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Dilatation symmetry of the Fokker-Planck equation and anomalous diffusion
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Based on the canonical formalism, the dilatation symmetry is implemented to the Fokker-Planck equation
for the Wigner distribution that describes atomic motion in an optical lattice. This reveals the symmetry
principle underlying the recent result obtained by Lutz@Phys. Rev. A67, 051402~R! ~2003!# on the connection
between anomalous transport in the optical lattice and Tsallis statistics in the high-energy regime. A condition
is derived for the general linear Fokker-Planck equation to admit a nonstationary solution distribution that
decays as a power law.
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Anomalous diffusion@1,2# has continuously attracted a
tention over the years. It can be observed, for example
turbulent flows@3#, charge transport in anomalous solids@4#,
dissolved micelles@5#, chaotic dynamics@6#, porous glasses
@7#, and subrecoil laser cooling@8#.

Anomalous diffusion, or superdiffusion more specifical
may be a signal of scale-free non-Gaussian statistics.
process described by the Le´vy distribution @9# is one such
example. In the one-dimensional symmetric case, the L´vy
distribution indexed byg may be defined through the cha
acteristic function of the stretched-exponential formLg(x)
5(1/2p)*dk exp(ikx2aukug), where gP(0,2) and a is a
positive constant. Excepting the Gaussian case (g→220),
Lg(x) decays as a power law:Lg(x);uxu212g. An impor-
tant point is the following. There exists a mathematical res
termed the Le´vy-Gnedenko generalized central limit theore
@10#, which states that, byN-fold convolution, a distribution
with divergent lower moments tends to one of the Le´vy
stable class$Lg(x)%g in the limit N→` if such a limit is
convergent. This is in contrast to the ordinary central lim
theorem for distributions with the finite second moments
normal Gaussian statistics. Now, assumeLg(x) to describe a
single jump in the probabilistic process in the unit time
terval. After N independent jumps, one hasLg

(N)(x)
5N21/gLg(x/N1/g). Identifying N with the total duration of
time t, one obtains the scaling of the distributionP(x,t)
[Lg

(N)(x)5t21/gP(x/t1/g), implying that spreading of the
distribution follows the law of superdiffusion;t1/g, which
should be compared with the case of normal diffusion;t1/2

@11#. @However, the width ofP(x,t) cannot be defined in
terms of the variance, since the second moment of the L´vy
distribution is divergent. This difficulty can be overcome
introducing the ‘‘q-expectation value.’’ See the discussio
after Eq.~6! below.#

In a recent paper@12#, Lutz has reexamined the proble
of anomalous transport of atoms in an optical lattice. He
considered the following generalized Fokker-Planck eq
tion for the marginal Wigner distribution of the momentum
p, of an atom in the optical potential

]W~p,t !

]t
52

]

]p
@K~p!W~p,t !#1

]

]p FD~p!
]W~p,t !

]p G . ~1!

Both the drift K and the diffusion coefficientD explicitly
depend on the momentum of the atom as follows:
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K~p!52
ap

11~p/pc!
2 , D~p!5D01

D1

11~p/pc!
2 . ~2!

Here,a and pc are the damping coefficient and the captu
momentum, respectively.D0 andD1 are constants related t
fluctuations caused by the photon processes. Equation~1!
can be derived, after spatial average, from the master e
tion for the full Wigner distribution constructed by quantu
dynamics of the atom-laser interaction~see Ref.@12#, and
references therein!. It has been noticed@12# that K and D
satisfy the relation

K~p!

D~p!
5

d

dp
ln eq@2b«~p!#, ~3!

where eq(s) is the ‘‘q-exponential function’’ defined by
eq(s)5„11(12q)s…1

1/(12q) with the notation (a)1

5max$0,a%, and

q511
2D0

apc
2 , b5

a

2~D01D1!
, «~p!5p2. ~4!

In the limit q→1, eq(s) converges to the ordinary expone
tial function es. From Eq.~3!, it follows that the exact sta-
tionary solution of Eq.~1! is given by@12#

Wq~p!5
1

Zq~b!
eq@2b«~p!# ~5!

with

Zq~b!5E dpeq@2b«~p!#, ~6!

which optimizes the Tsallis entropy@13,14#, Sq@W#5(1
2q)21@*dpWq(p)21#, under the constraints on normaliza
tion of W and the ‘‘q-expectation value’’ of the ‘‘energy’’
«(p) @15,16#: ^«&q[*dpWq(p)«(p)/*dp8Wq(p8). b is re-
lated to the Lagrange multiplier associated with t
q-expectation value of«(p) ~see Refs.@15,16# for more de-
tails!. From these discussions, we see that the entropic in
q, is determined by dynamics as in Eq.~4!.

It should be mentioned that sinceq is larger than unity,
the distribution in Eq.~5! decays as a power law. In fact,
has explicitly been shown@17# that if qP(5/3,3), many-time
©2004 The American Physical Society02-1
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convolution of the distribution of the form in Eq.~5! con-
verges to the Le´vy distribution with the indexg5(3
2q)/(q21), in accordance with the Le´vy-Gnedenko gener
alized central limit theorem.

Before proceeding, it may be worth mentioning that t
description of the Le´vy-type power-law distributions ha
been discussed in the literature based on at least two kind
generalizations of the ordinary Fokker-Planck equation. O
is the fractional generalization@18#, in which the equation
becomes nonlocal in contrast to Eq.~1!. The other is the
nonlinear generalization@19#. There is also the combinatio
of these two generalizations@20#.

Now, emergence of an asymptotically power-law distrib
tion from the linear Fokker-Planck equation is rather pecu
@21–23#. In the present case, the origin of the power law is
the behavior of the ratio in Eq.~3!, that is,

K~p!

D~p!
;

apc
2/D0

p
~7!

in the high-energy regime. One may wonder if there is
underlying principle for the emergence of this scale-free
ture. In what follows, we reveal such a principle by taki
advantage of the dilatation symmetry implemented to
linear Fokker-Planck equation. As a result, without assum
stationarity, we shall obtain the condition for the solutionW
to be asymptotically scale-free, which turns out to be m
general than Eq.~7!.

Our starting point is the variational principle for the k
netic equations@24–27#. The action and the Lagrangian de
sity, respectively, read

I @W,L#

5E E dt dp£~W,L,]W/]t,]L/]t,]W/]p,]L/]p!,

~8!

£5
1

2 S L
]W

]t
2

]L

]t
WD2K

]L

]t
W1D

]L

]p

]W

]p
, ~9!

whereL(p,t) is an auxiliary field. Performing integration b
parts and dropping the boundary terms, we see that Eq~8!
can also be expressed in the following form:I 5
2*dt^]L/]t1K]L/]p1](D]L/]p)/]p&, where ^A&
stands for the ordinary expectation value ofA: ^A&
[*dp A(p,t)W(p,t). Taking the variations of the actio
with respect toL and W, we obtain Eq.~1! and ]L/]t
1K]L/]p1](D]L/]p)/]p50, respectively.

Let us proceed to developing the canonical formalis
The canonical momenta conjugate toW andL are given by

PW5
]£

]~]W/]t !
5

1

2
L, ~10!

PL5
]£

]~]L/]t !
52

1

2
W, ~11!

respectively, leading to a pair of the constraints
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x15PW2
1

2
L'0, ~12!

x25PL1
1

2
W'0, ~13!

where ‘‘'’’ stands for weak equality@28#. Presence of these
constraints is simply due to the fact that the equations forW
and L are of the first order in time. The basic equal-tim
Poisson bracket relations are

$W~p,t !,PW~p8,t !%5d~p2p8!, ~14!

$L~p,t !,PL~p8,t !%5d~p2p8!. ~15!

The constraints in Eqs.~12! and~13! are of the second clas
in Dirac’s terminology @28#, since $x1(p,t),x2(p8,t)%5
2d(p2p8) which does not vanish weakly. Then, to elim
nate these second-class constraints, it is conventional to
troduce the Dirac bracket@28# defined by

$A~ t !,B~ t !%*

5$A~ t !,B~ t !%2 (
i , j 51

2 E E dp dp8$A~ t !,x i~p,t !%

3Ci j ~p,p8!$x j~p8,t !,B~ t !%, ~16!

whereA andB are functionals ofW andL. In this equation,
Ci j (p,p8) are quantities satisfying the equation

(k51
2 *dp9$x i(p,t),xk(p9,t)%Ck j(p9,p8)5d i j d(p2p8). In

the present case,Ci j (p,p8) are given as follows:
C11(p,p8)5C22(p,p8)50, C12(p,p8)52C21(p,p8)5d(p
2p8). Therefore, we obtain the basic relation

$W~p,t !,L~p8,t !%* 5d~p2p8!, ~17!

which implies thatW and L are canonically conjugate to
each other with respect to the Dirac bracket.

The Hamiltonian is given by

H5E dpS PW

]W

]t
1PL

]L

]t
2£D

5E dpS K
]L

]p
W2D

]L

]p

]W

]p D , ~18!

and is clearly a constant of motion. Using Eqs.~17! and~18!,
we can ascertain that time evolution ofW, that is,

]W~p,t !

]t
5$W~p,t !,H%* , ~19!

precisely reproduces the Fokker-Planck equation in Eq.~1!.
The equation forL is also described in a similar form.

Next, we consider the generator of the dilatation transf
mation

G5E dp p
]L

]p
W. ~20!
2-2
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This quantity gives rise to the following relations:

$G~ t !,W~p,t !%* 5
]

]p
@pW~p,t !#, ~21!

$G~ t !,L~p,t !%* 5p
]L~p,t !

]p
. ~22!

Therefore, the finite transformations are expressed as

exp$~ ln l!G~ t !%* W~p,t !exp$2~ ln l!G~ t !%*

5e(ln l)~]/]p!pW~p,t !5lW~lp,t !, ~23!

exp$~ ln l!G~ t !%* L~p,t !exp$2~ ln l!G~ t !%*

5e(ln l)p~]/]p!L~p,t !5L~lp,t !, ~24!

where l is a positive constant ande$A%* Be2$A%* [B
1$A,B%* 1(1/2!)$A,$A,B%* %* 1¯ . Normalization of W
is kept unchanged, whereas the auxiliary fieldL need not be
normalized. The Dirac bracket relation in Eq.~17! is pre-
served, as it should be, since the transformations are can
cal.

Now, we are at the position to discuss the dilatation sy
metry of the system. Such a symmetry is characterized by
equation

$G,H%* 50. ~25!

This invariance principle may tell us under what conditio
the Fokker-Planck equation in Eq.~1! admits a scale-free
solution. After some calculations using Eqs.~18!, ~21!, and
~22!, we obtain

$G,H%* 5E dp
]L

]p FKW2p
]K

]p
W2D

]W

]p

1p
]

]p S D
]W

]p D2D
]

]p S p
]W

]p D G . ~26!

Therefore, invariance under the dilatation transformat
gives rise to the condition

KW2p
]K

]p
W2D

]W

]p
1p

]

]p S D
]W

]p D2D
]

]p S p
]W

]p D50.

~27!

We note that hereW need not be stationary. We rewrite E
~27! as

]

]p
ln W5

1

p

]

]p S K

p D
]

]p S D

p2D . ~28!

In what follows, we impose the condition in Eq.~27! only
for large values of the momentum, since the dilatation sy
metry is expected to be exact only in such a regime. T
asymptotic power-law behavior ofW means that
01610
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W~p,t ! ;
a~ t !

ps ~29!

holds for large values ofp, wherea(t) is a positive function
of time and the exponents is assumed to be a positive con
stant independent of time and larger than unity for the s
of normalizability. Then,] ln W/]p;2s/p, and Eq. ~28!
gives the condition

K~p!

p
1s

D~p!

p2 ;c, ~30!

where c is a constant. Equation~30! is our main result.
Clearly, Eq.~7! can satisfy Eq.~30! in some circumstance
including Eq. ~2!, but the latter is more general than th
former. We again emphasize that Eq.~30! is free from the
assumption ofW to be stationary. To see the meaning ofc in
Eq. ~30!, it is necessary to consider the law of time evol
tion, i.e., the Fokker-Planck equation. Let us take Eq.~1!
without assuming Eq.~2!. Substituting Eq.~29! into Eq. ~1!
and using Eq.~30!, we find

da~ t !

dt
;c~s21!a~ t ! ~31!

or its solution

a~ t !;a~0!ec(s21)t. ~32!

Thus, we see thatc in Eq. ~30! is related to the asymptotic
factor in Eq.~29! as follows:

c;
1

s21
ln

a~ t !

a~0!
. ~33!

Equation~30! is an asymptotic equation that should ho
for large values ofp. In the specific case whenK andD are
given in Eq. ~2!, it yields the relation2apc

2/p21sD0 /p2

;c, which means thatc50 and accordingly the right-han
side contains only the terms that decay faster than 1p2.
From these, we conclude that in this specific case
asymptotic factora in Eq. ~29! is actually a constant and th
exponent is given bys5apc

2/D0@[2/(q21)#, which coin-
cides with that in Eq.~4!.

To summarize, we have developed a general metho
assess the asymptotic scale-free nature of the solution o
Fokker-Planck equation. We have seen, in the special c
when the distribution is stationary, how this method can
veal the symmetry principle underlying Lutz’s result on t
connection between anomalous transport in the optical lat
and Tsallis statistics in the high-energy regime. We have a
derived the condition in the general nonstationary case,
der which the solution distribution becomes scale-free.

The author would like to thank G. Kaniadakis, E. Lutz, A
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the Japan Society for the Promotion of Science.
2-3



ys

d

pl
e

,

ur.

,

SUMIYOSHI ABE PHYSICAL REVIEW E69, 016102 ~2004!
@1# J. P. Bouchaud and A. Georges, Phys. Rep.195, 127 ~1990!.
@2# D. ben-Avraham and S. Havlin,Diffusion and Reactions in

Fractals and Disordered Systems~Cambridge University
Press, Cambridge, 2000!.

@3# L. F. Richardson, Proc. R. Soc. London, Ser. A110, 709
~1926!.

@4# H. Sher and E. W. Montroll, Phys. Rev. B12, 2455~1975!.
@5# A. Ott, J. P. Bouchaud, D. Langevin, and W. Urbach, Ph

Rev. Lett.65, 2201~1990!.
@6# M. F. Shlesinger, G. M. Zaslavsky, and J. Klafter, Nature~Lon-

don! 363, 31 ~1993!.
@7# S. Stapf, R. Kimmich, and R.-O. Seitter, Phys. Rev. Lett.75,

2855 ~1995!.
@8# F. Bardou, J. P. Bouchaud, A. Aspect, and C. Cohen-Tannou
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@9# Lévy Flights and Related Topics in Physics, edited by M. F.
Shlesinger, G. M. Zaslavsky, and U. Frisch~Springer-Verlag,
Berlin, 1995!.

@10# B. V. Gnedenko and A. N. Kolmogorov,Limit Distributions for
Sums of Independent Random Variables~Addison-Wesley,
Cambridge, MA, 1954!.

@11# There are several ways of introducing time in the Le´vy pro-
cess, which are different from the present one. As an exam
see, M. F. Shlesinger, B. J. West, and J. Klafter, Phys. R
Lett. 58, 1100~1987!.

@12# E. Lutz, Phys. Rev. A67, 051402~R! ~2003!.
@13# C. Tsallis, J. Stat. Phys.52, 479 ~1988!.
01610
.

ji,

e,
v.

@14# S. Abe, Phys. Rev. E66, 046134~2002!.
@15# C. Tsallis, R. S. Mendes, and A. R. Plastino, Physica A261,

534 ~1998!.
@16# Nonextensive Statistical Mechanics and Its Applications, ed-

ited by S. Abe and Y. Okamoto~Springer-Verlag, Heidelberg
2001!.

@17# S. Abe and A. K. Rajagopal, J. Phys. A33, 8723~2000!.
@18# R. Metzler and J. Klafter, Phys. Rep.339, 1 ~2000!; B. J. West,

M. Bologna, and P. Grigolini,Physics of Fractal Operators
~Springer-Verlag, New York, 2003!.

@19# C. Tsallis and D. J. Bukman, Phys. Rev. E54, R2197~1996!;
C. Giordano, A. R. Plastino, M. Casas, and A. Plastino, E
Phys. J. B22, 361 ~2001!.

@20# C. Tsallis and E. K. Lenzi, Chem. Phys.284, 341~2002!; 287,
295~E! ~2003!; E. K. Lenzi, L. C. Malacarne, R. S. Mendes
and I. T. Pedron, Physica A319, 245 ~2003!.

@21# D. A. Stariolo, Phys. Lett. A185, 262 ~1994!.
@22# G. Kaniadakis and P. Quarati, Physica A237, 229 ~1997!.
@23# L. Borland, Phys. Lett. A245, 67 ~1998!.
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