immunization strategy has been theoretically presented in

? S ﬁ‘ons, wherex and 6 denote the execution rate from the
SIS model on SF networkd'8]. The targeted immunization hidden to the infectious state and the detection rate from the

for the most highly connectepl vertices such as hubs app!leg ecial subjects or doubtful attachment files. The probability
the property of the extreme dlsc_onnectlons by atta_cks agaiNgx at least one detection from tme viruses on the computer
the hubg9] to a prevention against the spread of infections.._ .~ "~ &y o .
) ; : ; ) is 1—(1-6)", and the probability of at least one execution
In this paper, we investigate the dynamic properties for
spreading of computer viruses on the SF networks estimated setection from
from real data of e-mail communicati¢fO]. As a new prop- received mail | _q _ gni
erty in both simulation and theoretical analysis, we suggesi
that a growing network with new e-mail users causes the

oscillatory prevalence recovered from a temporary silence ofe? ™l
almost complete extinction. We refer to the typical oscilla-
,

propagation by sent mail

tory phenomenon in observatiod1,17 as recoverable
prevalence, which is not explained by the above statistical
analyses at steady states or mean valirethe fixed size or

Hidden infected Recovered
(Immune)

1= - 1= (=8

N— o). We first consider a realistic epidemic model on the o Y, ases,
growing SF network in simulations with the probabilistic “e'“‘i"“bef"“hi,‘;}{f;};‘;‘e‘gts1_(1_ T
execution and detection of viruses. Then, for understanding

the mechanisms of such recoverable prevalence and extinc- FIG. 1. S-H-I-R state transition diagram.
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FIG. 2. Power-law degree dis-
o tributions with the exponents
1 Yout=2-5 andy;,=1.9 estimated
for questionnaires of(a) sent
mails and(b) received mails be-

‘ tween users including the internal
0 (measured usersind the external
@ Out-degree ®) In—degree (other people[10]. The frequency

s ‘ . . s . . . at degreek is counted in the inter-
o val betweerj k,k+ 10], except for
the outer of more than 100 degree
at k=200. Similar distributions
with (€) You=2.07 and(d) ¥,
=1.85 are estimated for the server
log files of e-mailg13] including
the internal and the external.

Frequency
Frequency

(&

Frequency
>

Frequency

=
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(@ In-degree

is 1-(1—\)". We assume the infected mail not sent againyey of mails per dayjk=5-20. These values are close to

for the same commun|9at|0n partr(eent it at only one time your=2.07 andy,,=1.85 estimated in the same range i

to be difficult for detection. Thus); is at most the number of <100 for the server log files of e-maifd3] (yu=2.03

in-degree at each vertex. In the stochagscsceptible— +0.12 andy,,=1.49+0.12 in Ref.[14]) Thereouéxis';s a
+0. , 49+0. . .

hidden infected—infections-recove)e8HIR model, the final . . - -

. : i . _slight difference between these estimated values which de-
state is the one recovered or immuned by antiviruses, if a q th | . q ical - |
least one infected mail is received. pend on the sample, measuring, and numerical precision. In
addition, we have found that the cumulative histograms of
less than degrele have similar shapes in a larger network of
e-mail address bookgsl5]. However, in the estimation for

We show the e-mail network structure based on real dathoth data[10,13 by a stretched exponential function as in
measured by questionnaires for 2555 users in a part of Worl®ef. [15], the exponential parts almost vanish. Thus, the cu-
Internet Project 200010]. The distributions of both sent and mulative histograms are approximated by a power law as
received mails follow a power law in Fig(&@, the exponents shown in Figs. 8 and 3b). To discuss the delicate differ-
are estimated ag,,=2.5, y;,=1.9, and the average num- ence in the estimations for cumulative histograms is beyond

B. The scale-free structure
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FIG. 3. The cumulative distributions of the in-degree and out-degree for e-mail netwdisfie questionnairgsl0] and(b) the server
log files[13]. The linear fits are obtained by the integration of power-law functions estimated in Fags) Zhe misfit in the left-hand side
of (a) is due to the dispersion in the limited size of dgtd], especially arouné=100[see Fig. 2b)].
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TABLE |. Directed edge generation by thke 3 coin. Ill. SIMULATIONS FOR STOCHASTIC MODEL
Probability o 1—w We study the typical behavior in the SHIR model on the
SF networks. In the following simulations, we set the execu-
B Self-loop at new vertex  Origin: new, terminal: old tion rate A=0.1, the detection raté=0.04, the average
1-p Terminal: new, origin: old Both of old vertices number of edgek=6.6, and initial infection sources of ran-

domly chosen five verticeghe following results are similar
to other small values =0.2,0.3 ands=0.05,0.06). These
the scope of this paper. It may be caused by the limited sizamall v_alues are realistic, because computer viruses are not
of our sample. recognized before the prevalence and it may be executed by
some users. We note the parameters are related to the sharp-
ness of increasing/decreasing infections up/dowis(more
C. The (a,8) model sensitive. It is well known that, in a closed system of the
SHIR model, the number of infected computers in the hidden
We generate a SF network for the contact relations beand infectious states is initially increased and saturated, and
tween e-mail users, by applying the simpte 8) model[16]  finally converged to zero as extinction. While the pattern
with the estimated exponents, and y,. in the preceding May be diffe_rent in an open systgm, _indeed, oscillations ha}ve
section. The slopes of power lay,~1/(1—a) and y,,, ~ °een described by a deterministic Kermack-McKendrik
~1/(1— B) are controlled by the:-3 coin in Table I(in the ~ Model[4]. However, a constant populatidequal rates of
case of e-mailsr=0.4736 ang3=0.6). Growing with a new b!rth and dgath or terrltprlal competition has been mainly
vertex at each stefk edges are added as follows. As the discussed in the classical model, the growth of computer
terminal, a coin toss chooses a new vertex with probahility NetWork is obviously more rapid, and the communications in
and an old vertex with probability 1 « in proportion to its mailing are not competitive. Thus, we consider a growing
in-degree. As the origin, the coin chooses a new vertex wittgystem, in which 50 vertices and the corresponding kew
probability 8 and an old vertex with probability 23 in ~ €dges are added at every step, from an initial SF network
proportion to its out-degree. According to both the growthwith N=400 up to 20350 at 400 steps. Here, one step is
and the preferential attachmeft,2], the generation pro- corresponding to a daf400 steps~ 1 yr). These values of
cesses are repeated until the required BliZs obtained as a \, &, k, and the growth rate are only examples with some-
connected component without self-loops and multiedgesthing of reality for simulations, since the actual values that
The («,8) model generates both edges from/to a new vertexlepend on the observed period are still unknown. As shown
and edges between old vertices, the processes are somewlraFigs. 4a) and 4b), the phenomena of persistent recover-
analogous to the ones in the generalized BasaBlbert  able prevalence are found in the open system, but not in the
(BA) model[1,17]. closed system.
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FIG. 4. Typical behavior of the spread on SF network&ijra closed system arth) an open system with simultaneous progress of both
spread of viruses and growth of network. The lines show the differences in stochastic state transitions. The effects of immunization are
shown as the averages in the open systen{dohub and(d) random immunization. The open diamond, square, triangle, and cross marks
are corresponding to the normal detection by the state transitions, immunization of 10%, 20%, and 30%, respectively.
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FIG. 5. Number of vertices in the recovered state(@yhub and(b) random immunization of 30%. Each of them is the average value
for recoverable prevalence in 100 trials. The dashed lines represent the number of vertices that are already changed to the recovered state:
before the immunization.

To prevent the wide spread of infections, we investigate ds(t)
how to assign antivirus software onto the SF networks. We N TEE —b(k)S(t)I(t) +a, (1)
verify the effectiveness of the targeted immunization for
hubs even in the cases of recoverable prevalence. Figures di(t)
4(c) and 4d) show the average number of infected comput- = — 5ol (1) +b(K)S(t) (1), (2)
ers with recoverable prevalence in 100 trials, where immu- dt
nized vertices are randomly selected or as hubs according to ,
the out-degree order of 10%, 20%, 30% of growing size atvherea>0 and 0<b, anddp<1 denotedgge growth, infec-
every 30 stepscorresponding to a monthThe number is tion, and detection rates, respectivelly)=S,kP(k) is the
decreased as larger immune rates for hubs, viruses are neaHVerage number of connections with a probabiftgk) of
extinct(there exist only few virusgsn 30% as marked by the degreek. The termS(t)1 (t) represents the frequency of

in Fig. 4(c). While it s also Qecreased as larger immune ra.te%ontact relations. Note that the number of recovered vertices
for randomly selected vertices, however they are not extmch(t) is a shadow variable defined hyR(t)/dt= 5l (t)

even in 30% as marked by in Fig. 4d). Figures $a) and From the network siz&l(t) = S(t) + I (t) + R(t), the solution

5(b) show the number of recovered states by the hub ang. . _ N ; ;
random immunization of 30%triangle marks for the com- %hgxgnthiymltl)clin'\e]:(sogf atas alinear growth. Figure(®

parison with the normal detectior{sectangle marks The

immunized hubs are more dominant than the normal detec- ds a
tions in Fig. %a). However, there is no such difference for azO: S= m
the random immunization in Fig.(5). In the case of 10%,

the relation is exchanged; the number of detections is largeg,q

than that of both hub and random immunizations. It is inter-

mediate in the case of 20%. From these results, we remark dl def 5
that the targeted immunization for hubs strongly prevents the —_ =0 S=5 :_0, (1#0)
spread of infections in spite of the fewer totally recovered dt b(k)

states than that in random immunization. . . . .
for Egs.(1) and(2). The directions of vector field are defined

IV. ANALYSIS FOR DETERMINISTIC MODEL by the positive or negative signs di§dt anddl/dt. There

def
Although the stochastic SHIR model is realistic, the €XISts a stable equilibrium point(,S*), I* =a/&,. The

analysis is very difficult in the open system. Thus, we ana- dSudt=0
lyze simpler deterministic SIR models for the spreading of N As,
computer viruses to understand the mechanisms of recovel } dasui=o0
able prevalence and extinction by immunization. We con-
sider the time evolutions 08(t)>0 andI(t)>0 (t=0), P N AN

which are the number of susceptible and infected vertices ék
: dl/dt=0 s*/,,,,

We assume that infection sources exist in an initial network, *—4—s— 3\

and that both network growth and the spread of viruses AN W\\/ : I
‘ 1
I*

progress in continuous time as an approximation. In addition,
we have no specific rules for growing, but consider a linearly
growing network size and the degree distribution on an un-
directed connected graph as a consequence.

0
dl/dt=0
(a) (b)

FIG. 6. Nullclines and the vector fields ft@ homogeneous and
(b) heterogeneous SIR models. The state in both cases is converged
As the most simple case, in the homogeneous network® an equilibrium point with a damped oscillation, which corre-
with only the detection of viruses, the time evolutions aresponds to persistent recoverable prevalence around the nonzero
given by level I* or I .

A. Homogeneous SIR model
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states ofS and| are converged to the point with a damped ds, a a,
oscillation. We can easily check that the real parts of eigen- —=0: S§-= = ,
i ; ; dt kb®
values for the Jacobian are negative at the point. kbl +kbY, Crrl s
k!
B. Heterogeneous SIR model
: diy 8ol k 8ol
Next, we consider the heterogeneous SF networks at the WzO: Sk:kb@ = ,

mean-field level, in which the connectivity correlations are
neglected[18]. We know that static and grown networks
have different properties for the size of giant comporé&gt ] )
and the connectivity correlatiorfg0,21) even if the degree and the vector field for Edq§3) and(4). There exists a stable
distributions are the same. In particular, the correlations magquilibrium point (.S =(ax/8y,a,/kb®*), because of
have influence on the spread, however they are not found in

all growing network models or real systems. We have experi- Aym™7 (= Aym™”
mentally observed that the correlations are very weak in the 30* = kzm il ~ yg f k=7 g k:#w'
(@, B) model in the previous simulations similar to the near- - o A 0

est neighbors average connectivity of vertex vktadges in  py ysingc, = yxm?xk~**1 for the generalized BA model
the generalized BA model rather than the fitness model of1g] with a power-law degree distributionP(k) = (1
autonomous systerfAS) in the Interne{22]. At least, non- ,ym1+ k=277 (ky=m(1+y)/y (which includes the
correlation does not seem to be crucial for the absence Qfimple BA mode[2] at y=1). On these state spaces in Figs.
epidemic threshol{,7,8,18§, the existence of correlations is g5 and @b), only the case oa=0 or a,=0 gives the
still much less nontrivial in e-mail networks. Although the extinction: 1* =0 or I* =0. It means that we must stop the

mean-field approach by neglecting the correlations in Macrog owth to prevent the infections by detection. In addition, the

scopic equations at a large network size is a crude approxE’omogeneous and heterogeneous systems are regarded as os-
mation method, it is useful for understanding the mecha-

nisms of the spread in growing networks, as far as it isCIIIatorS in Figs. T&) and 7b).

qualitatively similar to the behavior of viruses in the stochas-

tic model or observed real data. Indeed, the following results

are consistent with the analysis for correlated cd&ss, We study the effect of random and hub immunization.

except of the quantitative differences. With the randomly immune rate<05,<1, the time evolu-
We introduce a linear kerndR1] as N(t)~ayt,N(t) tions are given by

=S (t) + 1 (t) + R(t), which is the sum of the numbers of

susceptible, infected, and recovered vertices with delree dS(t) )

def g = PkS(DO() +ac 8S(),
and the growth rate,=Ak™”,A>0,r>2. Note that the to-
tal N(t) =2 N, (1)~ (Zxa)t means a linear growth of net- diut
work size. Since the maximum degree increases as the time K1) =— gl (1) +bkS(1)O (1) — 5,1 (1), (6)
progresses and approaches to infinity, it has a nearly constant dt
growth rate>;_ a~ [ Ak~ "dk=Am!~?/(v—1) for large , _ _
t. As shown in Ref[21], the introduction of linear kernel is where the shadow variablRy(t) is defined bydRy(t)/dt

not a contradiction with the preferentiéinean attachment ~ 50.' k(.t)+ 5'(S.k(t)+ I.k(t)): . .
[1,2]. Similar to discussions in the preceding section, we con-

. . * .
At the mean-field level in a somewhat large network with Sider & section of =1, : const for allk’#k. From the
only the detection of viruses, the time evolutionsQf>0  nullclines of Egs.(5) and (6) with random immunization,

kbgl+kbY, clf,
k/

C. Effect of immunization

andl>0 are given by there exists a stable equilibrium pointl{(,Sf)=[(a
dS(t) =6, S5)(50+ 6,),ax/ (5, +kb®*)], if the solution
=—DbkS(1)O(t)+ay, (3)
dt z 1 2 S, def
O*=D cli=——F2, ac| 1-——| =f(O*
diy(1) ¢ T S M S ke T
== 0ol k(1) +bkS() O (1), @ . . L
dt ok * is self-consistent at the point. The condition is given by
where the shadow variablB,(t) is implicitly defined by df Ab L (y4)
def % %m ym k dk
de(t)/dt: 50' k(t) The faCtor @(t) :Ekckl k(t)le 0=0 r 0 r m
def
=kP(k)/(k), represents the expectation that any given edge Abym~ (71
points to an infected vertex. = 5.(Sg+0.) (v + V_1)>1-
We consider a section dfk,=l’k‘,: const. for allk’ #k.
Figure @b) shows the nuliclines of In this case, the state space is the same as shown in(Bjg. 6
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-b<k>1

(@ (b)

Next, we assuméy, =0 for all k’ #k to discuss the ex-
tinction. On this section, the nullclines are

dsc ay a

dt % STE kD0 5+ Kbal,
and

die (8o+ )l S+,

% STTpe kog UKFO

for Egs.(5) and(6). The necessary condition of extinction is
given by the fact that the point @/J5,) on the nullcline
dS;/dt=0 is below the lineS,=(6y+ 6,)/kbg,: const of
dl,/dt=0. From the condition

Ay 50+ 5r

5, kbg '’

we obtain

8,>— 8o+ 85+ dkabey. (7)

In addition, since 86,<1 must be satisfied, it is given by
a<(1+26p)/4by from kc,=ymk™?, m<sk<o, y>0,
for the generalized BA modgl8]. In this case, there exists a

PHYSICAL REVIEW E 69, 016112 (2004

FIG. 7. Oscillators for(a) ho-
mogeneous antb) heterogeneous
SIR models in the open system.
They consist of S-1 pairs with ex-
citatory — and inhibitory- con-
nections, and an input biasor a,
of the growth rate. The facto®
acts as a global inhibition or exci-
tation.

stable equilibrium point, otherwise a saddle and a stable
equilibrium point as shown in Figs(® and 8b). The state
space is changed through a saddle-node bifurcation by values
of the growth ratea, and the immune raté, .

For the hub immunization7], &, is replaced by 0
<6,k’<1,7>0, e.g.,7=1 as proportional immunization to
the degree of vertex. We may choos&™ltimes smaller im-
mune rated,, than 8, for Eq. (7). In other words, the neces-
sary condition of extinction in Eq(7) is relaxed toay
<m’(m"™+248,)/4by. Thus viruses can be removed in larger
growth rate.

The above conditions are almost fitting to the results for
the stochastic model in Sec. lll. We can evaluate them using
the corresponding parametersn=1, v=2+7y=(%i,
+You)/2=2.2, b—A=0.1, 5,—56=0.04, 5 or &
=0.1,0.2,0.3, 7=1, and A=60 from (Za,)~ Ak "dk
=Am' "/y—1=50. By simple calculations, we find that
a,<(1+28y)/4bvy is satisfied folk=2. The condition7) is
satisfied for onlyk=5 with random immunization of 30%
andk=7 with 20%, so the extinction of viruses is difficult
by spreading of infection from many vertices with low de-
greek=4, whereas it is satisfied fde=3 with hub immu-
nization of both 20% and 30% by the factor ofkl/ The
delicate mismatch dt=1,2 may be from the difference of
the complicated stochastic behavior as in Fig. 1 and the mac-
roscopic crude approximation.

(=9
7
=
-
Il
o
-

FIG. 8. Saddle-node bifurca-
tion between(a) damped oscilla-
tion of recoverable prevalence and
(b) convergence to the extinction
by the immunization in the hetero-
geneous SIR model. The state
space is changed by the bifurca-
tion parametersy, anda, for the

. def
value of .= (8+ 8,)/kbe, .

dI dt=0:S =8
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dS/dt=0
Sk
g f dS/dt=0
FIG. 9. Nonextinction in(a)
\ \ homogeneous andb) heteroge-
neous SIS models. The number of
/ st / - infected statel or I, finally di-
infinity.
. A I A verges to infinity.
of<k> I % d=0 1" b
0 Ti
0 I
(a) (b) dl/dt=0
D. SIS model On a sectiorl, : const, the nuliclines are
Finally, to show that the recovered state is necessary, we

consider the SIS models in the open system. The time evo- d_S‘: . _ Sol k+ ak %:o. _ %ol
lutions on homogeneous networks are given by dat kb® dat kb®

ds(t) for Egs.(10) and(11). There also exists a gap between the

dt Sol (1) —b(k)S(OI (1) +a, ®) nullclines. Figures @) and 9b) show the nuliclines and the
vector field. Thus, the dynamics in the SIS model is quite
di(t) different from that in the SIR model. We cannot realize both
—qr = %l (O +b{SHI), (9 the extinction and the recoverable prevalence of viruses on

the SIS model, in any case, even in the open system.
whereN(t) =S(t) +1(t). The nullclines are

V. CONCLUSION

s Sl+a & a
HZO' S= b(K)I - b(k) + b(K)I In summary, we have investigated the spread of computer
viruses via e-mails on linearly growing SF network models
and whose exponents of the degree distributions are estimated
from real data of sent and received mdils8] or from the
ﬂ:O' S= i'const(l £0) generalized BA mod€]1,18]. The dynamic behavior is the
dat b(k) " same in both simulations for a realistic stochastic SHIR

. model and a mean-field approximation without connectivity
for EQS-(S) and(9). There exists a gap af/b(k)I>0 even  correlations for the macroscopic equations of simpler deter-
in I* —o. Furthermore, the time evolutions on heteroge-minjstic SIR models. The obtained results suggest that the

neous networks are given by recoverable prevalence stems from the growth of network,
dS(t) and ?t is bifurcated frpm the extinct?on state according to the
= 8ol (1) —bKS(H) O (1) + &, (100  relations of growth, infection, and immune rates. Moreover,
dt the targeted immunization for hubs is effective even in the
di0) growing system. Quantitative fitness with really observed vi-
gt = — Sl (1) T bKS(H)O(1). (11) ;Sihdeitztﬁgﬁe:ore detailed analysis with the correlations are
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