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Oscillatory epidemic prevalence in growing scale-free networks
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We study the persistent epidemic prevalence with oscillatory behavior and the extinction of computer viruses
via e-mails on a contact relational network growing with new users, for which scale-free structure is estimated
from real data. Typical oscillatory phenomenon is simulated in a stochastic model for the execution and
detection of viruses. The conditions of extinction by random and targeted immunizations for hubs are derived
through bifurcation analysis for simpler deterministic models by using a mean-field approximation without the
connectivity correlations. We can qualitatively understand the mechanisms of the spread in linearly growing
scale-free networks.
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I. INTRODUCTION

In spite of different interactions between social, techn
logical, or biological elements, many complex networks
real worlds have a common structure. It is based on a
versal self-organized mechanism: network growth and p
erential attachment of connections@1,2#. The structure is
called scale-free~SF! network, which exhibits a power-law
degree distributionP(k);k2g, 2,g,3, for the probability
of vertex withk connections. The topology deviates from t
conventional homogeneous regular lattices and rand
graphs. Many researchers are attracted to a new paradig
the heterogeneous SF networks in this active and frui
area.

The structure of SF networks also has a strong impac
the dynamics of epidemic models for computer viruses, H
and others. Recently, it has been shown@3# that a
susceptible-infected-susceptible~SIS! model on SF networks
has no epidemic threshold; infections can be proliferat
whatever small infection rate they have. This result dispro
the threshold theory in epidemiology@4#. The heterogeneou
structure is also crucial for spreading the viruses on
analysis of susceptible-infected-recovered~SIR! models
@5,6#. In contrast to the absence of epidemic threshold,
immunization strategy has been theoretically presented
SIS model on SF networks@7,8#. The targeted immunization
for the most highly connected vertices such as hubs app
the property of the extreme disconnections by attacks aga
the hubs@9# to a prevention against the spread of infectio

In this paper, we investigate the dynamic properties
spreading of computer viruses on the SF networks estim
from real data of e-mail communication@10#. As a new prop-
erty in both simulation and theoretical analysis, we sugg
that a growing network with new e-mail users causes
oscillatory prevalence recovered from a temporary silenc
almost complete extinction. We refer to the typical oscil
tory phenomenon in observations@11,12# as recoverable
prevalence, which is not explained by the above statist
analyses at steady states or mean values~in the fixed size or
N→`). We first consider a realistic epidemic model on t
growing SF network in simulations with the probabilist
execution and detection of viruses. Then, for understand
the mechanisms of such recoverable prevalence and ex
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tion, we analyze simpler growing models in determinis
equations. By using a mean-field approximation without
connectivity correlations, we derive bifurcation conditio
from the extinction to the recoverable prevalence~or the op-
posite!, which is related to the growth, infection, and im
mune rates. Moreover, we verify the effectiveness of the
geted immunization for hubs by antiviruses even in t
growing system.

II. E-MAIL NETWORK

A. The state transition for infection

We consider a network of contact relations whose verti
~nodes! and edges~links! correspond to computers and th
communication via e-mails between users, respectively. E
vertex has two degrees, an in-degree for a received m
which is the number of edges that point into the vertex, a
an out-degree for a sent mail, which is the number point
out. In the mailing processes, the state at each compui
51, . . . ,N is changed from the susceptible, hidden, infe
tious, and to the recovered by the removal of viruses a
installation of antiviruses. We make a realistic model in s
chastic state transitions with probabilities of the execut
and the detection of viruses. Figure 1 shows the state tra
tions, wherel and d denote the execution rate from th
hidden to the infectious state and the detection rate from
special subjects or doubtful attachment files. The probab
of at least one detection from theni viruses on the compute
is 12(12d)ni, and the probability of at least one executio

FIG. 1. S-H-I-R state transition diagram.
©2004 The American Physical Society12-1
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FIG. 2. Power-law degree dis
tributions with the exponents
gout52.5 andg in51.9 estimated
for questionnaires of ~a! sent
mails and~b! received mails be-
tween users including the interna
~measured users! and the external
~other people! @10#. The frequency
at degreek is counted in the inter-
val between@k,k110#, except for
the outer of more than 100 degre
at k5200. Similar distributions
with ~c! gout52.07 and ~d! g in

51.85 are estimated for the serve
log files of e-mails@13# including
the internal and the external.
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is 12(12l)ni. We assume the infected mail not sent ag
for the same communication partner~sent it at only one time!
to be difficult for detection. Thus,ni is at most the number o
in-degree at each vertex. In the stochastic~susceptible–
hidden infected–infections-recovered! SHIR model, the final
state is the one recovered or immuned by antiviruses, i
least one infected mail is received.

B. The scale-free structure

We show the e-mail network structure based on real d
measured by questionnaires for 2555 users in a part of W
Internet Project 2000@10#. The distributions of both sent an
received mails follow a power law in Fig. 2~a!, the exponents
are estimated asgout52.5, g in51.9, and the average num
01611
n
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ta
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ber of mails per dayk̄55 –20. These values are close
gout52.07 andg in51.85 estimated in the same range 1,k
<100 for the server log files of e-mails@13# (gout52.03
60.12 andg in51.4960.12 in Ref. @14#!. There exists a
slight difference between these estimated values which
pend on the sample, measuring, and numerical precision
addition, we have found that the cumulative histograms
less than degreek have similar shapes in a larger network
e-mail address books@15#. However, in the estimation fo
both data@10,13# by a stretched exponential function as
Ref. @15#, the exponential parts almost vanish. Thus, the
mulative histograms are approximated by a power law
shown in Figs. 3~a! and 3~b!. To discuss the delicate differ
ence in the estimations for cumulative histograms is bey
FIG. 3. The cumulative distributions of the in-degree and out-degree for e-mail networks in~a! the questionnaires@10# and~b! the server
log files @13#. The linear fits are obtained by the integration of power-law functions estimated in Figs. 2~a–d! The misfit in the left-hand side
of ~a! is due to the dispersion in the limited size of data@10#, especially aroundk5100 @see Fig. 2~b!#.
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the scope of this paper. It may be caused by the limited
of our sample.

C. The „a,b… model

We generate a SF network for the contact relations
tween e-mail users, by applying the simple (a,b) model@16#
with the estimated exponentsg in and gout in the preceding
section. The slopes of power lawg in'1/(12a) and gout

'1/(12b) are controlled by thea-b coin in Table I~in the
case of e-mailsa50.4736 andb50.6). Growing with a new
vertex at each step,k edges are added as follows. As th
terminal, a coin toss chooses a new vertex with probabilita
and an old vertex with probability 12a in proportion to its
in-degree. As the origin, the coin chooses a new vertex w
probability b and an old vertex with probability 12b in
proportion to its out-degree. According to both the grow
and the preferential attachment@1,2#, the generation pro-
cesses are repeated until the required sizeN is obtained as a
connected component without self-loops and multiedg
The (a,b) model generates both edges from/to a new ver
and edges between old vertices, the processes are some
analogous to the ones in the generalized Baraba´si-Albert
~BA! model @1,17#.

TABLE I. Directed edge generation by thea-b coin.

Probability a 12a

b Self-loop at new vertex Origin: new, terminal: ol
12b Terminal: new, origin: old Both of old vertices
01611
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III. SIMULATIONS FOR STOCHASTIC MODEL

We study the typical behavior in the SHIR model on t
SF networks. In the following simulations, we set the exe
tion rate l50.1, the detection rated50.04, the average
number of edgesk̄56.6, and initial infection sources of ran
domly chosen five vertices~the following results are similar
to other small valuesl50.2,0.3 andd50.05,0.06). These
small values are realistic, because computer viruses are
recognized before the prevalence and it may be execute
some users. We note the parameters are related to the s
ness of increasing/decreasing infections up/down (d is more
sensitive!. It is well known that, in a closed system of th
SHIR model, the number of infected computers in the hidd
and infectious states is initially increased and saturated,
finally converged to zero as extinction. While the patte
may be different in an open system, indeed, oscillations h
been described by a deterministic Kermack-McKend
model @4#. However, a constant population~equal rates of
birth and death! or territorial competition has been mainl
discussed in the classical model, the growth of compu
network is obviously more rapid, and the communications
mailing are not competitive. Thus, we consider a growi
system, in which 50 vertices and the corresponding newk̄
edges are added at every step, from an initial SF netw
with N5400 up to 203 50 at 400 steps. Here, one step
corresponding to a day~400 steps' 1 yr!. These values of
l, d, k̄, and the growth rate are only examples with som
thing of reality for simulations, since the actual values th
depend on the observed period are still unknown. As sho
in Figs. 4~a! and 4~b!, the phenomena of persistent recove
able prevalence are found in the open system, but not in
closed system.
oth
ation are
arks
FIG. 4. Typical behavior of the spread on SF networks in~a! a closed system and~b! an open system with simultaneous progress of b
spread of viruses and growth of network. The lines show the differences in stochastic state transitions. The effects of immuniz
shown as the averages in the open system for~c! hub and~d! random immunization. The open diamond, square, triangle, and cross m
are corresponding to the normal detection by the state transitions, immunization of 10%, 20%, and 30%, respectively.
2-3
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FIG. 5. Number of vertices in the recovered state by~a! hub and~b! random immunization of 30%. Each of them is the average va
for recoverable prevalence in 100 trials. The dashed lines represent the number of vertices that are already changed to the recov
before the immunization.
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To prevent the wide spread of infections, we investig
how to assign antivirus software onto the SF networks.
verify the effectiveness of the targeted immunization
hubs even in the cases of recoverable prevalence. Fig
4~c! and 4~d! show the average number of infected comp
ers with recoverable prevalence in 100 trials, where imm
nized vertices are randomly selected or as hubs accordin
the out-degree order of 10%, 20%, 30% of growing size
every 30 steps~corresponding to a month!. The number is
decreased as larger immune rates for hubs, viruses are n
extinct~there exist only few viruses! in 30% as marked by3
in Fig. 4~c!. While it is also decreased as larger immune ra
for randomly selected vertices, however they are not ext
even in 30% as marked by3 in Fig. 4~d!. Figures 5~a! and
5~b! show the number of recovered states by the hub
random immunization of 30%~triangle marks! for the com-
parison with the normal detections~rectangle marks!. The
immunized hubs are more dominant than the normal de
tions in Fig. 5~a!. However, there is no such difference f
the random immunization in Fig. 5~b!. In the case of 10%
the relation is exchanged; the number of detections is la
than that of both hub and random immunizations. It is int
mediate in the case of 20%. From these results, we rem
that the targeted immunization for hubs strongly prevents
spread of infections in spite of the fewer totally recover
states than that in random immunization.

IV. ANALYSIS FOR DETERMINISTIC MODEL

Although the stochastic SHIR model is realistic, t
analysis is very difficult in the open system. Thus, we a
lyze simpler deterministic SIR models for the spreading
computer viruses to understand the mechanisms of reco
able prevalence and extinction by immunization. We co
sider the time evolutions ofS(t).0 and I (t).0 (t>0),
which are the number of susceptible and infected vertic
We assume that infection sources exist in an initial netwo
and that both network growth and the spread of viru
progress in continuous time as an approximation. In addit
we have no specific rules for growing, but consider a linea
growing network size and the degree distribution on an
directed connected graph as a consequence.

A. Homogeneous SIR model

As the most simple case, in the homogeneous netwo
with only the detection of viruses, the time evolutions a
given by
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dS~ t !

dt
52b^k&S~ t !I ~ t !1a, ~1!

dI~ t !

dt
52d0I ~ t !1b^k&S~ t !I ~ t !, ~2!

wherea.0 and 0,b, andd0,1 denote the growth, infec

tion, and detection rates, respectively.^k&5
def

(kkP(k) is the
average number of connections with a probabilityP(k) of
the degreek. The termS(t)I (t) represents the frequency o
contact relations. Note that the number of recovered vert
R(t) is a shadow variable defined bydR(t)/dt5d0I (t).
From the network sizeN(t)5S(t)1I (t)1R(t), the solution
is given byN(t)5N(0)1at as a linear growth. Figure 6~a!
shows the nullclines of

dS

dt
50: S5

a

b^k&I

and

dI

dt
50: S5S* 5

def d0

b^k&
, ~ IÞ0!

for Eqs.~1! and~2!. The directions of vector field are define
by the positive or negative signs ofdS/dt anddI/dt. There

exists a stable equilibrium point (I * ,S* ), I * 5
def

a/d0. The

FIG. 6. Nullclines and the vector fields for~a! homogeneous and
~b! heterogeneous SIR models. The state in both cases is conve
to an equilibrium point with a damped oscillation, which corr
sponds to persistent recoverable prevalence around the non
level I * or I k* .
2-4



ed
en

t
re
s

a
d
er
th

ar

l o

e
s
e

cr
ox
ha

i
as
ul

f
e

-
tim
st

ith

dg

l

s.

e
he
as os-

n.

on-

6

OSCILLATORY EPIDEMIC PREVALENCE IN GROWING . . . PHYSICAL REVIEW E69, 016112 ~2004!
states ofS and I are converged to the point with a damp
oscillation. We can easily check that the real parts of eig
values for the Jacobian are negative at the point.

B. Heterogeneous SIR model

Next, we consider the heterogeneous SF networks at
mean-field level, in which the connectivity correlations a
neglected@18#. We know that static and grown network
have different properties for the size of giant component@19#
and the connectivity correlations@20,21# even if the degree
distributions are the same. In particular, the correlations m
have influence on the spread, however they are not foun
all growing network models or real systems. We have exp
mentally observed that the correlations are very weak in
(a,b) model in the previous simulations similar to the ne
est neighbors average connectivity of vertex withk edges in
the generalized BA model rather than the fitness mode
autonomous system~AS! in the Internet@22#. At least, non-
correlation does not seem to be crucial for the absenc
epidemic threshold@3,7,8,18#, the existence of correlations i
still much less nontrivial in e-mail networks. Although th
mean-field approach by neglecting the correlations in ma
scopic equations at a large network size is a crude appr
mation method, it is useful for understanding the mec
nisms of the spread in growing networks, as far as it
qualitatively similar to the behavior of viruses in the stoch
tic model or observed real data. Indeed, the following res
are consistent with the analysis for correlated cases@23#,
except of the quantitative differences.

We introduce a linear kernel@21# as Nk(t);akt,Nk(t)
5Sk(t)1I k(t)1Rk(t), which is the sum of the numbers o
susceptible, infected, and recovered vertices with degrek,

and the growth rateak5
def

Ak2n,A.0,n.2. Note that the to-
tal N(t)5(kNk(t);((kak)t means a linear growth of net
work size. Since the maximum degree increases as the
progresses and approaches to infinity, it has a nearly con
growth rate(k5m

` ak;*m
`Ak2ndk5Am12n/(n21) for large

t. As shown in Ref.@21#, the introduction of linear kernel is
not a contradiction with the preferential~linear! attachment
@1,2#.

At the mean-field level in a somewhat large network w
only the detection of viruses, the time evolutions ofSk.0
and I k.0 are given by

dSk~ t !

dt
52bkSk~ t !Q~ t !1ak , ~3!

dIk~ t !

dt
52d0I k~ t !1bkSk~ t !Q~ t !, ~4!

where the shadow variableRk(t) is implicitly defined by

dRk(t)/dt5d0I k(t). The factor Q(t)5
def

(kckI k(t),ck

5
def

kP(k)/^k&, represents the expectation that any given e
points to an infected vertex.

We consider a section ofI k85I k8
* : const. for allk8Þk.

Figure 6~b! shows the nullclines of
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dSk

dt
50: Sk5

ak

kbQ
5

ak

kbckI k1kb(
k8

ck8I k8
*

,

dIk

dt
50: Sk5

d0I k

kbQ
5

d0I k

kbckI k1kb(
k8

ck8I k8
*

,

and the vector field for Eqs.~3! and~4!. There exists a stable

equilibrium point (I k* ,Sk* )5
def

(ak /d0 ,ak /kbQ* ), because of

'Q* 5 (
k>m

ckI k* ;
Agm2g

d0
E

m

`

k2(n1g11)dk5
Agm2n

d0~n1g!
,

by usingck5g3mg3k2(g11) for the generalized BA mode
@18# with a power-law degree distributionP(k)5(1
1g)m11gk222g,^k&5m(11g)/g ~which includes the
simple BA model@2# at g51). On these state spaces in Fig
6~a! and 6~b!, only the case ofa50 or ak50 gives the
extinction: I * 50 or I k* 50. It means that we must stop th
growth to prevent the infections by detection. In addition, t
homogeneous and heterogeneous systems are regarded
cillators in Figs. 7~a! and 7~b!.

C. Effect of immunization

We study the effect of random and hub immunizatio
With the randomly immune rate 0,d r,1, the time evolu-
tions are given by

dSk~ t !

dt
52bkSk~ t !Q~ t !1ak2d rSk~ t !, ~5!

dIk~ t !

dt
52d0I k~ t !1bkSk~ t !Q~ t !2d r I k~ t !, ~6!

where the shadow variableRk(t) is defined bydRk(t)/dt
5d0I k(t)1d r„Sk(t)1I k(t)….

Similar to discussions in the preceding section, we c
sider a section ofI k85I k8

* : const for all k8Þk. From the
nullclines of Eqs.~5! and ~6! with random immunization,

there exists a stable equilibrium point (I k* ,Sk* )5
def

@(ak

2d rSk* )/(d01d r),ak /(d r1kbQ* )#, if the solution

Q* 5(
k

ckI k* 5
1

d01d r
(

k
akckS 12

d r

d r1bkQ*
D 5

def

f ~Q* !

is self-consistent at the point. The condition is given by

d f

dQ U
Q50

'
Ab

d r~d01d r !
E

m

`

gmgk2(g1n)dk

5
Abgm2(n21)

d r~d01d r !~g1n21!
.1.

In this case, the state space is the same as shown in Fig.~b!.
2-5
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FIG. 7. Oscillators for~a! ho-
mogeneous and~b! heterogeneous
SIR models in the open system
They consist of S-I pairs with ex-
citatory → and inhibitory¢ con-
nections, and an input biasa or ak

of the growth rate. The factorQ
acts as a global inhibition or exci
tation.
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Next, we assumeI k8
* 50 for all k8Þk to discuss the ex-

tinction. On this section, the nullclines are

dSk

dt
50: Sk5

ak

d r1kbQ
5

ak

d r1kbckI k

and

dIk

dt
50: Sk5

~d01d r !I k

kbQ
5

d01d r

kbck
~ I kÞ0!

for Eqs.~5! and~6!. The necessary condition of extinction
given by the fact that the point (0,ak/d r) on the nullcline
dSk /dt50 is below the lineSk5(d01d r)/kbck : const of
dIk /dt50. From the condition

ak

d r
,

d01d r

kbck
,

we obtain

d r.2d01Ad0
214kakbck. ~7!

In addition, since 0,d r,1 must be satisfied, it is given b
ak,(112d0)/4bg from kck5gmgk2g, m<k,`, g.0,
for the generalized BA model@18#. In this case, there exists
01611
stable equilibrium point, otherwise a saddle and a sta
equilibrium point as shown in Figs. 8~a! and 8~b!. The state
space is changed through a saddle-node bifurcation by va
of the growth rateak and the immune rated r .

For the hub immunization@7#, d r is replaced by 0
,dhkt,1,t.0, e.g.,t51 as proportional immunization to
the degree of vertex. We may choose 1/kt times smaller im-
mune ratedh thand r for Eq. ~7!. In other words, the neces
sary condition of extinction in Eq.~7! is relaxed toak
,mt(mt12d0)/4bg. Thus viruses can be removed in larg
growth rate.

The above conditions are almost fitting to the results
the stochastic model in Sec. III. We can evaluate them us
the corresponding parametersm51, n521g5(g in
1gout)/252.2, b↔l50.1, d0↔d50.04, d r or dh
50.1,0.2,0.3, t51, and A560 from ((ak);*Ak2ndk
5Am12n/n21550. By simple calculations, we find tha
ak,(112d0)/4bg is satisfied fork>2. The condition~7! is
satisfied for onlyk>5 with random immunization of 30%
and k>7 with 20%, so the extinction of viruses is difficu
by spreading of infection from many vertices with low d
greek<4, whereas it is satisfied fork>3 with hub immu-
nization of both 20% and 30% by the factor of 1/kt. The
delicate mismatch atk51,2 may be from the difference o
the complicated stochastic behavior as in Fig. 1 and the m
roscopic crude approximation.
-

d

-
e
-

FIG. 8. Saddle-node bifurca
tion between~a! damped oscilla-
tion of recoverable prevalence an
~b! convergence to the extinction
by the immunization in the hetero
geneous SIR model. The stat
space is changed by the bifurca
tion parametersd r and ak for the

value of Ŝk5
def

(d01d r)/kbck .
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FIG. 9. Nonextinction in~a!
homogeneous and~b! heteroge-
neous SIS models. The number o
infected stateI or I k finally di-
verges to infinity.
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D. SIS model

Finally, to show that the recovered state is necessary
consider the SIS models in the open system. The time e
lutions on homogeneous networks are given by

dS~ t !

dt
5d0I ~ t !2b^k&S~ t !I ~ t !1a, ~8!

dI~ t !

dt
52d0I ~ t !1b^k&S~ t !I ~ t !, ~9!

whereN(t)5S(t)1I (t). The nullclines are

dS

dt
50: S5

d0I 1a

b^k&I
5

d0

b^k&
1

a

b^k&I

and

dI

dt
50: S5

d0

b^k&
:const,~ IÞ0!

for Eqs.~8! and ~9!. There exists a gap ofa/b^k&I .0 even
in I * →`. Furthermore, the time evolutions on heterog
neous networks are given by

dSk~ t !

dt
5d0I k~ t !2bkSk~ t !Q~ t !1ak , ~10!

dIk~ t !

dt
52d0I k~ t !1bkSk~ t !Q~ t !. ~11!
01611
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On a sectionI k8 : const, the nullclines are

dSk

dt
50: Sk5

d0I k1ak

kbQ
and

dIk

dt
50: Sk5

d0I k

kbQ

for Eqs. ~10! and ~11!. There also exists a gap between t
nullclines. Figures 9~a! and 9~b! show the nullclines and the
vector field. Thus, the dynamics in the SIS model is qu
different from that in the SIR model. We cannot realize bo
the extinction and the recoverable prevalence of viruses
the SIS model, in any case, even in the open system.

V. CONCLUSION

In summary, we have investigated the spread of comp
viruses via e-mails on linearly growing SF network mode
whose exponents of the degree distributions are estim
from real data of sent and received mails@13# or from the
generalized BA model@1,18#. The dynamic behavior is the
same in both simulations for a realistic stochastic SH
model and a mean-field approximation without connectiv
correlations for the macroscopic equations of simpler de
ministic SIR models. The obtained results suggest that
recoverable prevalence stems from the growth of netwo
and it is bifurcated from the extinction state according to
relations of growth, infection, and immune rates. Moreov
the targeted immunization for hubs is effective even in
growing system. Quantitative fitness with really observed
rus data and more detailed analysis with the correlations
further studies.
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