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Solution of voter model dynamics on annealed small-world networks
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An analytical study of the behavior of the voter model on the small-world topology is performed. In order
to solve the equations for the dynamics, we consider an annealed version of the Watts-$iR)atetwork,
where long-range connections are randomly chosen at each time step. The resulting dynamics is as rich as on
the original WS network. A temporal scaleseparates a quasistationary disordered state with coexisting
domains from a fully ordered frozen configuratianis proportional to the number of nodes in the network, so
that the system remains asymptotically disordered in the thermodynamic limit.
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I. INTRODUCTION defined, which may assume two valyes= +1) representing
two opposite options, for instance, the electoral choice in
The relationship between nontrivial interaction topologiesfavor of two different candidates. Starting from a disordered
and ordering phenomena is still a largely unexplored topicinitial condition, the model follows a simple dynamical evo-
The recent burst of activity on complex networks has redution: at each time step one site is selected at random and
vealed that many technological, social, and biological sysset equal to one of its nearest neighbors, chosen at random in
tems have interaction patterns markedly different from strucits turn. On regular lattices, id=1 andd=2, the model
tures traditionally studied as regular lattices and randontonverges to an ordered state with all variables having the
graphd1,2]. The interest is now focusing on how such com-same value, whereas fa=3 the system reaches a disor-
plex topologies affect dynamical processes taking place odered stationary stafd2,13. The voter model on complete
them. Models of ordering dynamics play an important role ingraphs has been considered receftl§,15|.
this context, since they are commonly used to study social In Ref.[9] we have found that the nontrivial connectivity
phenomena, such as cultural assimilation and opinion dypattern of the WS network has a deep impact on the ordering
namics[3—6], for which the interaction patterns are more dynamics of the voter model. In particular, after an initial
plausibly described by complex networks than by regulatransient, the system settles in a quasistationary state with
lattices. coexisting domains. If the system size is infinite, this state
Some ordering processes on complex networks have repersists forever: at odds with naive expectations, long-range
cently been considered, including the zero-temperatureonnections prevent complete ordering from being reached.
Glauber dynamics of the Ising model on the Watts-Strogatif the system size is kept finite instead, the stationary state
network [7] and the Axelrod model on small-world and has a finite lifetime and the fully ordered state is quickly
scale-free networkgs]. reached at the end of it. Interestingly, the dependence of the
In a recent papef9], we have studied numerically the lifetime on the system size is such that the ordered state is
dynamics of the voter model on a small-world network. Thisreached earlier than on a one-dimensional lattice of the same
structure, more precisely the Watts-Strog@&tS) network  size. This partially restores the intuitive picture that long-
[10], is one of the simplest examples of complex topology.range connections should speed up the ordering process.
Depending on the parametpr(to be specified belowit in- In this work we analyze the same problem from the ana-
terpolates between a one-dimensional lattice with periodidytical point of view. The very simple form of the transition
boundary conditiongfor p=0) and a random graptfor p rates for the voter model results in equations of motion for
=1). It has been showfl0] that in a well-defined range of the correlation functions that are not coupled with each other.
intermediate values op, the network has, simultaneously, The only difficulty is to carry out the average over trajecto-
global properties typical of random grapksmall average ries for a fixed realization of the network and to average over
distance between nodeand local propertieqclustering  the topology afterward. To overcome this problem we use an
typical of regular structures. annealed approximation, consisting in averaging over the to-
The voter model is possibly the simplest model of anpology before averaging over the trajectories. This approxi-
ordering proces§ll]. On each site a discrete variahteis  mation is exact for an effective network, which we call an-
nealed WS network, where long-range interactions are not
guenched from the beginning but are extracted randomly at
*Electronic address: daniele@pil.phys.uniromal.it each time step. The dynamics of the voter model on the
TElectronic address: castella@pil.phys.uniromal.it annealed WS network is then solved, revealing a phenom-
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enology as rich as in the quenched case. By comparing theherez;, the degree of sitg is
exact results on the annealed WS network with the numerical
simulations on the quenched one, it turns out that the only Z'=E Qi j)
discrepancy between the two cases is the dependence on the 4 e
parametep of the correlation length in the stationary disor-
dered state.

The paper is organized as follows. In the following sec-
tion we define precisely the voter model dynamics and the A. Equation for the correlation function
WS topology on which the process occurs. Section Il is
devoted to the analytical solution of the dynamics. The equag.
tion of motion for the correlation function is derived, the
annealed approximation is introduced, and the behavior of g
the system is studied. In Sec. IV we check numerically the &P({U},IFE w({o'}i—{ahHP({o'},t)— > w({o}
analytical results for the annealed case and compare them ! !
with simulations of the quenched case. In Sec. V we extend —{a'})P{oh 1), (3)
the results to the case where each site is initially connected
to 2v neighbors. The final section contains a short discussionne can derivg17,1§ the equation of motion for the mean

III. ANALYTICAL TREATMENT

Given the explicit expressiofR) of the transition rates,
m the master equation

of the findings. spin at sitgj, sj=(0;),
ds; Q(j, k) sk
Il. THE MODEL l_ _ o —°
G- oSt Zj, (4)

We consider a small-world network defined as the super-
position of a one-dimensional lattice bfsites with periodic 54 for the two-point correlation functiod; =( ;o)
boundary conditions and a random grgdi]. In general, b e
one can start from a lattice with each site linkedvtoeigh- dc; Q(j,i)Cy; Q(k,i)C;j;
bors on the right and on the left. We now consider=1, T —2Cjk+ > D ~. (5

. . . . i Z; I Zk
deferring the discussion of generic valuesioto Sec. V. !

More precisely, sitd is initially connected with site$—1 For p= o - -
; L ) p=0, Egs.(4) and(5) coincide with the equations for
andi+1. Then a link is added between any pair of NON-ha one-dimensional voter moddl3].

hearest neighbor sites with probabil'mjL. In thi? way the In order to study the dynamics of the voter model on the
total number of edges in the system B+[L(L  \yats Strogatz network, we must average Egs.and (5)
—3)/2]p/L, so that the average degree per site is finite (Zoyer the disordered topology. Indicating with an overbar the

+p) in the thermodynamic limit —cc. The generalization e . o
to an initial lattice with connections tonearest neighbors is a}veraged quantltleA.—f_Hi'deU J)APLQ(I )], the equa-
tion for the mean spin is

straightforward. This topology slightly differs from the one

originally introduced by Watts and Strogdtk0] but has the ds Q(—k)s
same properties and is more amenable to analytical treat- __3 E (g) (6)
ment. The topology is fully specified by the adjacency matrix dt R Z;
Q(i,j), which is 1 ifi andj are connected and 0 otherwise. ) ) o
The probability distribution of its elements is and the one for the pair correlation function is
dc; - Q(j.i)Cy, Q(k.i)C;;
. Ik_ _oC. ki Al fl]
dq(i.jpo fori=j dt ZC“‘J’Z z; +Zi ( ze |
ihj)]=
: p To evaluate the average values appearing on the right-hand
[ Setpat|1- E) dq(ij)o Otherwise. side of Egs(6) and(7) we introduce the annealed approxi-

1) mation

The voter model dynamics is defined by the transition rates.
If we call {o} the spin configuration of the system, that is,
{o}={01,02, ...,0i,...,0.} and we indicate wit{o'}; . o o
the same configuration with trhi¢h spin flipped, the transi- This approximation can be seen as considering annealed
tion rate from statéo} to state{c'}; is, in complete analogy ~transition rates
with the definition for regular lattices,

A. (8)

Q(jl,k))A:(Q(jl,k)

Z Z;

]

Q(i.k)

Z

1
wi(lo}—{o'h)=3 -

)a-ia-k

1 T .
wiet={oh)=5|1- - 2 Qika |, @

The evaluation ofQ(j,k)/z;) is readily performed:
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Q(j k)
E Qi)

k
(Q“ )) fH dQ(l,mPLQ(,m ]2

:f dQ(j,kPLQ(].k)1Q(].k)
xf llnl;[j]de(l,m)P[Q(l,m)] ;
2 QU0
(10)
Inserting Eq.(1) in Eq. (10), one easily finds fok=]j,

z |~ (12)
fork=j*+1,
1
(Q(” )) JdQ(J KIP[Q(},k)1Q(] k)
L=3\(p/L)(1—p/L)-—3""
X,&( n ) 1+0(.K+n
=f,(p/L,L—3), (12)
and, similarly, fork#j,j+1,
Q(j.k)| p
( , ):Efg(p/L,L—4), (13)
where
N /N an(l—a)Nin
fR(a,N):nZO<n)T (14)

Explicit formulas for the function$, andfz are given in the
Appendix. In the limit of largeL they tend to the simple
forms

i (1—-e P
FZ(p): lim fz(p/L,L—3):———2
L—oo p
and
F4(p)= lim fa(p/L,L—4)=— 2 2(1-eP
= lim L—g)y——— 42 =)
3(P m 3(P 5 o2 <

which go to 1/2 and 1/3, respectively, in the linpit->0.
The dynamical rule corresponding exactly to raf@sis
easily found. At each time step one sitgte i) of a one-
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place changes at each time step. We call such network “an-
nealed” WS network. The average properties are those of the
original “quenched” WS network, but no permanent connec-
tion exists between non nearest neighbor sites.

We can now write down the explicit form of the equations
of motion for the mean spin and the correlation function on
the annealed Watts-Strogatz network as

=S+ fo(p/L,L=3)(Sj+1tSj-1)

+Ef3(p/L,L—4) >

I#j,]*x1

S, (15)

Cj,k:_2Cj,k+fz(p/L,L—3)(Cj+1,k+Cj—l,k+Cj,k+1
+Cj 1)+ fa(p/L,L—4)
x| 2 Cat X Cyl (16)
1#j,j*x1 l#k,k+1

For simplicity, here and in the following, the overbar is omit-
ted. Also the arguments df, and f; will often be omitted.
Equation(16) is complemented by the boundary condition

C;,;=1 and by the initial conditiorC; ,(t=0). We consider
an initial fully uncorrelated stat&; k(t 0)=4; . Hence
the correlation function depends only or=|j—k| for all
times, and the equation of motion is

pf3)

L

><[C(r+1)+C(r—1)]+2—E c,

pTs

C(r)=-2 1+—)C( r+2|f

(17

where the relation 2 (p/L,L—3)+(L—3)p/Lfs(p/L,L
—4)—1=0, proved in the AppendiXEq. (A4)], has been
used.

If we sum Eq.(15) overj and divide byL, we obtain the
temporal evolution of average total magnetizatid

M
W:[—1+2f2(p/L,L—3)

+(L—3)p/Lfs(p/L,L—4)]M. (18)

Since the coefficient on the right-hand side vanisfies.
(A4)] the average total magnetization is conserved, as in the

dimensional lattice is randomly selected. Then, with prob-dynamics on regular lattices.

ability f,(p/L,L—3) one of the two nearest neighbors (
+1 ori—1) is chosen and; is set equal to it. With prob-
ability (p/L)f3(p/L,L—4) instead, one randomly chooses
one of the otheL —3 sites and sets; equal to it. In this

B. The stationary state

We now turn to the analysis of E¢L7) and consider first

way, the effective topology over which the dynamics takesthe continuum limit in real space, yielding
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_ 3 1-2f, on a one-dimensional lattidd.9]. In this way, not only the
C= —2(1—2f2)( 1+{—3/C*2| fam ﬁ) ! stationary state but also the preasymptotic dynamics can be
analyzed. Introducing
+21_2f2de c 19 1
[=3 J,drC(r): 19 =72 cu(hek, 29)
k/

Let us look for final configurations of the system, i.e., solu-

tions of the stationary equation with kK"=27n/L, n=—L/2, ... L/2, multiplying both sides

of Eq. (17) by e ", and summing over from 1 toL—1,
C"—\2C+®d =0, (200  We obtain

L-1
h 1s . K —
where E% Ck'(t)zl gk =kr
_(1—2f2)[1+3/(L—3)]

2= >0 (22) L-1
LT (1o - 1 " 1
[fzm(1=2f2)(L=3)] =—2A= 2 Cu(t) 2, €T 2B= D ¢y ()
L kr r=1 L k’
and
L-1 p L-1
NE (L X (e +e ) > K oTfc, > ek
<1>L=ff dic(). (22 ( )21 L3 02‘1
0

- L UsingSt_lelK) =15, ., — 1, we get
For finite L, taking into account thatC(r=0)=1 and ’
|C(r)|<1VTr, one obtains _ pfs

e(t) == NC(H) + A1) + 27~ Co(t) (Lo 1), (29

D O
C(r)=F+ 1_F exp(—ALr). (23 where
L L

Imposing the consistency of E(@®3) with Eq. (22), the final =21+ Pfs_ 2( f,— p_f3> cogk) (30)
correlation function turns out to be L L

C(r)=1 Vr=0. (249 and

, : , : 1

ggreeélr;?zlit(éonﬂguranon of the system is a frozen fully or- A(t)= C E () Vi - (31)

On the other hand, in the thermodynamic lirhit—oo, ) o S
(1/L)f(L)drC(r)=C(oo) so that the solution is The disordered initial condition implies (t=0)=1 for all
k. The boundary conditio€(r=0,t)=1 implies

C(r)=C(»)+[1-C(®)]exd —A(p)r], (25 1
L , . 1= 2 o) (32)
with N“(p)=Ilim__.\{. From Eq.(19 one obtainsC(x) k

=0, and sinceC()=0 for t=0 we have for all t. Equation(29) can be solved by Laplace transform

c(ry=exd —\(p)r]. (26) methods. Introducing

Hence the stationary configuration of the system is disor- &(s)= fxck(t)e*“dt. (33)
dered, with a correlation lengt, 0

1 1 1 Equation(29) becomes

©7Xp) TRp)-2 Vpip1ie P 2’ SB(S) 1=~ 1 &() +a(8) + 2pfato(s)( S0~ L1L),
(27) (34)

where the explicit form of 5(p)=lim,_..f»(p/L,L—3) is where é(s)=LTl_Eky|§ék(s) is the Laplace .transform of
computed in the Appendix. In the limit of smatlthe corre- ~ A(t). The coefficient£,(s) can be formally written down as

lation length diverges ag~ .

as)+1 B
C. Preasymptotic dynamics 8(s) = S+ yolL’ (35
We now study the equation of motiofi7) in Fourier a(s)+1_7OC°(S)/L, K%0.
space by closely following the treatment for the Ising model S+ vk
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Note thaty,=2pf;. To determinea(s) we transform the T AL IR
boundary condition32), use the expression85), and re- F
place the discrete sum ovkwith an integral(which is cor-
rect in the limit of largeL we are interested )nobtaining

O.1F

1 a(s)+1 Yo R = dk 1 10000
=0 - [a(s)+1] — . = 9000 - ]
(36) = o 6000 - 3
5000 E
For large L we can take y,(L)— y(L=2)=2[1—(1 P E E
—yo/2)cosk)]. The integral is easily carried out yielding el R

i 0 ,
0

(SP+4s+4[1—(1— v,/2)?]) Y2 We are interested irt
>1/p=s<1y, so that we obtain

L L
500 1000 1500 2000

0.001 el » o aanl M R EET | e bbbl
10 100 1000 10000

t

. (37

1
= =[a(9)+1] %0 | | |
S FIG. 1. Main: Plot of the fraction of active bonds, for p

1
Ls+ g * 2%(1 Ls+ vy
=0.1 and system siz&s400, 600, 800, 1000, 1400, 200f@om left
From EQq.(37), one realizes the existence of a temporal scalgo right) for the annealed case. Data are averaged over 1000 differ-
T= L/\/% separating two different regimes. ent realizations. Inset: The duratiemf the plateau in the main part
For t<7, &(s)+1=24/y/s so thatcy(t)=2y,t and of t_he figure(symbol$ plotted vsL. r_is e_valgated as the time at
() = 2\/70/ v, The correlation function is V\(hlch Na drops _below 0.01. The straight line is a power-law regres-
sion with best-fit exponent equal to 0:98.03.
t = dk elkr
C(r.tH)=2vyo —+2\/%f — . In the limit L—oo, the disordered state corresponding to
L ~n2m 2[1=(1=y/2)cogk)] the plateau becomes the asymptotic one. The analytical so-

(38 lution predicts an exponential form of the correlation func-
The first term is negligible because . HenceC(r) does tion [Eq.. (26)] W'.th the co.rrelat|on length, given by.Eq.
(27). This analytical form is a very good approximation for

not depend on time and decays exponentially witihis is the correlation function also for very large, but finite, values
a quasistationary state with coexisting domains of fixed size. ylarge, ’

Such a regime lasts for a timaewhich diverges fot.— o, so of L ir] the _quasistati(_)nary regim.et{r). This .is shown
that in the thermodynamic limit the system remains asymp_numerl_cally in the main part of Fig. 2. _In the lnset_ of the
totically in this disordered state. same figure we report the yaluesgyobtalned numerically,
For t> 7 instead, allg,(s) vanish exceptty(s)=L/s. which perfecFIy coincide with Eq27). .
HenceC(r)=1 and the system becomes completely ordered. We have introduced the annealed version of the Watts-
This is the asymptotic regime for a system of finite size. )
Let us summarize the results obtained in this section. We
have solved the dynamics of the voter model on an annealer |
small-world topology: in this way we have found that finite -
systems remain in a disordered state for a time proportiona
to their size, and then converge to the totally ordered con-
figuration; infinite systems instead reach a disordered final—
stationary state, with a correlation function that decays expo-S
nentially over a distancé,. For small values op the cor-
relation length¢, diverges ap~ Y2 -

0 bt '””(I)I,l o
IV. NUMERICAL RESULTS P
In order to validate the analytical results presented above
we have performed numerical simulations of the voter model ¢+ 15 3% s
both on the annealed and on the quenched Watts-Strogat. r
topology. FIG. 2. Main: Correlation functior€(r) in the quasistationary

Figure 1 reports, for the annealed case, the temporal b&gaie for a system of size=10° and p=0.025 (symbol3, com-
havior of the fractiom, of active bonds, i.e., the fraction of ,4req with the analytical prediction, E(6) (solid line). Only one
nearest neighbor sites with opposite valuesrofor p=0.1  realization of the noise is considered. The agreement is excellent.
and several values df. After an initial decrease, typical of |nget: The correlation length, obtained numerically from the de-
one-dimensional systems, a plateau sets in. The analyticghy of the correlation functio€(r) in the quasistationary state of
treatment predicts such a preasymptotic regime to last for agnnealed WS networks with=10° (circles, compared with the
interval proportional ta.. The inset of Fig. 1 confirms the analytical prediction, Eq(27) (solid line), and the same quantity
analytical finding. computed for the quenched WS netwdskjuares

016109-5



D. VILONE AND C. CASTELLANO PHYSICAL REVIEW E69, 016109 (2004

1@

andM is again conserved due to the vanishing of the coeffi-
cient on the right-hand sidé&q. (A4)]. The equation for the
correlation functionC(r) becomes

C(r)=—2(1+—pfi””>0(r)+2(f2y— pfi””)
o ¢ : . Pfo1
X 2, [Cr+i)+Clr=i)]+2—— > C(.

' 40)

Considering the continuum limit of E¢40) and looking for
the stationary state one obtains

C"—\2C+® =0, (41)
FIG. 3. Correlation functioi©(r) in the quasistationary state for

a quenched WS network of side=10°, p=0.025 (circles, and  Where now

p=0.2(squares Only one realization is considered. The solid lines (1= 20fp)[1+ 20+ D)/(L—2v—1)]

are exponential fits. 2_
L [fo,—(1—2vf, )/ (L-2v—1)]w,

>0 (42

Strogatz network as an approximation for the WS network
) L . and
with quenched topology. Hence it is interesting to compare
the results of the two cases to understand how well the ap- v
proximation captures the behavior of the original system. In w,=2 j2
Ref. [9] we have already performed a numerical investiga- =1
tion of the voter dynamics on the quenched WS topology. By, . . o
comparing the results reported in RES] and the theoretical #9@in the only solution for finitd. is the completely ordered
approach presented here, we see that the annealed appro¥idt® C(r)=1, while in the thermodynamic limitC(r)
mation correctly reproduces many of the important features- €XH—A(P)r]. The correlation length is
of the original system, i.e., the existence of a regime with a

disordered state before full order sets in and the linear de- £,=1\(p)=

pendence o of the temporal scale between them. Con- P \/1/F2V(p)—21/'
cerning the shape of the final correlation function in the case

of infinite quenched networks, Fig. 3 shows tl@¢r) is  whereF,, (p)=Ilim__.f,,(p/L,L—2v—1). In the limit of
exponential, another feature that is the same in the anneal&dnall p, by expanding Eq(A2), one finds

and the quenched cases. What the annealed approximation is 1

not able to capture is the quantitative dependence of the cor- &~ (2vp) 7% (45)
relation length onp. This is shown in the inset of Fig. 2,
where it is clear that, for sma, §p~p‘1 in the quenched
system[9], while &,~p~ 12

B v(v+1)(2v+1)

: 43

(44)

For what concerns the preasymptotic dynamics, the only for-
mal change in Eq(29) is thatf; is replaced byf,,, 1, but

in the anneal . .
the annealed case now the form ofy, is different,

V. EXTENSION TO »>1 Pfa,1

1+

pf2v+l> :

y=2 —2(f2V— 3 > cos(jk)]
In the previous sections we have considered an initial =1

one-dimensional lattice with each site connected only to (46)

its nearest neighbors. When the number of neighbors conzy anplying the Laplace transform one gets an equation for-
nected to each site ig>1, one can quite easily extend the mally equal to Eq.(36). For genericy we cannot perform
analytical calculations presented above. On physical groundé(pncmy the integral appearing in E436) and hence we
one expects the qualitative picture to remain the same. Als@snnot write down the analog of E€7). However, we can
formulas are very similar. Ir] general they involve, in the guess that the only change will be the replacement of the
place off, and fs, the functionsf,,(p/L,L—1-2v) and  taet0r 1/2/7, with some other factor independent &f
f2,+1(p/L,L—2—2v). The equation for the average total Therefore the existence of two regimes separated by a tem-
magnetization becomes poral scaler proportional toL will be preserved. Moreover,
on physical grounds, we expect the proportionality factor to
scale agp~ Y2 also for genericv. To confirm this, we have
gt 1t 2vfy(piLL-1-20)+(L-1 performed numerical simulations of a system with next-
nearest neighbor connectiofis=2). The results, presented
—2v)p/Lf,, 1(p/L,L—2-2v)]M, (39 in Fig. 4, confirm the expectation. The temporal scasepa-

016109-6



SOLUTION OF VOTER MODEL DYNAMICS ON.. ..

15 o o T AR

0.1F

le+05

- r AR ]
% 001% - ] .
= E [ i 3
[e | | ]
0.001F I ] .
TR ]
00001_ Lol L |I|)|||||| r 1l vl TR

’ 1 10 100 1000 10000 1e+05

t

FIG. 4. Main: Plot of the fraction of active bonds, for L
=3000, andp=0.05, p=0.025,p=0.01, andp=0.008(from top
to bottom) for the annealed case. Data are averaged over 100
different realizations. Inset: The duratianof the plateau in the
main part of the figurésymbolg plotted vsp. 7is evaluated as the
time at whichn, drops below one-tenth of the value during the
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and as 1p in the annealed one. This difference is due to the
fact that in the quenched case a walker has to diffuse over a
distance 13 before reaching a shortcut and deviating from
the one-dimensional behavior. This clearly requires a time
p~2. In the annealed case instead, the time needed to per-
form a long-range jump scales ag1in the voter model on
small-world topology the boundaries between ordered do-
mains perform a one-dimensional random walk for short
times. The behavior changes when the walkers make a long-
range jump. As mentioned above, this requires a tinpeirl/

the annealed network ang 2 in the quenched one. This
difference generates the different scaling of the correlation
length in the two types of topology.

Despite this discrepancy the voter model dynamics on
small-world networks is relatively insensitive to the
guenched or annealed nature of the topology. An interesting
guestion for future work is whether this insensitivity extends
also to other ordering processes on other complex networks.

APPENDIX

plateau. The straight line is a power-law regression with best-fit

exponent equal to 0.470.03.

In this appendix we give explicit formulas for the func-
tions f,, (p/L,L—2v—1) andf,,, (p/L,L—2v—2). Let

rating the quasistationary disordered state from the totallys consider

ordered configuration scales lap ~ 2. We can conclude that
the behavior of the voter model on the small-world topology
is qualitatively the same, regardless of the numbef con-
nections between neighbors.

VI. CONCLUSIONS

In this paper we have studied analytically the voter model

N N\ 4"(1 — 4)N-N
fR(a'N)EnE::o ( )M

n R+n (A1)

For a#0,

on the small-world topology. We have considered an an-
nealed version of the Watts-Strogatz network, where long-
range connections are not fixed, but chosen randomly at eadfhe derivation of Eq(A2) is easy:
time step. In this way each realization of the voter model
dynamics takes place in an effective average small-world 1 N
topology, and this allows the exact solution of the equation fr(a,N)=—g >,
for the correlation function of the system.

The dynamical behavior of the model on the annealed

R+n

N
N a 1
topology is very similar to the behavior on the quenched WS => ( o ) (1- a)N‘”f dsftn-1 4
0 o

network. Systems of finite size converge asymptotically to a n=0
totally ordered frozen state after an intermediate quasista- N

n=0

tionary stage, characterized by a finite correlation length. The _ f“dséa—lE <N> (1— a)N"g"
0 n

duration of this preasymptotic regime is proportional to the
number of sites. Hence systems of infinite size never reach
the ordered state and remain in a disordered stationary state _ adsstl(er 1—a)\,
with finite domain size. All these features are exactly the 0

same both on the annealed and on the quenched versions of

the network. A quantitative difference arises only in the de-Using Eq.(Al) it is easy to verify that
pendence of the correlation length on the probabilityp of

having a long-range connection. This discrepancy is not sur- Rfg(a,N—R)+ a(N—R)fr,1(a¢,N-R—-1)=1.

prising, since a similar disagreement between the annealed
and the quenched case has been noted previously for diffu-

(N)an+R(l—a)N_n 1

a

R

1
aR

fR(a,N)Z%f:dsé?1(s+1—a)N. (A2)

(A3)

(A4)

sion on Watts-Strogatz network®0] and the voter model is The vanishing of the coefficient on the right-hand side of
well known to be related with first passage properties ofEgs.(18) and(39) is obtained by settin®=2v, a=p/L and

random walkerg18]. In that case, the crossover time sepa-

N=L-1.

rating short and long time behavior of the mean number of Using Eq.(A2) the explicit formulas forf, and f5 are

distinct sites visited scales @8 2 in the quenched network

readily found to be
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_( )2 1 (1-p/L) (A-p/L)-? . 1 (1-e™?)
fz(p/L,L—3)—B iz oD Fz(p)—LI[nmfz(p/L,L—B)—B—T (A7)
(A5)
d
I 1 21-p/lL) (1-plL)? an
fo(p/lL,L—4)=| = -
(P <p) ['-_1 -2 (-3 ol oL L gyt 2, 20me®)
2(1—p/L)tt 3(p)—L[noo s(p/L,L— )—B—F+T,
- (AB)
(L=3)(L=2)(L-1)] (A8)

Finally the asymptotic forms of the functions fbr—o are ~ which go to 1/2 and 1/3, respectively, in the linpit-0.
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