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Physical analogy between continuum thermodynamics and classical mechanics
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The main focus of this paper is the profound physical analogy between a continuum thermodynamical
system, which evolves with relaxation undgossibly nonisothermal conditions, and a classical mechanical
system of a few interacting particles moving with dissipatior{possibly, time-dependent nonconservative
fields. This analogy is applied to the problem of phase transitions in a one-dimensional thermodynamic system.
The thermomechanical analogy stems from the validity of variational methods in mechanics and thermody-
namics and allows for a different interpretation of the dynamical selection principle in the theory of pattern
formation. This physical analogy is very helpful for understanding different nonlinear thermodynamic phe-
nomena and for developing intuition in numerical simulations.
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[. INTRODUCTION tion in the literature. Analogies helpfully link what is being
studied to what is already understood and allow for develop-
Equilibrium and dynamical analysis of heterogeneousng intuition, which is very useful in numerical simulations.
thermodynamic systems has been taking a stride forward i this article we intend to generalize this analogy to the case
the past few years. Much of the credit for this progressof thermodynamic systems with many internal parameters
should be given to the introduction and development of thdindergoing different phase transitions, and elucidate the con-
continuum methods in the thermodynamics of heterogeneodigction of this analogy to a dynamical selection principle in
systems. Conceived in different scientific communities, thes&h€ theory of pattern formation. Another goal is to show how
methods received different names: Ginzburg-Landau ifmechanical _|r_1tU|t|on can be used for computer simulations of
physics[1], Cahn-Hilliard in materials scienci?], phase Phase transitions.
field in applied mathematic§3], although the underlying
idea of all these methods is the same. In order to characterizell. EQUILIBRIUM IN A MULTICOMPONENT SYSTEM
different thermodynamic states of the system, one attempts
to introduce a set of continuum variables with distinctly dif-
ferent values at different states. Such variables obey dynamic . . i o
equations that describe evolution of the thermodynamic sys- The first step in any theoretical description of a thermo-
tem. This method represents a whole paradigm, which hadynamic system is the selection of a set of independent vari-
spread to many different branches of science beyond therm@Ples that specify the system and conjugate-dependent func-
dynamics. tions that characterize the state of thermodynamic
The success of the continuum method is mainly due tgquilibrium. One may argue that temperature and pressure is
two reasons. It opens the door for a broad range of varia@ Petter choice of independent variables than energy density
tional methods to be used in thermodynanjisand, on the and_ specific volume because, regardles_s_ of the outer con-
other hand, proves to be extremely convenient in numericaﬁtramts of open or closed systems, conditions of equilibrium
realization for computer simulation of different sorts of include constant temperature and pressure throughout, but
transformations in thermodynamic systefbss). not constant energy density or specific volume.. In addltlon to
In the course of the development of these ideas, a pro€mperatureT and pressuré®, a thermodynamic system is
found physical analogy has been found between the steadiaracterized by the densities of different components,
motion of a scalar thermodynamic field and the classicaP1:P2:P3:---Pn, Which specify the overall composition of a
(nonrelativisti¢ mechanical motion of a particl§7—9,4. system and obey the conservation of particles condition:
The thermomechanical analogy stems from the validity of d
variational methods in both mechanics and thermodynamics — | pid3x=0. (1)
and is the main focus of the present paper. Although the dt
subject of a thermomechanical analogy is not completely
original (it suffices to recall the usage of the Legendre trans- Another set of internal variablelsy;} is associated with
formation in mechanics and thermodynamit§]), the par- the underlying physical differences between the states. In the
ticular one discussed here has not received sufficient attefiramework of the Ginzburg-Landau theory of phase transi-
tions[1], the internal variablegz;} are associated with sym-
metries of the states and are usually called order parameters
*FAX: 910-672-1159. Electronic address: aumantsev@uncfsu.ed(OP’s). The thermodynamic potentials of the system become

A. Continuum thermodynamics of one-dimensional
heterogeneous systems
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continuous functions of these variables: ® 5Q

=®{T,P;p;,n;}. At equilibrium, the densities and order pa- 5—77_E<9mf— Ky ik V=0, (53
rameters take on specific values, which are functions of tem- !

perature and pressurgp®, 5 =Z(T,P), and can be found 50

from the proper condition of thermal equilibrium. Away from fE&pif — i Kp,ikVZpk= 0. (5b)

equilibrium they become dependent on time and eventually opi

relax back to these specific values. The difference betwee

densities and order parameters is that the latter do not ObEWith respect tau and 5B/ 45U is a variational derivative ob
conservation conditions of the type of Hd) and hence may with respect tau(-) while other variables are held constant.

serve as measures of deviation from equilibrium in the sys- At a constant temperature and pressure Esjshave so-
tem. As the fundamental difference between the phases {§qnq with different symmetries, e.g., plarfds3], cylindri-
their symmetries, the concept of an order parameter may al |, or spherical[14]. However, only one-dimensional
be tltjseg to define bulk ;t)r:]asezs a Iocallytstable state of translation-invariant solutions are subjected to the thermo-
matter homogeneous In the oraer parameters. mechanical analogy discussed in this article. Using transla-

The presence of.defects in the form of precipitqtes of &i5n invariance of the one-dimensional solutions, the equilib-
second phase or different homo- or heterophase interfaces Egs. (5) may be integrated once to yield the first
makes a system essentially inhomogeneous, that is, there qgfegral in the form(12];

pear gradients of the independent variables like densities an
order parameters. There is a certain penalty on the inhomo- 1 dp; dp; 1dy d 7y

Aere and in the following),¢ is a partial derivative ofp

bution to the thermodynamic potentials, which appears be-

cause the densities of the thermodynamic potentials =const. (6)

become functions of the gradients of the thermodynamic

variables as well as variables themselves. Thereby, the thela Egs.(3), (4), and(6) and all that follow, the bare quantities

modynamic potentials become functionals over the entirestand for local densities of thermodynamic functions, the

system: careted quantities are defined as the sums of the local and
gradient contributions and stand for nonlocal densities of
thermodynamic functions, while the quantities with the breve

<I>{T,P}=f &(T,P;pi,m;; Vi, V) d . (2) (V) are defined as the differences of the local and gradient

contributions.

We consider an open thermodynamic system, which is APPIYing the first integral, Eq(6), to a bulk phase, the
capable of exchanging energy, matter, or volume with thonstant of integration is identified as the negative of the
ambience that is, a grand canonical ensemble. The equiliflydrostatic pressure:
rium conditions for an open system involve the grand ca- _ B E E
nonical potential of the whole systefh[11]. The derivation P=pipr = 1(T.pi 7). @)
of such conditions in the framework of the continuum ap-

Entropy, volume, and other thermodynamic functions may be
proach is given, e.g., in Ref12]: 4 y y

found with the help of the corresponding Legendre transfor-

mation acting on the grand canonical potentials. For in-

QEJ &d3x— min, G)Zf—ﬂipi- 3) stance, the internal energy functions are found through the
Legendre transformation in temperature:

Here & is the density of the grand canonical potential, the {E.8&kef=(1-To){Q,0,0,«}. (8
wui's are the chemical potentials of the components, and Ein- ) .

stein summation over the repeated indices is implied. In this 1he approach outlined for Eqél)—(8) describes a pro-
paper the gradient-energy contribution is represented in th€®SS ?f phase transitionsfifepresents a multiwell function
standard Ginzburg-Landau-Cahn-Hilliard fofth2]. For the ~ °f OP's. Depending off andP, Eq.(6) has different periodic

free energy density of a heterogeneous sysferthis vields and nonperiodic one-dimensional solutions. The nonperiodic
9y y ol ) 9 y y two-well solution describes a transition region between the
the following expression:

two phaseg«) and(B) coexisting at equilibrium, that is, an

interface while the nonperiodic one-well solution describes
Vo + EV”K Vo, (4 acritic_al nucleus[13]. _ _ N

o A T As is known[15], all properties of an interface at equilib-

rium are completely determined by just one intensive quan-
wherex, jj (a= 7 or p) are symmetric matrices of the gra- tity, the surface tensioror specific surface energy. The
dient free energy coefficients, which may depend on temsurface tension is defined as the excess of the appropriate
perature and pressure. The cross terms have been retaingitermodynamic potential of the system with an interface, per
because they may be of the same order of magnitude as thait area of the interfacd, compared to that of the homo-
diagonal ones. Then equilibrium in the heterogeneous systegeneous bulk phase occupying the same volume. The appro-
satisfies the simultaneous Euler-Lagrange equations: priate thermodynamic potential must be equal in both phases.

~ 1
f=1(T,pi, 7))+ EvpiKp,ij
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TABLE |. Dictionary of the thermomechanical analogy.

Continuum thermodynamidd.D systemp Classical mechanics of many particles
Equilibrium in an open system Dynamics in a conservative system

Clausius’ principle Hamilton’s principle
Spatial coordinatex (1D system [Xy,X5] Timet [ty,t,]
Thermodynamic variablefp; , 7;} Generalized coordinates
Gradient free energy coefficients, ;; Generalized masses
Negative of the local density of the potential Potential functionll
Density of the gradient energy Kinetic enery
Density of the grand canonical potential Lagrangian
The quantitye Negative of the Hamiltonian
Equilibrium equations Lagrange equations
PressureP Total mechanical energyK(+11)
Total grand canonical potenti&l Action
The surface energy “Abbreviated action”
Particle conservation condition No simple analogy

Relaxation dynamics Dissipative dynamics
TDGLE Lagrange equation with dissipation
Velocity over relaxation coefficier¥/ y, Dissipative coefficient
Dissipative functionF Rayleigh’s function

Nonisothermal dynamics Dynamics in external fields

Temperature Time-dependent external field

This requirement caused Gibbs to select the grand canonicgtadient free energy coefficients are analogous to the gener-
potential for the definition of surface tension. Thus the ex-alized masses of the particles; and-(— 1) is the number
pression for the surface tension is of degrees of freedom of a mechanical system. In the frame-
work of this analogy, the negative of the local density of the
Q= Qpyi . grand canonical potentidh w) is analogoug=) to the me-
A L (&+P)dx. ©) chanical potential functiothl, while the sum of the gradient
free energy terms is analogo(s) to the total kinetic energy

Using Egs.(3), (4), (6), and(7) with Eq. (9), we obtain that ©f the particles of the mechanical systekh,

the surface energy of a flat interface may be expressed as .
follows [12]: V Y P H=—-w(pi,7;;T,x)=pipi—H(T,pi,7), (119

=

_1dp dpy  1dy; dny

_fﬁ dp; dp; dn d7,
o= T ax eiax Taax Sria s (0

WKP’” a'ﬁ'aknij W]dx (10)
The boundaries of integration frory, to x; are equivalent to
going from —o to +o0. Note that, although the bulk phases
are included in the integration, the integral in Efj0) does
not diverge because the integrand vanishes in both bul
phases.

The density of the grand canonical potentigl Egs.(3) and
(4), is analogous to the Lagrangian of the mechanical system
gnd the quantityw, Eq. (6), to the negative of the Hamil-
tonian. Notice thato can be obtained frord with the aid of
the Legendre transformation ifVp;,V 7;) [see Egs.(3),
(4), and(6)]. Then Egs(5) correspond to Newtonian equa-
tions of motion of a mechanical system in either Lagrange’s
A profound physical analogy may be brought to bear be-or Hamilton’s formulation. The pressuf is analogous to
tween a one-dimensiondllD) thermodynamic system at the total mechanical energy of the systeki+(I1) and the
equilibrium and a conservative classical-mechaniemil-  condition of thermodynamic equilibrium, E¢6), that is, the
tonian system of several coupled point masses moving in @onstancy of pressure throughout the system, is analogous to
potential field. This analogy is based on the application ofthe conservation of the mechanical energy. The energy is
variational principles in thermodynamics and mechanicsconserved because the Hamiltonian does not depend explic-
Table | provides a summary of the analogous terms in theritly on time and the pressure is constant becabisibes not
modynamics and classical mechanics. According to this analdlepend explicitly on the coordinate The total grand ca-
ogy the spatial coordinateof a 1D thermodynamic system nonical potential of the thermodynamic syst€mEg. (3), is
is analogous to the timeof a mechanical systemp(, ;) analogous to the action of the mechanical system and the
are analogous to the generalized coordinates of the particlesurface energy, Eq.(10), to the “abbreviated action[16].

B. Mechanical analogy
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FIG. 1. Even potential functiodl corresponds to thermody- FIG. 2. Tipped-off potential functiofl corresponds to thermo-
namic equilibrium between phasesand 8. Undamped oscillator is  dynamic preference of a stable phg@eompared to a metastable
the mechanical analogue of an equilibrium heterogeneous 1D thephasea. Damped oscillator is the mechanical analog of a traveling
modynamic systemy, B, andy are rest points of the point maga) wave in the thermodynamic system. The filled circles indicate the
Periodic oscillator: the shaded circles indicate the turning points ofnitial positions, the open circles indicate the final position, and the
the point mass(b) Heteroclinic orbit: the filled(8) and open(a) shaded circle indicates the turning point of the point méssHo-
circles indicate initial and final positions of the point mastble  moclinic orbit; (b) critically damped oscillator{c) “marginally”
bulk phases damped oscillator.

T . 11l. DYNAMICS IN A ONE-COMPONENT SYSTEM
Then the minimization of the surface energy is analogous to

the principle of least action for the mechanical system. A. Isothermal dynamics

The th_ermomechanical analogy can bg_used for b_etter un- Away from equilibrium the thermodynamic system re-
derstanding the problem of phase transitions. For instanCgyyes pack to an equilibrium state, that is, one of the solu-
application of the formalism of action-angle variables to ajjgns of Egs.(5). To characterize the response of a nonequi-
one-component thermodynamic system with a single scalaprium system, in compliance with the second law of
order parameter helps |dent|fy and interpret different equilib-thermodynami(:s’ Onsager assumed it to be |inear|y propor-
rium states in the system: the bulk phagesind g corre-  tional to the thermodynamic driving force, which is the de-
spond to unstablésaddle-typg rest points separated by a viation of the system from equilibriurfil 7]. Mandel'shtam
stable (center-type rest pointy of the mechanical system and Leontovitch implemented these ideas in a seminal paper
with one degree of freedonfsee Fig. 1 Heterogeneous [18], where they studied relaxations and scattering of sound
equilibrium states correspond to bound solutions of the mein liquids without phase transitions. For the degree of relax-
chanical system, e.g., periodic thermodynamic states to peration they introduced the evolution equatiorye«
odic mechanical solutior{$ig. 1(a)]. Due to unboundness of —(dQ/dn)tp, which Landau and Khalatnikov adopted
the free energy, Eq. (4) and, hence, potentidl, Eq. (113, later in their study of the absorption of sound in the vicinity
only one type of periodic motion is possible, oscillatigio ~ of a second-order phase transitid9].
rotationg. The interface between the bulk phasesnd g In heterogeneous media the gradient-energy contribution
corresponds to thaeteroclinic trajectorythat connects two is essential and the thermodynamic potentials are functionals
different rest points with equal potential energis[Fig. [see Eq.(2)]. Hence, the local thermodynamic forces are
1(b)]. A critical nucleus corresponds to lromoclinic orbit  expressed as the variational derivatives of the grand potential
that connects one rest point of lower potential endgyo  [left-hand sides of Eq95)] instead of the partial ones. The
itself, which is possible only for a “tipped-off” potentidl ~ general equation of the order parameter evolution takes the
(not equal depths of the wellsas shown in Fig. @). form, which came to be known as the “time-dependent

Notice that in the transformation from thermodynamics toGinzburg-Landau equationTDGLE):
mechanics the equilibrium states exchange their stabilities
due to _the. negatiye sign in E(L19). Fpr instgnce, mechani-_ dumi=— %_5_9 (no summation (12)
cal periodic solutions are stable, while their thermodynamic om;
counterparts are not. The latter, however, do appear in the
processes of phase transitions and the systems undergoifige response coefficientg; set the relaxation time scales
the transformation spend a great deal of time in the vicinityproportional tOyj’l. Relaxation of densities follows a differ-
of the periodic stateg5]. ent evolutionary path, which is described by the so-called

016111-4



PHYSICAL ANALOGY BETWEEN CONTINUUM . .. PHYSICAL REVIEW E69, 016111 (2004

Cahn-Hilliard equation because the densities obey the paselected wavdinterface also possesses a “marginal prop-

ticle conservation conditiofil). Relaxation of density is not erty,” which is best revealed by the thermomechanical anal-

considered in this paper because we were not able to estabgy.

lish an analogy between the constraibt and classical me- The thermomechanical analogy also allows one to gener-

chanics. alize the relaxational dynamics by including the cross terms
An analogy can be established between translationbetween the thermodynamic “driving forces” and responses.

invariant motion in a relaxing thermodynamic system, whichThe simultaneous generalized equati¢@TDGLE’s) take

satisfies Egs(12), and motion of particles in a dissipative the form

mechanical system with the frictional forces proportional to

their velocities. Such a system is described by Rayleigh’s 6Q) IF

dissipative function, whose partial derivatives yield the fric- E + () =0, (14)

tional forces that should be added to the right-hand sides of ! J

the Lagrange equatiorig0]. Translation—invarian't solutions \yhere Fis a positive definite dissipative function:

of Eq. (12) represent waveg,n; = 7;(x—V1)}, which travel

with constant speell and obey the simultaneous equations

1
7:55(6’t77j)7'jk(07t77k)>0,
d*n vV dy, N
Kpikgoz + — o —Jd,©=0 (no summation inj).
7 dx cdx T -
7] L= . L= Ay 1>0 1
(13 Tik=Tkjr  Tjj= Y : (15

The sought thermomechanical analogy will be established ifSind Ed.(14) and the Euler relation for homogeneous func-

on the top of the above described equilibrium analogy, thé!onS Of the second order, it is easy to show that the rate of

coefficientsV/y, in Eq. (13) will be brought into correspon- the “free energy” change in the system is

dence with the dissipative coefficients of Rayleigh’s function

(see Table)l _
The thermomechanical analogy helps develop an intuitive dt

understanding of the dynamics of phase transitions. For in-

stance, it clearly shows that in the dynamical case the equivhere the last inequality follows from E@l5). For a trav-

librium types of heterogeneous solutions, periodic, criticaleling wave{n;= »;(x—Vt)}, Eq.(16) can be represented as

nucleus, and stationary interface, are destroyed because thijlows:

correspond to the conservation of the mechanical en@eg

Fig. 2. They are replaced, however, by traveling waves with d _

different speedsV. The thermomechanical analogy also &“’(T' 7)=2VF>0. (17)

helps interpret therinciple of selectiorof such waves, that

is, to determine the unique velocity of a wave that will be gor 5 thermodynamic system, Eq46) and (17) mean that
realized in a physical or numerical experiment with givenr s the local rate of dissipation, which is analogous to the
temperature and pressure. Decomposition of an unstablgssipation of the mechanical energy due to friction in a me-
state y, for instance, may propagate with many acceptablghanical systenfi20]. Thermodynamically, Eqi17) can also
velocitiesV, according to Eq(13) [21]. This corresponds to e interpreted so that the wave spaéis proportional to the

the damped oscillations of a particle about a stable rest pointhemical potential gradient with (2~ as the mobility.
vy with different values of the friction coefficienFig. 2).

Recall that the thermomechanical analogy changes the sta-
bilities of the equilibrium states of the systemest points.
The asymptotically stable front solution, however, corre- Many transitions in open systems occur under conditions
sponds to the case of “marginal stability7,8], that is, the  of varying temperature, which is analogous to dynamics of a
waves that move more slowly are unstable to perturbationmechanical system in a changing external field. Temperature
while those that move faster are stable. From the standpoinMariations in the system may, however, occur naturally for
of the thermomechanical analogy, the asymptotically stablgurely internal reasons, because evolution of a thermody-
wave of decomposition of an unstable state corresponds torsamic system almost always entails release of heat, which is
particle motion withcritical damping[Fig. 2(b)]. redistributed due to the thermal conduction. The recycled
An interface between a stabl@) and a metastabléx) heat affects the rate of relaxation if the thermal conductivity
state corresponds to a wave described by a heteroclinic trés not infinitely large. In order to study nonisothermal dy-
jectory between two rest points with different potential ener-namics, naturally, we need the heat equation, which would be
giesIl. It cannot move at a steady pace with an arbitrarythermodynamically consistent with the dynamics of phase
speed. Instead, the spe¢af the wave(interface is selected transitions that take place in the system. Details of the deri-
as an eigenvalue of the boundary problem B), that is, vation of a thermodynamically consistent generalized heat
for dissipative coefficients smaller than the “marginal” tra- equation(GHE) compatible with the first and second laws of
jectories are unbounded, while for greater ones trajectorieermodynamics and the dynamics of phase transitions are
never reach the rest poirity) [see Fig. Zc)]. Hence, the presented in Ref22]. The GHE takes the form

o (e ,
——J—amjd x=—J 2Fd3x<0, (16

B. Nonisothermal dynamics
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SE . physical phenomena always improves our understanding of
CoT=V(\VT)— 5—77_(707; , C=(d18)v,,, (18)  the subjects on both ends and allows for possible extensions
! into untested areas. It suffices to recall the electromechanical

where C is the specific heat ands the thermal conductivity. [25] and optomechanical26] analogies. The thermome-
The simultaneous coupling GTDGLEL4) and GHE (18) chanical analogy sheds light on the problem of pattern for-
describe different regimes of interfacial dynamics. Equationmation during phase transitions and provides an interpreta-
(18) can be used not only for phase transitions but also fotion of the marginal stability principle of dynamical selection
any thermodynamic process where internal parameters reldat least in one dimensipnA good use of the thermome-
simultaneously with heat release, for instance, the problershanical analogy may be made through application of the
of an excitable reaction-diffusion systd@3]. mechanical intuition developed in problems of small balls
For the purposes of thermomechanical analogy we conrolling on curved profiles to computer simulations of thermo-
sider again a 1D traveling wave whefey=7;(x—V1),T  dynamic problems, e.§8,9,24. In Ref.[24], Egs.(19) were
=T(x—=V1)}. Then Eq.(18) can be integrated once to yield applied to phase transitions in an adiabatic system where the
the following simultaneous equations that describe nonisomechanical analog of temperature changes self-consistently
thermal dynamics in a heterogeneous thermodynamic Megith the particle coordinates. The author found that hetero-
dium with «g i = const[24]: clinic trajectories, which correspond to phase-transition
waves, exist at two different speetfsfor the same condi-
. . tions in the system. However, only the wave with the greater
ax (T ) =2VF+ 5 oro, (193 gpeed was found to be stable with respect to variations of the
velocity. The latter may be viewed as a selection principle in
one dimension.
On the basis of the thermomechanical analogy one may
also suggest generalizations of the thermodynamic descrip-
daT Vv _ | tion of a continuous system. In the present paper we sug-
“ax "y (&), (19D gested the generalized TDGLE, Ed4).
The source of the thermorleanical analogy is identified

o oy as the applicability of the variational principles in different
whereg, is the value of the quantitg far away from the branches of physics, like Hamilton’s principle in classical

wave. In the light of the thermomechanical analogy €92 épechanics, Fermat's principle in optics, and Clausius’ prin-

describes the dynamics of particles in a nonconservative me- lein th d ics. Variational brncipl | le of
chanical system, where energy changes are due to Rayleigﬁ;é0 € In thermodynamics. variational principles play a role o

dissipation and the time-dependent field. Equatidsb) selection principles and allow one to choose a unique solu-

shows that the fieldr changes self-consistently with other tiOn (trajectory out of a large set of solutiongrajectories
variables of the system. that satisfy all other constraints of the problem. Motivated by

Noether’s theoreni27], which establishes the relation be-

tween symmetry properties and conservation laws, we pose a
IV. DISCUSSION question: What property of a system entails validity of varia-
) ] tional principles? As known, Hamilton’s and Fermat's prin-
In the present paper we describe the physical analogy b&;jples may be derived from the variational formulation of
tween one-dimensional evolution in a continuum thermody-, ,antum mechanid@8]: particles and photons, so to speak
namical system with relaxation and a classical mechanica?search" the neighboring paths to find the one with the

system of a few interacting particles moving with dISSIpa-maXimum “action” and cancel out through interference on

tion. This analogy can be extended to evolution in noniso-,, others[29]. Hence, Hamilton's and Fermat's principles

thermal systems with temperature being analogous to time—re consequences of the wave nature of liaht and matter
dependent nonconservative field. However, a more specifi owever 3ariational principles of thermodyn%mics are not.
mechanical interpretation nd Eq.(19b) is still ject t L .

echanical interpretation drand Eq.(19b) is still subject to educible to the quantum mechanical ofi28]. The answer

inquiry. The principal difference between mechanical an . . .
thgrm)(/)dynamFi)c sygtems is in the form of imposed cono the question posed may help find a solution to one of the

straints: mechanical constraints are usually given in algebrai'énOSt fund_amgntal problem; c.’f physg:s_,_ th_e problem of the

(holonomig or differential(nonholonomig¢ form, while ther- arrow of time: ?OW to obtaml |rre;ver5|bllltyb||n a thermody-

modynamic ones are presented in an integral form, e.g., E(E.ﬁm'.c slyjtem. rom e} completely reversible quantum me-

(1). The dimensionality of the thermodynamical system is anical description of it.

limited to unity because of the obvious reason that the tem-

poral coordinate in classical mechanics is one dimensional. It

is of mtgrest.to see if Fh_|s ana!ogy holds fpr physical models, ACKNOWLEDGMENT
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