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Motivated by the phenomenologies of dynamic roughening of strings in random media and magnetohydro-
dynamics, we examine the universal properties of driven diffusive system with coupled fields. We demonstrate
that cross correlations between the fields lead to amplitude ratios and scaling exponents varying continuously
with the strength of these cross correlations. The implications of these results for experimentally relevant
systems are discussed.
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Recently significant advances have been made in classi- b
fying the physics of nonequilibrium systems at long time and ¢ TAsV(u-b)= pV2b+g. 2
length scales into universality classes. It has been shown that
standard universality classes in critical dynamics are quit¢jere \; are coupling constants, and w are the dissipation
robust to detailed-balance violating perturbatiphp Novel  coefficients, and andg are external stochastic forcing func-
features are found only for models with conserved order pations. These equations are simplified versions of the dynami-
rameter and spatially anisotropic noise correlations. In congg| equations governing the time evolution of the velocity
trast, truly nonequilibrium dynamic phenomena, whoseand the magnetic fielth in a magnetized fluidMHD). They
steady state cannot be described in terms of a Gibbsian digre constructed in the same spirit as Burgers equation from
tribution, are found to be rather sensitive to all kinds of per-tne Navier-Stokes equation. In the second part of the paper
turbations. Prominent examples are driven diffusive systemge will discuss the advection of a passive vediorwhere
[2] and diffusion-limited reaction$3]. For example, one A;=X,=0. The simplicity of such a model will allow us to
finds that for the Kardar-Parisi-Zharig§PZ) equation aniso- explore higher order correlation functions.
tropic perturbations are relevant @2 spatial dimensions,  For Langevin equations describing processes relaxing to-
leading to rich phenomena that include novel universalityyards a thermal equilibrium state the correlation functions
classes and the possibility of first-order phase transitions ang), the noise have to obey detailed balance conditions. In
multicritical behavior{4]. nonequilibrium models there are no such restrictions. As a
In this paper we study driven nonequilibrium processesyinimal requirement one might ask that the noise tefms
described by a set of dynamic variables whose dynamics iéndg in the Langevin equations obey the same symmetries

given in terms of coupled Langevin equations. Prominentys the correlation functions for the hydrodynamic fields.
examples include the dynamic roughening of strings movingsince u is a polar vector andb is an axial vector

in random medid5], sedimenting colloidal s_uspensiof&] (u(k,tyu;(—k,0)),(bi(k,t)b;(—k,0)) are real and even in
and crystals[7], and magnetohydrodynamid#HD) [8]. , but the cross-correlation functio@; (k,t)=(u;(k,t)b;
Our goal is to investigate and elucidate some of the dramatit;_k 0)) is imaginary and odd irk [éﬁ Then allssumihg

effects of symmetries of correlation functions on the Univer-. ussian distributed conserved noise with zero mean. the

sal propertl_es of such systems. We focus on quels .W'ﬂﬁoise correlation functions have to be of the following form
two vector fieldsu(x,t) andb(x,t), as hydrodynamic vari-

ables. The quantities of interest are the two autocorrelation <fi(k’t)fj(_k’o)>:2kiijﬁo)(k)5(t), (3)
functions, ~ Cfi(x,t)=(ui(x,t)u;(0,0)) and CH(xt)

=(bi(x,t)b;j(0,0)), and the cross-correlation function (gi(k,1)g;(—k,0)=2kik; D (k) &(1), (4)
Cif(x,t)=<ui(x,t)bj(0,0)>; indicesi,] refer to Cartesian co-

ordinates. All these quantities are tensors, whose symmetry (fi(k,t)gj(—k,0)>=2iDin(°)(k)5(t), (5)

properties depend on the model under consideration. We are
interested in systems with translational and rotational symwhere the noise varianc&’)(k) are even an®; (k) is
metry, and inversion symmetry such thais a polar and is  odd in k, respectively. Equation§3) and (4) are invariant
an axial vector. under inversion, rotation, and exchangei ofith j. We take

In the first part of the paper, we will consider a one-the noise cross correlation, E¢), to be invariant under
dimensional Burgers-like modg8] of magnetohydrodynam- inversion, but we allow it to break rotational invariance or

ics and itsd-dimensional generalizatigrl 0] symmetry with respect to an interchange of the Cartesian
indicesi andj.
u \ We are interested in the physics at long time and length
u . .
Mgy 22y 2= VY2041, 1) scales. Then all the cprrelatmn functio@éx,t) are expected
a2 2 to obey scaling relations of the form
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C(x,t) =X2XC(t/x?). (6) 2 Sy 1 D
— = —( —¢) , ©
D2 (2m)9 2d Dy,

Since we have two independent fieldsandb there could in

principle be two different roughness exponegts,. Due 10 5 for the one-loop correlation functions,
Galilean invariance, however, none of the nonlinearities in

the equations of motion renormalize, and one ggts xy 2 1S 1 D, 2 D,\?
=x=2-z[89] 2" 4 (pmdd—2+3 1+(D_) +2(D_) :
Symmetric cross correlation#f. both the fields are irrota- Dih (2m) X h h
tional, one can introduce two scalar fieldsind ¢ such that rz 1 1 D D_\2
u=Vh andb=V ¢; note that¢ is actually a pseudoscalar. i Sq _h_(_x) . (10
Then Egs.(1) and (2) become identical to a model of Ertas D42 2 (2m)9d=2+3x|Dy |Dy
and Kardar[5] describing the dynamic roughening of di- _ . _ _
rected lines Here S, is the surface of a-dimensional unit sphere. From
Eqgs.(10) we find
oh N\ \ 2
— %(Vh)2+ 72(V¢)2:vvzh+ T 7) (%) onl 2 iq] 10 (11)
Dy, Dy
de 5 whereN= (D /D})? defines an amplitude ratio. In the Eq.
Zi TAa(Vh) (V) =uVig+n,, (8  (11), the domain ofN is determined by the range of real

values forD , /Dy, starting from 1(for N=0). Thus for small

_ _ ; : N we can expand around 0 and look for solutions of the form
wheref=V 7, andg=V 5, . The cross-correlation function
" g=Vg D,/Dp=1+aN, such that forN=0 we recoverD,=D

D;® is now symmetric in the tensor indices and ¢ S ;
(h(k,0)¢(—k.0)) is imaginary and odd ik. If, in addition, (1€ result of Ref[5]). We obtaina=-2, i.e.,
we require rotational invariance, the cross-correlation func- D4/Dp=1-2N, (12)
tion would vanish. This is the case considered in RBf.
For a truly nonequilibrium model there is, however, noimplying that within this approximate calculatidd cannot
physical principle which would exclude a finite cross- exceed 1/2, i.e.D,<Dp/2. An important consequence of
correlation terma priori. Hence we allow for a nonzero this calculation is that the amplitude ratl, /Dy is no
(7n(k,0)74(—k,0)), which then explicitly breaks rotational longer fIX.ed to 1 but can vary contm_uously with the strength
invariance, and explore its consequences for the dynamicsOf the noise cross-correlation amplitu@®, . These results
We have determined the roughness exponerind the —are confirmed by a one-loop renormalization gréR) for
dynamic exponerz employing a lowest order self-consistent the strong coupling fixed point id=1. In addition, Eq(12)
mode_coup“ng scheme and a one-|oop dynamic renormalizas valid at the roughening transitions to lowest order id a
tion group calculation. Perturbation theory is formulated in=2+ € expansion.
terms of the response and correlation functions for the fields In contrast, the scaling exponentsandz are not affected
h and ¢. They are conveniently written in terms of self- by the presence of cross correlations. We get; and z
energies S(k,w) and generalized kinetic coefficients =3 in d=1 dimensions,y=—0(e)? andz=2+0(e)? at
D(k,w). For simplicity we assume that=; in MHD this  the roughening transitions in d=2+ € expansion, andy
would correspond to a system with magnetic Prandtl number 2—(d/2) andz= 3+ (d/6) for the strong coupling phase.
Pn=u/v=1. Then there is only one response function andNote that the values for the strong coupling exponents are
it can be written a:Ggi(k,w):iw—E(k,w). Then, corre- Obtained within Bhattacharjee[d1] small-y expansion, as
lation  functions are of the form, C,(k,w) described above. There is still an ongoing debate whether
=2D,(k,w)|G(k,w)|? for a=h,¢ and C,(k,w) those values for the exponents actually correspond to the
=2iD . (k,»)|G(k,w)|? for the cross-correlation function. KPZ strong coupling casesee Ref[12] for a discussion
In diagrammatic language lowest order mode-coupling We have verified our analytical resultsds=1 by numeri-
theory is equivalent to a self-consistent one loop theory. Th&al simulations of both a coupled lattice model with cross
ensuing coupled set of integral equations is compatible witi¢orrelations, and direct numerical simulations of the model

the scaling form Eq(6). In Fourier space the scaling form Eds. (1) and (2). Our numerical results explicitly demon-
reads for the self-energy (k,»)=Tk?c(w/k?), and for Strate the dependence of the amplitude ratio on the cross-

the  generalized kinetic  coefficients Dy(k,»)  correlation function amplitude. Details will be published
=Dk 92 (w/k?),  Dy(k,w)=Dyk ¢ 2d,(w/k?), elsewherd13]. _ _

D (k,w)=sgnk) Dk 92xd, (w/k?). To solve this set of Antisymmetric cross correlationsn the preceding para-
coupled integral equations we employ a smgaléxpansion graph we have restricted ourselves to irrotational fields. If
[11]. This requires matching of the self-energies and correlath® vector fieldsa=u,b have the forma=VXxV,+VS,,

tion functions atw=0. With the zero-frequency expressions With vectorsV, being cross correlated but scal&suncor-
3(k,0)=Tk?, Dy(k,0)=Dpk 29, D¢(k,0)=D¢k‘2X‘d, relatXed then the \iarlancléij .Sa'tISerSD”- .(k)=—Di.J- (—=k)

one finds for the one-loop self-energye takex;=\,=\3 ~ =Dji(—k)=—[Djj(k)]*. This is the antisymmetric part of
=\ without any loss of generalify the cross correlations. The noise strenbth is defined by
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DX(K)D(—k)=D2k% In the scaling limit, the self- Antisymmetric cross correlations stabilize the short-range
enjergy ]rleadsi(k,wx)=l“kzo(w/kz), the correlation func- ixed point with respect to perturbations by long-range noise
tions are CY(k,w)=kkDk 9 "2Xd, (w/k?), C°(k ) with correlationseck™Y,y>0. This can easily be seen; in
—kk.D kfdﬂxd ’(w/kz)' Jarl;d the a;tisymn%etric] pélrt of Presence of noise correlations sufficiently singular in the in-
thel ! cbross c%rrelatiém function reads C2 (k, ) frared limit, i.e., large enougly, the dynamic exponent is
US@) exactly given by [12,15 z,=(2+d/3)—(y/3). The short-

—_na —2x—z—d

_Dij(k)k, * ' ) range fixed point remains stable as longzs<z, which
Following methods used for the symmetric cross correla- . 24 (14 N)d/2. H lude that i

tions, we obtain the analogues of E¢8) and (10 givesy ( )d/2. Hence we conclude that in pres-

ence of antisymmetric cross-correlations long-range noise
must bemore singularfor the short-range noise fixed point
(13) to lose its stability or in other words, antisymmetric cross
correlations increases the stability of the short-range noise
fixed point with respect to perturbations from long-range
D B.\2 noises.
1+ (_b _X) We have seen that the amplitudes of the cross-correlation
Dy Dy function play a quite crucial role in determining the long
wavelength properties of the system. In our analysis we used
D, [D.\? only short-range noise, which is enough to elucidate the ba-
o T lo (14 sic points. However, a Langevin description of many systems
b b often requires a noise term with correlations becoming sin-
gular in the long wavelength limit, such as fully developed
Equations(13) and(14) give D, /D, =1 at the fixed point  MHD [8]. These systems are typically characterized by a set
for arbitrary values oN= (D, /D},)2. Hence no restrictions of anomalous exponents for higher order correlation func-

on N arises from that. In contrast to the effects of the sym-tions. Below we give an illustrative example to highlight the

metric cross correlations, the exponents now depend conting@ffects of symmetries on the anomalous scaling exponents of
ously onN. To leading order, we get higher order correlation functions in the passive vector limit

where the velocity fieldu is assumed to obey a Gaussian
N 4 d X distribution [instead of Eq.(1)] with a variance(u;(k,t)u;
poo =2 20 (15) ><(—k,0))=[_2D5(t)/(k2+ Mz)d’2+f’2][api_j+Q”] where
6 3 6 6 0<e=<2, which makes the model analytically tractable. As
before, the magnetic fielth is governed by Eq(2). The
These exponents presumably describe the rough phase abaedsorP;; is the transverse projection operat@;; is the
d>2, with the same caveats as ab@¥€]. With increasing longitudinal projection operator. The parameter 0 deter-
D the exponeny also grows(andz decreases Obviously ~ mines the extent of incompressibility of thefield. Thus in
this cannot happen indefinitely. We estimate the upper limithis problema appears as a tuning parameter in the multi-

of N in the following way: Note that the Eq¢l) and (2)  plicative noise, very much likdN and N appeared in our
along with the prescribed noise correlatiofi®., equiva- previous results. By following a field-theoretic dynamic
lently the dynamic generating functionare of conservation renormalization group procedure in conjunction with opera-
law form, i.e., they vanish ak—0. Thus there is no infor- tor product expansiofil6], we calculate the scaling expo-
mation of any infrared cutoff in the dynamic generatingnents of the structure functionsS,(r)=([#(x+r)
functional. Moreover, we know the solutions of the equations— 8(x)]?")~r¢n,b=V 6. Within a one-loop approximation
exactlyif we drop the nonlinear term&nd hence, the expo- we find

nents: y=1-d/2,z=2). Hence physically relevant quanti-

ties like the total kinetic and magnetic energies, ned

rz s 1( +Db
D2 (2m)d 2d Dy

2

rz 1 sy 1
+2

D2 4 (2m)d d—2+3x

rz 1 s 1
D2 2 (27)9d—2+3x

o
o

>
[

[STN)
|

(o] =X

1-«a

o
Jlu(k,tyu(—k,t)) andf(b(k,t)b(—k,t)}, remainfinite as {n=2n— — | a+t +2(n—=1)) =
: ; ) da+l—«a d d
the system size diverges, and are thus independent of the
system size. Since the nonlinear terms are of the conserva- 3(1-a)
tion law form, inclusion of thentannotbring a system size + did+2)| | (16)

dependence on the values of the total kinetic and magnetic

energies. However, i continues to increase it at This clearly demonstrates that even for the linear problem
some_ stage.thetse energl.es would start to depend .cln the S¥Rere is an continuous dependence of the scaling exponents
tem size which is unphysicfl4]. So we have to restriéi to  on the parametew, characterizing the extent to which the
values smaller than the maximum value for which these enge|ocity field is compressible. We expect this to hold also for
ergy integrals are just system size independent: This giveghe nonlinear problem, whose analysis is significantly more
N™®=(2/d)(d/2+1). Note that the limits olN andN im-  complicated.

pose consistency conditions on the amplitudes of the mea- Let us now review our results in the context of some
sured correlation functions but not on the bare noise correlgphysically relevant systems. Our results are relevant for a
tors. wide class of nonequilibrium systems. In MHD turbulence
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the cross-correlation functiofu;(k,t)b;(—k.t)) is, in gen- leaves the amplitude ratios unaffected, but leads to continu-
eral, nonzerd17), and as before, is odd and imaginarykin ~ Ously varying exponentsee Eq.(15)]. In both cases the

Similar calculations as here for MHD show that two dimen-continuous variation with the noise amplitude of the cross
sionless numbers, the magnetic Prandtl numheafd the correlations is not arbitrary but constrained by scaling rela-
ratio of the magnetic to the kinetic energy, are nonuniversaltions[see Eqs(12) and (15)], a feature, present also in our

they are functions of both the symmetric and antisymmetrid©Sults on the multiplicative noise driven linear system. We
part of the cross-correlation amplitudes. Another system o ave shown this using renormalization group methods and

: : . o “mode-coupling theory, confirmed by some preliminary simu-
:Bigﬁ‘?lg thHeeg;ytnr?emrI]CSdroof dand;:;tzgg dgoxr::ro:‘hfrr%ue%gni 2?elations[13]. Recently, Drossel and Kardgt9] have studied
’ y y 9 set of coupled Langevin equations describing the interplay

the transverse and longitudinal displacements with respecttg)

the mean position. Dynamic light scattering experiments can etween phase ordering dynamics in the bulk and roughen-
P -2y 9 g exp ing dynamics of the interface of binary films. They find a

be performed to investigate the effects of cross correlation imilar continuous variation of the dynamical exponent with

discussed here. (_)_ur_results are significant 3'50 f(_)r COUP'Gae coupling strength of the bulk and surface fields. Nonper-
SLZVSVE? gfl]nonequnlbrlum surfacd20], and sedimenting lat- turbative analysis or numerical simulations may be necessary
In su’mrﬁary we have demonstrated that cross correlatio 9 resolve th(_a questions about'the_rough phasg more §at|sfac-

between two, vector fields can drastically alter theirn[%my' _In the light of our results it mlgh_t also be interesting to
examine the effects of cross correlations on the multiscaling

asymptotic statics ar_1d dynamlps at Ion_g length and time roperties of MHD in experiments and/or numerical simula-
scales. The symmetric and antisymmetric part of the nmsﬁ ons

cross-correlation function have different effects. The sym-
metric part leaves the scaling exponents unaffected but yields One of the authorg¢A.B.) wishes to thank the Alexander
amplitude ratios of the various correlation functions, whichvon Humboldt Stiftung, Germany for financial support. We
continuously depend on the amplitude of the noise cross cothank S. Ramaswamy, J. K. Bhattacharjee, and S. M. Bhat-

relation [see Eg.(12)]. In contrast, the asymmetric part tacharjee for useful discussions.
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