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Dilatation symmetry of the Fokker-Planck equation and anomalous diffusion
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Based on the canonical formalism, the dilatation symmetry is implemented to the Fokker-Planck equation
for the Wigner distribution that describes atomic motion in an optical lattice. This reveals the symmetry
principle underlying the recent result obtained by LiRhys. Rev. 467, 051402R) (2003 ] on the connection
between anomalous transport in the optical lattice and Tsallis statistics in the high-energy regime. A condition
is derived for the general linear Fokker-Planck equation to admit a nonstationary solution distribution that
decays as a power law.
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Anomalous diffusion1,2] has continuously attracted at- ap D,
tention over the years. It can be observed, for example, in  K(p)=— T+ (pipg)?’ D(p)=Do+ T+ (plpo)?” 2
C C

turbulent flowq 3], charge transport in anomalous soljd$,
dissolved micelle$5], chaotic dynamic$6], porous glasses Here, o andp, are the damping coefficient and the capture
[7], and subrecail laser coolir@]. momentum, respectivelfD, andD; are constants related to
Anomalous diffusion, or superdiffusion more specifically, fjyctuations caused by the photon processes. Equéatipn
may be a signal of scale-free non-Gaussian statistics. Thean pe derived, after spatial average, from the master equa-
process described by the edistribution[9] is one such  tion for the full Wigner distribution constructed by quantum
example. In the one-dimensional symmetric case, the/Le gynamics of the atom-laser interacti¢see Ref[12], and

acteristic function of the stretched-exponential fokm(x)  gatisfy the relation

=(1/27) fdkexp(kx—alk|]’), where ye(0,2) anda is a

positive constant. Excepting the Gaussian cage:2—0), K(p)

L.(x) decays as a power laviz.(x)~|x| "1~ 7. An impor- 5oy~ golned —Be(p)], ©)
N2 EE . N . D(p) dp

tant point is the following. There exists a mathematical result

termed the Ley—Gnedenko generalized central limit theorem where eq(s) is the “g-exponential function” defined by

[10], which states that, bi{-fold convolution, a distribution eq(s):(1+(1—q)s)£’(1‘q) with the notation &),

with divergent lower moments tends to one of thevf.e =max0,a}, and

stable clasgL,(x)}, in the limit N—c if such a limit is

convergent. This is in contrast to the ordinary central limit 2Dg a )

theorem for distributions with the finite second moments in q=1+ ap?’ B= 2(Dg+Dy)’ e(p=p° (4

normal Gaussian statistics. Now, assumgx) to describe a ¢

Single Jump in the prObab”iStiC process in the unit time in- In the limit q— 1, eq(s) converges to the Ordinary exponen-
terval. After N independent jumps, one has{"(x)  tial function e®. From Eq.(3), it follows that the exact sta-
=N"YL,(x/N'). Identifying N with the total duration of tionary solution of Eq(1) is given by[12]

time(N'g, one ol?tains H1e scaling of the distributié?(x,t) .

=LYV (x)=t" ""P(x/t*7), implying that spreading of the

distribution follows the law of superdiffusion-t?, which Wo(p)= Z,(B) el —Be(p)] ®

should be compared with the case of normal diffusiett’

[11]. [However, the width ofP(x,t) cannot be defined in with

terms of the variance, since the second moment of fiwy Le

distribution is divergent. This difficulty can be overcome by

introducing the ‘g-expectation value.” See the discussion

after Eq.(6) below] ) o )
In a recent papef12], Lutz has reexamined the problem Which optimizes the Tsallis entropf13,14, S[W]=(1

of anomalous transport of atoms in an optical lattice. He has™ @) [/ dpW!(p) — 1], under the constraints on normaliza-

considered the following generalized Fokker-Planck equation of W and the ‘g-expectation value” of the “energy”

tion for the marginal Wigner distribution of the momentum, €(P) [15,16: (&)q=/dpWi(p)e(p)/fdp"Wi(p'). B s re-

p, of an atom in the optical potential lated to the Lagrange multiplier associated with the
g-expectation value of(p) (see Refs[15,16 for more de-
tails). From these discussions, we see that the entropic index,

- @ g, is determined by dynamics as in Ed).

It should be mentioned that sincgis larger than unity,

Both the drift K and the diffusion coefficienD explicitly  the distribution in Eq(5) decays as a power law. In fact, it

depend on the momentum of the atom as follows: has explicitly been showl7] that if q € (5/3,3), many-time

Zq(ﬁ):j dpel—Be(p)], (6)

IW(p,t) _

d 3 AW(p,t)
= KW+ oo D) —; =

p

D(p)
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convolution of the distribution of the form in Ed5) con- 1
verges to the [ey distribution with the indexy=(3 x1=Hw=5A~0, (12)
—q)/(q—1), in accordance with the \g-Gnedenko gener-
alized central limit theorem. 1
Before proceeding, it may be worth mentioning that the xo=II,+ EW%O, (13

description of the [ey-type power-law distributions has

been discussed in the literature based on at least two kinds gf, .o «_»
generalizations of the ordinary Fokker-Planck equation. On%onstraints
is the fractional generalizatiofl8], in which the equation

becomes nonlocal in contrast to E(.). The other is the

nonlinear generalizatiofLl9]. There is also the combination

stands for weak equality28]. Presence of these
is simply due to the fact that the equationdfor
and A are of the first order in time. The basic equal-time
Poisson bracket relations are

of these two generalizatiof&0]. {W(p,t),ITy(p’,t)}=8(p—p"), (14
Now, emergence of an asymptotically power-law distribu-
tion from the linear Fokker-Planck equation is rather peculiar {A(p,t),IT,(p",)}=8(p—p"). (15)

[21-23. In the present case, the origin of the power law is in

the behavior of the ratio in Eq3), that is, The constraints in Eq$12) and(13) are of the second class

5 in Dirac’s terminology [28], since {x1(p,t),x2(p’,t)}=

K(p) apg/Dg —8(p—p') which does not vanish weakly. Then, to elimi-
D(p)  p nate these second-class constraints, it is conventional to in-

troduce the Dirac brack¢28] defined by

in the high-energy regime. One may wonder if there is an

underlying principle for the emergence of this scale-free na-  {A(t),B(t)}*

ture. In what follows, we reveal such a principle by taking

advantage of the dilatation symmetry implemented to the

linear Fokker-Planck equation. As a result, without assuming

stationarity, we shall obtain the condition for the solutidh

to be asymptotically scale-free, which turns out to be more

()

2
={A(1),B(D)} - X f f dp dp'{A(t), xi(p.1)}
i,j=1

X Cij(p,p" )Mx;(p",1),B(1)}, (16)

general than Eq(7).

Our starting point is the variational principle for the ki-
netic equation§24—27. The action and the Lagrangian den-
sity, respectively, read

I[W,A]

=f f dt dpE(W,A,dW/at,aAlot,dWI ap,dAlap),

®)
W) -K

whereA (p,t) is an auxiliary field. Performing integration by
parts and dropping the boundary terms, we see thai@q.
can also be expressed in the following form:=

— [dt(dA/ot+KIAldp+a(DaAlap)ldp), where (A)
stands for the ordinary expectation value & (A)
=[dp A(p,t)W(p,t). Taking the variations of the action
with respect toA and W, we obtain Eq.(1) and dA/at
+KdAlap+d(DdAlap)ldp=0, respectively.

AW IA

ot ot

&AW Do'?A(}’W 9
a5t + 9p p C)

e=2(a
"2

Let us proceed to developing the canonical formalism.

The canonical momenta conjugate\band A are given by

11 ——(9£ —1A 10
W a(oWlat) 27 (10
11 __E 1W 11
AT 9(aAlat)y 2 (12)

respectively, leading to a pair of the constraints

whereA andB are functionals ofV and A. In this equation,
Cij(p,p’) are quantities satisfying the equations
S dp{xi(p.t) . xidp” DICK(P".p") =8 8(p—p’). In

the present case,Cjj(p,p’) are given as follows:

C11(p.p")=Cz2(p,p") =0, Cia(p,p")=—Ca(p.,p")=3(p
—p’). Therefore, we obtain the basic relation

{W(p,t),A(p".t)}*=8(p—p’), a7

which implies thatw and A are canonically conjugate to
each other with respect to the Dirac bracket.
The Hamiltonian is given by

JW N
H:fdp M+ —£
_fd K&AW dN oW 18
— ) PR G WP Gs ) 18

and is clearly a constant of motion. Using E¢fs7) and(18),
we can ascertain that time evolution \of, that is,

JW(p,t)

a

{W(p,t),H}*, (19

precisely reproduces the Fokker-Planck equation in(Eg.
The equation forA is also described in a similar form.

Next, we consider the generator of the dilatation transfor-
mation

G_fd aAW 20
= pD% : (20)
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This quantity gives rise to the following relations:

J

(UMY =SlPwWpDl @)
IA(p,t

(G Apo}=p P (22

Therefore, the finite transformations are expressed as

exp{(InN)G(t)}* W(p,t)exp[— (InN)G(t)}*

= eMMEPPW(p 1) = NW(AP,T), (23
exp{(INN)G(H}* A(p,bexp{— (INN)G(H)}*
=e(NIP@PI A (p )= A(Ap,t), (29

where \ is a positive constant ana&!A"Be A" =B
+{A,B}* + (1/2){A,{A,B}*}* +---. Normalization of W
is kept unchanged, whereas the auxiliary fialsheed not be
normalized. The Dirac bracket relation in EQ.7) is pre-

served, as it should be, since the transformations are canoni-

cal.

PHYSICAL REVIEW EG69, 016102 (2004

t
W(p.t) ~¥

(29
holds for large values gb, wherea(t) is a positive function

of time and the exponent is assumed to be a positive con-
stant independent of time and larger than unity for the sake
of normalizability. Then,dInW/dp~—o/p, and EQq. (28)
gives the condition

K(p) ~ D(p)

——+o—=-~C,

D 2 (30
where ¢ is a constant. Equatio30) is our main result.
Clearly, Eq.(7) can satisfy Eq(30) in some circumstances
including Eq. (2), but the latter is more general than the
former. We again emphasize that H0) is free from the
assumption ofV to be stationary. To see the meaningcdh
Eq. (30), it is necessary to consider the law of time evolu-
tion, i.e., the Fokker-Planck equation. Let us take EQ.
without assuming Eq(2). Substituting Eq(29) into Eq. (1)
and using Eq(30), we find

Now, we are at the position to discuss the dilatation sym- da(t) ~c(o—1)a(t) (32
metry of the system. Such a symmetry is characterized by the dt
equation
or its solution
{G,H}*=0. (25
a(t)~a(0)ese— 1), (32

This invariance principle may tell us under what conditions
the Fokker-Planck equation in E@l) admits a scale-free Thus, we see that in Eq. (30) is related to the asymptotic

solution. After some calculations using E¢48), (21), and
(22), we obtain

GH*—Jd oA KW aKW DaW

{G,H}* = Pop P WD
N a(DaW) Da IW "
pc?p ap ap p&p ' (26)

factor in Eq.(29) as follows:
(33

Equation(30) is an asymptotic equation that should hold
for large values op. In the specific case whet andD are
given in Eq.(2), it yields the relation— ap2/p?+ aDy/p?

Therefore, invariance under the dilatation transformatiori~C: Which means that=0 and accordingly the right-hand

gives rise to the condition

Kw aKW Daw+ J DaW) J [ dW\
PP Pa P P\ Pap )T
(27)
We note that her&V need not be stationary. We rewrite Eq.
(27) as
515!
9 1plp
%MW—B 9 /D" (28)
ap | p?

In what follows, we impose the condition in EQ7) only

side contains only the terms that decay faster that.1/
From these, we conclude that in this specific case the
asymptotic factom in Eq. (29) is actually a constant and the
exponent is given byr= api/Do[EZI(q—l)], which coin-
cides with that in Eq(4).

To summarize, we have developed a general method to
assess the asymptotic scale-free nature of the solution of the
Fokker-Planck equation. We have seen, in the special case
when the distribution is stationary, how this method can re-
veal the symmetry principle underlying Lutz’s result on the
connection between anomalous transport in the optical lattice
and Tsallis statistics in the high-energy regime. We have also
derived the condition in the general nonstationary case, un-
der which the solution distribution becomes scale-free.
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