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Critical dynamics of the kinetic Glauber-Ising model on hierarchical lattices
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The critical dynamics of the kinetic Glauber-Ising model is studied on a family of the diamond-type
hierarchical lattices with various branches. By carrying out the time-dependent real-space renormalization-
group transformation to the master equation of the systems considered, the dynamic exponent is calculated. We
find that the dynamic exponent depends on fractal dimengjaor the branch numben in a generator, and
that it increases with the increasedyfor m. We notice that for the case of=1 (one-dimensional spin chain,
di=1) our resultz=2 is the same as the exact result obtained by Glauber, and for the case 2f(the
simplest one in the diamond-type hierarchical latticks; 2) the exponernt=2.626 is higher than those of the
two-dimensional regular lattice and the triangular lattice.
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I. INTRODUCTION type hierarchicalDH) lattices.
In this paper, by performing the TDRG to the master

In the field of dynamical critical phenomena of spin sys-equation, we study the kinetic Glauber-Ising model on a fam-
tems, our main interest is in the study of the long time be-ly of the DH lattices. As a physical problem, the DH fractal
havior of the system which is most strongly affected by criti-is explicitly considered by Kaufman and Griffiths in the
cal fluctuations, and an important task is to investigate the 980s30-32. Comparing with other fractal lattices, the DH
scaling behavior of the relaxation timeof the system. Both |attices have the following two main features) they are
theory and experiment show that the relaxation time divergenuch more inhomogeneous, i.e., they have a much lower
near the critical point, i.e., there is the phenomenon calledymmetry than other fractals, so they can provide insights
critical slowing down. Based on conventional the¢y2],  nto other low-symmetry problems, such as random magnets,
the relation ofr with £ can be characterized as- &, where  gyrfaces, and the like, ar(t) the fractal contains sites with
¢ is the correlation length {— when temperature ap- ifferent coordination numbers, and the coordination number
proaches to its critical valj@ndz is the dynamic exponent. q of site i is associated with the generating stage of the

”The t|met r_zl?ﬁ?tlon of ;p}lnsto?lbg.th regu(magslatmn; fractal. The latter leads to the difficulty of solving the RG
ally symmetrig fatlices and fractal 1attices have been exten-o . o relations if we only choose the magnetic perturba-
sively investigated in the past three decades. Except the one-

dimensional kinetic Glauber-Ising model and the kineticﬁon ®(h,o) as the conventional choice, i.e.,

Gaussian model on regular latticE3,4], other models(or

other systemshave not been exactly solved so far, such as

two and three-dimensional kinetic Ising models, the kinetic d(t)=d(h,0)=1+ >, hy (Do, 1)
Potts model, theXY model, and the Heisenberg model, etc., T

or some spin models on other complex structures, e.g., frac-

tals, percolations, and complex netwoils-7], etc. Some

approximate methods such as the time-dependent renormathere h, (t) is the reduced magnetic field associated with
ization g[rf;ggDRG) [8-11], Fliihl—%emgerature seriesd.ex— the coordination numbeq; of sitei. In order to solve this
pansion[12,13, ¢ expansion[14,15, damage spreading ; :
[16,17], Monte Carlo simulation§18—20, and Monte Carlo prob'Iem, We assume that*i(t) ar.1d hqj(t) satisfy a certain ]
renormalization-grougRG) calculations 21,27, have been relation. Based on our assumption we get the RG recursion

used to study these systems. Among these methods, the tm{@_lation_s, and_ further calculate the dynamic exponent for the
dependent real-space RG transformation proposed pr lattices with different branch numbers. We find that the
Achiam and Kosterlit{8] is a very useful method, especially dynamic exponent increases with an increase of the number
for fractal systems, because of the self-similar characteristief the branch in a generator. We compare our results with
of fractals. In this aspect, although many works have beethose of previous studies for corresponding regular lattices.
done that contain Koch curvd®3,24], Sierpinski gaskets The contents of the remainder of the paper is as follows.
[25,26], Sierpinacuteski carpe{®7], and other fractal lat- In Sec. Il the formulation of the TDRG is introduced. Section
tices [28,29, to our knowledge no result of the kinetic Il gives the procedure of the TDRG on a simple DH lattice
Glauber-Ising model has been reported so far for diamondand calculates the dynamical exponent. The results of some

other DH lattices are given in Sec. IV. Section V is a brief

summary and discussion. Some of the more tedious calcula-

*Electronic address: kongxm@mail.gfnu.edu.cn tions of Sec. Ill are given in the Appendixes.
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Il. FORMULATION OF THE TDRG METHOD To study the critical slowing down, we limit that the sys-
tem relaxes to the equilibrium by an infinitely small pertur-
bation. In previous papers by other authors two forms of
fractal lattice following Achiam(8,9,23. Let o(= = 1) be perturbations are studied: one is magneticlike and another is

. ; : : : energylike. In this paper we only consider the case of the
the Ising spin variable located on thith site of the fractgl magneticlike perturbation from equilibrium. The deviation

(NN) spin interactions, the reduced Hamiltonian of the sys%ﬁ(gpgrg[] oc;ze\r/]vr?iir:hfi)rer;(p;is?rzc\j/l;r?;ntthztg Slgf Iﬁ]d%il;;?t er
tem is written as space under TDRG transformation.
In order to get the dynamic exponent, we perform the
_IBHZKE oiaj, (2)  time-dependent real-space RG transformation to the master
({0 equation(4), which consists of two steps. First, a real-space
. . RG transformation by rescaling the space length, ixe.,
where K=J/kgT denotes the interaction between two NN _,y/—py s carried out. Based on the structure features of
spinso; andaj, Jis the NN exchange integral of spifes  these fractals, we adopt the decimation RG transformation
is the Boltzmann constant, aridthe absolute temperature; [33 34, After an iteration of the RG transformation, some
the summation is taken over nearest neighbors. We assundges vanish and others are retained. This stage can be carried
that the system is in a constrained equilibrium state whenp, ¢ by the following procedure: using the operald, o)
time t<0. At time t=0 the constraint is removed and then =T11,8(u;— ) to multiply the master equation, whege is
the system relaxes towards the equilibrium via an interactiogne new spin variable anits are those sites retained after an
with a heat bath. Using(o,t) denotes the time-dependent jtaration of the RG transformation, and then a summation for

distribution  function of the spin configurationo g spinse is performed. This procedure can be described as
=(01,02,...,0i,...,0y). After infinite time the system will

approach the equilibrium state which is characterized by the

For convenience in Secs. Ill and IV, we first summarize
the TDRG method of the kinetic Glauber-Ising model on a

equilibrium distribution function, R[f(U)]:g T(w,0)f(a)=1(u), (6)
1 wheref (o) is a function of{ o;}. After the above process the
Pe(0) = Zexq—ﬂ H)., 3 master equatiotd) becomes
_ . " . d
whereZ=73  exp(—BH) is the partition function of the sys- —RIP(o.t)]=—-TR. Ld(ot 7
tem. To all appearances, one has limP(o,t)=P(0). Todt [Plo.0)] 2.: Pla)). 0

The dynamical model studied here was proposed by Glauber ) ) _
in which only single spin transition is allowed each unit time Using the expressiofil) it can be easily expressed as
[3]. Based on Glauber dynamics, the time-dependent distri-

bution functionP(o,t) satisfies the master equatif2g] ToaR{z hg (D aiPe(0) | =—2R
1

2 hg PV

d ®
Tog; P(a.)= =20 (1=p)Wi(o7) P(o 1) o _
i with PO=W,P.(c). From the expression&) and (3) we
_ can see thaP(" is independent of spim; . On the left-hand
=—E LiP(cr,t)=—2 Lid(o,t), (4 side, after the above transformatiéh(o) and hqi(t) be-
' ' come P/(u) and h,;i(t), respectively. Obviously, it is the

wherer, is a bare time scale characterizing the coupling to s5ame as the standard static RG transformation. In the invari-
heat bath,L;=(1—p;)W,(o;) is the Liouville operator, ant sgbspace of the Pparameter spaeh], the transforma-
®(o,t)=P(0,t)/Po(0) is the deviation from equilibrium, UON gives the recursion relations

p; is a spin-flip operator which is defined by K'=RK, h'=A-h, 9)
pif(oi,09,....07,....,0N)=1(01,05,...,—0},...,04), and

Wi (o) is the transition probability, from spio; to — o, of  whereK’ is a new interaction,

spino;. W;(0o;) is subject to the detailed balance condition ,

L,P.(c) =0 which ensures the ergodicity of the system. The hq1 hql

above relation cannot determine the form &¥(o;) h= hqz . h'=| h!

uniquely. Traditionally, it is chosen as the form :

Pe(_o'i) 12

Wi(oi) = Pulo)

—exd — Kffiz ail, (5) andA is a transf(ci))rmann matrlx._On thfe(i?ght-hand "Slde, Eq.
] (8) transformsP®/(o) andhq (t) into P'™(x) and hqi(t),

_ ) respectively, and gives the recursion relation
whereZ; denotes the summation for all nearest neighbors of

sitei. h"=Q-h, (10
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where

n

hql

”n_ n —
= hg |,

andQ is a transformation matrix as well.

The second step is the rescaling of the time. In this stage
the invariant form of the master equation is restored by pre- n=0 n=1 n=2
senting h” in terms of h’, and the time rescalingr
=b"Zr, is performed. The eigenvalues €A ! are the
time rescaling factor. Based on R¢R5], if the matricesA
and Q are commuted, one has a

)\max_

b (1) b

®max

where wmax aNd\ o are the largest eigenvalues of matrices
Q and A, respectively. Contrarily, the dynamic exponent is

given by —_—
A
max: bz, (12)
®Wmin
where o, is the smallest eigenvalues of matiy, if the
matricesA and ) are not commuted.
I1l. SIMPLE HIERARCHICAL LATTICE 3
n=

We apply the above method to a simple hierarchical lat-
tice which is a typical fractal and can be constructed by an FIG. 1. The procedure of the construction of a simple hierarchi-
iterative manner(see Fig. 1 The initiator is a two-point cal lattice.
lattice joined by a single bon@construction stage=0).
Then the initiator is replaced with the generator which con-WhereHce=K(o+ o) (01 +03), a denotes therth cell
tains two branches of two bondsi€1). Replacing every With sitesa, b, 1, and 2 in the latticésee Fig. 2 Then the
single bond on the generator itself, we get the second stagf\z‘qunlbrlum distribution function of the system is expressed
of the lattice. This procedure is infinitely repeated until an&s
infinite lattice is formed. The most basic geometrical feature

of fractals is the fractal dimensionality which is defined as Po(o)= Zl;[ exdK(od+ o) (ol+ad)], (15
InN
df:m- (13) n n-1
HereN is the total masgor the total volumgin the generator a a

and b the rescaling factor. To all appearances, for the DH *
lattice considered here, there Ns= mb, where the branch
number in a generator im=2 and the rescaling factor Is
=2 (it equals the number of bonds in one brandthus, one RG
gets the fractal dimensionality; = In(mb)/In b=2. Moreover, —
another parameter describing the geometrical feature is the
order of ramificationR, hereR=cc,

We focus on then-stage lattice, which can be treated as
the group of many basic cellgenerators According to the 2;
expression(2) the reduced Hamiltonian of this system can be b
gjlze?teed as the summation of the Hamiltonians of the basic FIG. 2. The procedure of the RG transformation for the @il

generator a belonging to ther-stage lattice. The coordination num-
bers of the cell arg,=2", q,=4, andq,=q,=2. After a step of
H= HE, (14)  the RG transformation the cell is transformed to the babdvith
' _on—1 r_
a g,=2"" " andq,=2.
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and the perturbation from equilibrium can be specifically
written as in the form R=

M

l_i[ O(pi— o)

hq,
2

opthy(of+a3)],

(16)

TB[ ;B ; S(ub—oBys(uf-of). (20

01:02 93:0p

h
9%a 4
P()=1+2 | s=poa+

By the decimation RG transformation to the equilibrium dis-
where the factors 1/2* and 1/2 in term$i,_og andhg oy tribution functionP(), we can easily get

come from the fact that sitesandb, respectively, are in the RP (o) =P.() 21)
2" cells and 2 cells. € e

Now let us carry out the RG transformation to the E&).  \yhereP/(y) is the equilibrium distribution function of the
for this lattice. First, we analyze the RG transformation of(n_ 1)-stage system,
the magnetic fieldh;’s. For the generatax in Fig. 2 we can
easily sea,=2", q,=4, andq,=g,=2. Under a step of the 1
RG transformation the lattice is transformed from thetage Pe(u)= ?ex;{ > (K" ubub)
to then—1 stage by tracing over the two internal spins 1 and k

2 of the generator, and the number of spins becdNiesom 7/ ig the corresponding partition function of the system,
N. Noting that in the above RG transformation the coordina-

. (22

tion numbers of the sitea and b have changed, i.e., they , 1+tanit K
becomeq,=2""1 andq;,=2, respectively. Thus we can ob- Z'=ZIAY, A=22m, (23

tain the RG transformation relations as the form

and the new paramet&’ satisfies the relation
hjn-1="f(han,hy,hy), hy=g(han,hy hy).

=tanif K, (24

!
tanl‘(7
Unfortunately, from the relations we cannot obtained the

fixed point of the RG transformation. We find thaf , hg , or K’ =Incosh X, which has been derived by Yang in the

andhg, (or hy,) cannot compose an invariant subspace. INyreyious articlg36]. Making use of the expressia0) we

order to overcome the difficulty, we assume that the magget the RG transformations &f,(o) %, and Py(o)o§, as
netic field hy on sitei is proportional to the coordination (see Appendix A ’ ’

numberq; , i.e.,hqi and hq,- satisfy

R[Pe(0)oqp]=Pe(m)ug (25
h _
9 q and
a RIPL(#)%] 22(1+tantf K)cosH K tanhK
g 0-11 = 7 ’
Using this assumption the perturbation from equilibri(i) ) A coshiK"(1-+tanhk")
can be reduced as X(p§+pi)PL(p), (26)

whereo'; denotesr{* or o . Substituting(25) and(26) into
(19) and noting the recursion relatig@4), one gets the left-
hand side of the master equati®)

D(t)=1+hy(t) D, (6+oi+ai+09), (18

and further we can calculate the dynamics exporehy

performing the TDRG to Eq.8). ERP(U't)Z ihz(t)z <1+ %)
The decimation RG transformation of the left-hand side of dt dt a 1+tanffK
Eq. (8) can be demonstrated as @, avp!
a8 X (USt BOPLUW). (27)
d d Based on the idea of the decimation RG transformation, it
gt Pl = ﬁR[Z hq (D) oiPe(0) can be also written as in the form
= Ehz(t)R Po(0) Y, (0840l +oi+a9)|. d d_, ht;; o hf;.; o
dt = —RP(0,1)= —PUw) > | s mat 5 ui
dt dt ~ 12 2
(19 4 hi()
(t
2
=— P! ot uf). 28
In this case the operat@® can be written as in the form dt 2 e(,u)% (g pp) 9
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Comparing expression27) with (28) one gets the recursion
relation ofh,(t) as

hj(t)=2(1+tanh ZK)hy(t). (29)

From the above we see that under the assumfi@j the
matrix A only contains a single element 2{kanh X).

tion matrix A of h,(t) is
N=2(1+tanh X*). (30

The right-hand side of the master equati@n is the RG
transformation of the summation of the terimsP"or; . For

this system the summatidiih, P! oy can be written as the
summation ofg, for all the cells, i.e.2hq PVo=2,G,,
where

q h
6=yt P07 TP 0P+ 03P
(31)
Noting thatPV=W,P(0) is independent of spiw;, then
we haveR[ o¢PM]=R[o5P{?]=0. Otherwise, by the cal-

culation we get the RG transformations &% o¢ and
PP o2 as follows(see Appendix B

2R[P P og]=P P usA"2""1(2 coshK)?",  (32)
2R[PY og]=P, P ugA % (2 costK)®, (33
where P’@=W,P.(x) and P/®P=W,P.(u). Therefore,

Egs.(31), (32), and(33) give the following result of the RG
transformation:

hy (t hg (t
P, (V) e b )p<b>ga
2n—1 o a 2 @ b
hrr (t) h/r (t)
Y%a ap/ a ap/
= o uiPL ——uiPl, (34)
where
, 2(2 coshk)?" , 2(2 coshK)*
hqa(t): Azn—l hqav hqb(t): A2 hqb-

(39

The relations can also be written as the matrix foitg),
where the matricek, h”, andQ are, respectively,

hqa ” h,(;a
h = h ’ h = h/! ’
Ap dp

and

PHYSICAL REVIEW E 69, 016101 (2004

1
Thus, at the critical point the eigenvalue of the transforma- > ZZ '
(b) ()

(a)

FIG. 3. Some examples of the basic cell of a family of the DH
lattices. (@) m=2; (b) m=4; (c) mis arbitrary.

1
D O
| (1+tantfK)? '
0 1
(1+tanif K)?

Noting 1+tanifK>1 and 2~ 1>2 (for n>2), we can eas-
ily see that at the critical point the largest eigenvalue of the
matrix  is

1

©Oma (1 tanf ke )2 (38

Thus, based on the expressiqig), (30), and(36), we de-
rive the dynamical exponent of the system as

_In2 In[(1+tanif K*)(1+tanhK*)?]
“inp nb AL

z

whereb=2 is the length rescaling factor associated with the
RG transformation. From Eq(24) we can obtainK*
=0.609. Therefore we get=2.626.

IV. RESULTS OF OTHER HIERARCHICAL LATTICES

In this section we give the results of the kinetic Glauber-
Ising model on somen-branch DH lattices, where is an
arbitrary natural number. These lattices and the simplest DH
lattice considered in Sec. Il are similar on generating
method. The only difference is here the generator contains
branches, not only two branches. The number of bonds in
one branch equals 2 as well. Examples of the basic cell of
these lattices are plotted in Fig. 3. According to the definition
(13) the fractal dimensionality of this family fractals o
=1+InmiIn 2, and the order of ramification B= o as well.
m=1 and m=2, respectively, correspond to the one-
dimensional lattice and the simplest DH lattice studied in the
above section. As in Sec. lll, the Hamiltonian of the
m-branch DH system can be expressed as in the form

—BH=K2>, _Zl ol (ol o), (39)

whereo{ (i=1,2,...m) are the spins of the internal sites, 1,
2,..., andm, of the cell « in the lattice, the summatioR ,
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TABLE I. The values oK at the critical point and the dynamical exponents values of the fractal dimensiah; and the branch number

m.

m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d¢ 1 2 2.585 3 3.322 3.585 3.807 4 4170 4322 4459 4585 4700 4.807 4.907
K* » 0.609 0361 0.261 0.206 0.170 0.145 0.126 0.112 0.101 0.091 0.084 0.077 0.072 0.067
z 2 2626 2769 2930 3.087 3235 3372 3500 3618 3.728 3.831 3.927 4.017 4.103 4.183

goes over all cells of the lattice. The equilibrium distribution

function of this system is written as

1 m
P(o)= ZH exp{ K;l oi(og+ap)

1
@max (1 tanif K)™ (40
For calculating the dynamical exponent we also need to
know the critical point of the systems. Carrying out the deci-
mation RG transformation t&.(o), one can obtain the re-

and the perturbation from equilibrium is expressed as in the ,rsion relation

form

hq, (1)

[e3
mn— 1 oat

g, (1 m
- ag+h2(t)i21cr;*).

d(t)=1+, (

tanh(K’/m)=tanif K (41)

or K'=mInycosh X [36]. By mean of Eqs(41), (12), (39),
and(40), the values oK at the critical point and the dynami-

Still consider then-stage lattice. With the same method as 4 exponents for any value aof can be calculated, in prin-
in Sec. lll, we can carry out the decimation RG transforma-cip|e_ The numerical results for some values rofor the

tion to Eq.(8). We should notice that in a cell of threstage
lattice the coordination numbers of the sieesindb areq,

fractal dimensiord; of the lattice are listed as in Table I. It is
clear that the dynamic exponenincreases with an increase

=m" andq,=2m, respectively, and after a step of the renor- o m (or fractal dimensiord;), which can be interpreted as

malization transformation they becongg=m""1

=2, respectively.
Using relation(17), from the left-hand side of Eq8) we
can geth,(t) =\hy(t) with

and gy

1
A=2m §+F(K,K’,m) , (39
(KK tanhK (1+tankf K)(m2 -1
(KK m)= (1+tanhK')coshK’ (1—tank K)™?
(39
For the right-hand side of E¢8), we have
R{Z (1= p)WiP(a,t)
h!/ (t) h” (t)
Ya ap/ Y ap’
:22 mnfl Mapa(a)+ Iubpa(b) '
where hy ()=A""""(2 costK)™h,, hy (1)

=A"?(2 coshK)*"hg . The two relations can be written as in

the matrix form(10), but here

1
o -1 0
| (1+tantfK)™ '
- ) .
(1+tantf K)™

Obviously, the largest eigenvalue of the matrix is

that the relaxation timer depends on the structure of the
system, i.e., the more complicated the structure of the system
is, the longer it takes to reach the equilibrium. We notice that
the result is different from that of the kinetic Gaussian
model, which gives the resutt=2 for the family of the DH
lattices[37].

V. SUMMARY AND DISCUSSION

The kinetic Glauber-Ising model has been investigated on

a family of the DH lattices with different, the branch num-

ber in a cell(or generator In order to study the relaxation of
the spins of these systems, we considered the magneticlike
perturbation which results in a small deviation from equilib-
rium. For overcoming the difficulty of inhomogeneity in the
structure of the lattices, it is assumed that the magnetic field
hqi in the magneticlike perturbation is proportional to the

coordination numbeq; of sitei. Using the assumption we
have performed the TDRG transformation to the master
equations, and have obtained the dynamic expozeot
these systems. We found that the dynamic exponent depends
on the branch numben (or various fractal dimensiods) in
a generator, i.e., it increases with an increasenof

We now compare our results with those of previous stud-
ies for regular lattices. For the lattice witm=1 (d;=d
=1), i.e., a one-dimensional chain, the res#t2 obtained
here is the same as that, an exact result, of GlaLBjeFor
the DH lattice with m=2 (d¢=d=2), our result isz
=2.626. For a two-dimensional regular lattice, the results
from other methods vary from= 1.4 to 2.7[38]. Some re-
sults are given as follows.

(@) z=2.7 by the block-site TDRG method in the first
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order cumulant expansion, on a two-dimensional regular latFoundation of Ministry of Education P.R.C. for Training
tice [8]. Ph.D. Students. X. M. Kong thanks Professor J. Y. Zhu, Dr.

(b) z=2.16 TDRG method in the second order cumulantS. Li, and Dr. J. X. Le for their valuable discussions.
approximation(triangular lattice [39].

_ (0) z=2.16 by Linke[40], z=2.13 by Williams[41], us- APPENDIX A: CALCULATING THE EXPRESSIONS
ing the Monte Carlo simulation. (25) AND (26)
(d) z=1.4 the RG Monte Carlo method by M21], and
z=2.126 by Bauscli42]. We calculateR[ Pc(0) g p] and R[P¢(0)o7,]. Noting

We notice that our result of the DH lattice with=2 is  the expression€l5) and(20), R[ P¢(o) o3 ] is calculated as
higher than those of the two-dimensional regular lattice offollows:
the triangular lattice, except=2.7 by the TDRG method in

the first order cumulant expansion. Noting the distinction of R[Pe(0) 0]

the d;=2 DH lattice with a self-similarity structuréscaling '

invariance and the two-dimensional regular lattice with 1

translational symmetry, thus the difference of values of the - 21;[ BZB BEﬁ 8(ug—02) o up— o)
dynamic exponent for the two kinds of lattices is reasonable. 7192 7a-%

In fact, in the limit of thermodynamics there are some sites XPy(0) o,

with infinite coordination numbers in the DH lattice, but the &

coordination numbers are all 4 in the two-dimensional regu- 1 8. B B B«
lar lattice or 6 in the triangular lattice. Moreover, the DH -7z 3 ﬁzﬁ exgK(oy+o5) (gt mp)luap
lattice even may be inserted into a three-dimensional space, 7172

not only a two-dimensional space. The result also shows that

the dynamic exponent depends on not only the dimension but :ZAN'M;DH exp(K' uluf)

also on the structure of the lattice. B

= tapPe(i), Al
ACKNOWLEDGMENTS HapPe(1) (A1)

This work was supported by the National Natural SciencevhereP/(x) andA have been given in expressiof22) and
Foundation of China under Grant No. 10175008 and by thé€23). R[P.(o)o4] can be calculated as

1
RPoo)of]=7 11 2 exdK(ud+uf)(of+od)lof

07,05
! By uBY(oB+ oP @ ay( a _ay], a
=5 11 | 2 expgK(ub+uf)(of+oB)]| 2 expK(ug+pb)(of+03)]of
B Uf,o'g Uf,og

=P/ (w)A texp —K' uluf) 22(pud+ uf) (14 plpp tantt K)cost K tanhK

P"(w)

=22(pd+ ul)(1+ ppi tanif K)cost K tanhK
(pat pp)(1+ pauy tantf Kycost K tan AcoshK’ (14 u2ug tanhK ')

_ 2%(1+tankf K)cosH K tanhK
~ AcoshK’(1+tanhK’)

(matmp)P' (). (A2)

In the last step of the above calculation we have considered that it equals zerowfiken g, and not zero whemy
=tp (Ramp=1).

APPENDIX B: CALCULATION OF THE EXPRESSIONS (32) AND (33)

Noting the form of the expressiof5) of the transition probabilityV;, thus P=W,P.(o) is independent of spiw; .
R[P@ 4] can be calculated as follows:

a
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> X Sub-obys(uf-of)

B B
01,02 03:0)

>

> S(ub-ab)ys(uf—of)
B B B B

01,02 03:0)

RIPE o= [
B

|

1
:Z:U«al;l

-]

B

2 oK (gt uf) (ol + )]
oy ,0°

1
XZO';‘];[ eXF[K(O'aﬁ-i- O'g)(af-i- 0'5)] ex;{ —Kag‘; o
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Ps

exp{ - K,ugz_ g
]

whereX; denotes the summation for all nearest neighbors ofisitéerefore, we have

I1

B(#Fa,y,...)

>

.

0'1 ,0'2

1
RIPPog]= Z Ha

1
- ZMaﬂ(¢H

a, ...

exd K(ub+uf)(of+0ob)]

) [Aexp(K’, ufuf)](2 coshk)®

where the product does not contain y,... (they denote 2! cells). Substituting the value o in the expressiori23) into
above expression we can easily get the re@}. In the same manner we can obtain the re€a®).
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