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Statistical mechanics of stochastic neural networks: Relationship between the self-consistent
signal-to-noise analysis, Thouless-Anderson-Palmer equation, and replica symmetric
calculation approaches
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We study the statistical mechanical aspects of stochastic analog neural network models for associative
memory with correlation type learning. We take three approaches to derive the set of the order parameter
equations for investigating statistical properties of retrieval states: the self-consistent signal-to-noise analysis
(SCSNA), the Thouless-Anderson-Palm@AP) equation, and the replica symmetric calculation. On the basis
of the cavity method the SCSNA can be generalized to deal with stochastic networks. We establish the close
connection between the TAP equation and the SCSNA to elucidate the relationship between the Onsager
reaction term of the TAP equation and the output proportional term of the SCSNA that appear in the expres-
sions for the local fields.
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[. INTRODUCTION concept does not make sense, however, the above-mentioned
kind of statistical mechanical approaches cannot be applied.

Statistical mechanical methods have turned out to be powhNeural networks in the real world have asymmetric synaptic
erful for investigating neural network models of learning andconnections that are incompatible with the energy concept.

memory [1—6]. The existence of certain energy functions 10 cope with the difficulty in dealing with deterministic

; R, - ; nalog network models without the energy concept, Shiino
plays an essential rple for ggttmg |p5|ghts into behaviors 01za;nd Fukai 21,22 devised a powerful method of the SCSNA,
relevant macroscopic quantities, which are often called ord

) > hich is closely related to the cavity method. It has
parameters, by evaluating their minima based on the sadd een applied to study the equilibrium properties of the

poir!t method. In the case of associ_ative memory models thgsqciative memory of deterministic analog networks
repl_lcg method[?]_has been_extenswely employed to _study: F(Z.Jij%;), whereJ;; represents synaptic coupling that
statistical properties of.retneval statés,2,5,8_—12; Amit, may have certain types of asymmetric fof@t,23,24 and
Gutfreund, and Sompolinski2,8,9 have applied the mean  the transfer functiorf is allowed to have an arbitrary shape
field model of spin glass€¥,13] to the Hopfield model14]  [22_24. Variants of the above analog networks such as os-
of Ising spin networks to obtain the storage capacity, whichillator networks based on phase oscillator mod2§ have

is given as a critical loading rate corresponding to the onsedlso been successfully studied using the self-consistent
of a first kind phase transition, on the basis of evaluating th&ignal-to-noise analysi€SCSNA to show that memory re-
free energy. The statistical behavior of the Ising spin netcall accompanied by synchronization of oscillators is of rel-
works has alternatively been studied by means of theevance in associative memdr8-33.
Thouless-Anderson-Palme(TAP) equations [1,15-19, The SCSNA is a self-consistent method for properly
where the equilibrium states of the stochastic network can beenormalizing the so-called noise part due to interference of
described by deterministic equations. The transformation t@oncondensed patterns in the local field of a neuhpn
the deterministic system can potentially save computationat =j«iJ;jX;: To extract pure noise obeying a Gaussian dis-
times required for numerically investigating equilibrium tribution one decomposes the local field in such a way that
properties of the original stochastic systems of large size.

The concept of the TAP equation has recently been gaining > Jyx= &+ arzi+ Tscenmi (1)
popularity among researchers working with communication 17

theories from the viewpoint of engineering applicatip®8l. ~ \yhere ¢1m represents a signal part involving the condensed

TAP equations are known to be derived by either a cavity 1 _ -
method[1,19] or the Plefka methofiL6,18, The TAP equa- patterné;, Jarz; represents pure noise, and the last term,

. . . . r i represents the output proportional term, which are
tion for the Hopfield model was first der_lved b)_/ means of adgfgrhrlr/fi(}\edpself-consistentIyF.)Wﬁenpthe SCSNA is applied to
cavity method, but later turned out to be inconsistent with the; yaterministic analog network with a monotonic transfer
result based on other methods/—19. function, such as tanB() with A representing the analog
method as are shown in the papers of Shiino and Fulki
and of Kuhnet al. [11,12. Kuhn et al. studied stochastic
*Electronic address: mshiino@ap.titech.ac.jp analog networks with monotonic transfer functions using the
"Present address: Communication and Information Researcteplica calculations to deal with the deterministic limit.
Laboratory, Central Research Institute of Electric Power Industry, We can apply the SCSNA to TAP equations of stochastic
2-11-1 Iwado kita, Komae-shi, Tokyo 201-8511, Japan. networks, which can be viewed as defining the equilibrium
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equations of certain deterministic analog networks, to obtairthastic noise on the behavior of retrieval states of analog
the set of order parameter equations. The TAP equation afetworks as well as of Ising spin networks that have non-
the Ising spin network takes the following form wity (i monotonic transfer functions or transition probabilities are of

=1,... N) representing a thermal average of spii%) interest from the viewpoint of_ studying the possibility of the
[17,22: occurrence of the super-retrieval phase. The study of such
stochastic systems based on the assumption of4rghow-
xi=tanhg| > J;x;+Aoaa®x; |, (2)  ever, reveals that the super-retrieval state loses its stability
17 [36,37].
whereJ;; is assumed to be given by the standard Hebb learn- A stochastic neural network of analog type was also stud-
ing rule and ied previously for a coupled phase oscillator model using the

—Ba(l-q) SCSNA and the TAP equation approaches, and the relation-
USNG =~ —— (3)  ship between the output proportional term and the Onsager
1-p(1-q) reaction term in the stochastic local field was discugSdd

Shiino and Fukaj22] have shown that the application of on the basis of the assumption for the relation analogous to

the SCSNA to the above TAP equation leads to the samEd. (4). _

result as that of Amit, Geutfreund, and SompolingkGS). The aims of the present paper are twofold. Firstly, we

This procedure for obtaining the set of order parameter equéXtend in a systematic manner the SCSNA that was devised

tions sheds light on the importance of the so-called OnsagéPr deterministic analog networks so as to cover stochastic

reaction term that appears in the TAP equati(®: analog network models to aim at obtaining its wider appli-

xgﬁ,'QG)xi . The Onsager reaction term takes the form propor_cab|I|ty. Secondly we want to study the relationship between

tional to a term in the local field that would originate from the SCSNA, the TAP equation, and replica methods to get

; ) deep insights into the foundation of the SCSNA together
the presence of §elf-cogpl!ngs. The renormalized form of the;i, the treatment of the output proportional term as well as
local field (1) defined within the framework of the SCSNA 1o Onsager reaction term for stochastic analog networks. We
also contains a similar term that is given by the output proype particularly interested in investigating the problem of
portional term. In the case of the network of HQ), the  \yhether the relation analogous to Ed) holds in more gen-
output proportional ternt'$2mS)x; has been found to equal eral situations.

the minus of the Onsager reaction term, so that they exactly This paper is organized as follows. In Sec. Il we present a

N

cancel each othdi22]: stochastic analog neural network model for associative
memory together with a heuristic argument of the stochastic

F(ISING): _ )\(ISING) (4) . .. . .
SCSNA ONS - version of the original SCSNA and the TAP equations, which

will be confirmed in later sections. In Sec. Il we investigate

hTh.'S Ire_la;non ctart'l_ be (;otnh5|der?d tto give ":. statllstncal :jne’[he TAP equation of our model system by means of the cav-
chanical intérpretation of the output proportional term e"ty method, which requires two steps for determining the

rived from the SCSNA and also conversely the meaning 0#unctional form of the TAP equatiofpre-TAP equationand
the Onsager reaction term from the viewpoint of a kind ofyhe associated coefficient of the Onsager reaction term. In
signal-to-noise analysis. It will be worth noting that the dis-sec. v we systematically study the SCSNA of the stochastic
tribution of the local fields of neurons of the Ising spin net-yersion by making use of the results of Sec. Ill. We take
work h;=ZX;_1J;;X; turns out to be non-Gaussian, while the slightly different two approaches for this purpose. First, ap-
distribution of the TAP local fields defined b)hiTAP plying the deterministic version of the SCSNA to the pre-
=313, %+ A 8®x; , which appears in Eq2), is indeed  TAP equation that can be viewed as a deterministic analog
Gaussian owing to the above relatid) together with Eq.  network yielding the same statistical properties as the sto-
1) [22]. chastic network, we obtain the set of order parameter equa-
Effects of the output proportional term are pronounced infions describing the retrieval states to confirm the validity of
the case of deterministic analog networks with a nonmon{he treatment of Sec. II. The coefficient of the Onsager reac-
tonic transfer functiofi22—26,34,3%for which the existence 0N term is shown to be determined in the course of this
of energy functions is not ensured. Use of nonmontonid®rocedure to recover the result of Sec. IlI. In the second
transfer functions in associative memory neural networks ha@PProach the same set of order parameter equations are de-
been shown to improve the network performances such thEﬂ\(/aegrferggqnihti;ulrLIE)Ti(;\;VIESr%ern(gt:ircl:e;—r]éllaygﬂsusP%%rIgyss?:fn\/'co
the storage capacity is increased beyond the well know X . . .
value of 0.138 of the AGS under the correlation type Iearninqlgggr?oafglrm?#;rtyz?g dc?fséﬂgs%iSNA' Section VI is de-
rule [22—-26,34,3% In particular, when the degree of non- '
monotonicity of transfer functions is so large that the pre- || STOCHASTIC ANALOG NETWORK AND THE SCSNA
scription of the Maxwell rulg10,22 is needed within the
framework of the SCSNA, a phenomenon of super-retrieval A. Model
has been shown to occli22—-26, where variance of pure We consider a stochastic analog network of the form
noise vanishes and memory retrieval without errors is en-

sured _for an exten_sive number of patterns. In this case the %: _ Ip(xi) +2 Jpx i), i=1,...N+1
local field (1) consists only of a signal part and the output dt X Zi

proportional term and the latter plays a crucial role for the

occurrence of the super-retriev@2,25. Influences of sto- (fi()f(t"))y=2Da(t—t") & 5
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where ¢(x;) represents the potential and the synaptic coux;.;J;;X;. We then assume the following Ansatz that in the
pling J;; is assumed to be given by the standard Hebb learntargeN limit the stochastic local field can be split into three
ing rule terms:

P = £8m + Jar Mz + Tx.
I]_% Z gl/,LgfL (|7&]), \]iizo (6) ; ‘JIJXI gl m(” +\ar i Z|+FX|, (10)

where we suppose™, r™ | T, andz to be nonstochastic
quantities with respect to timie The first term on the right-
hand side(RHS) of Eq. (10) represents the signal part with
m("") representing the overlap for the condensed pa{tg]rh

with &* (w=1,...,p) representingp(=aN) random
memory patterns:

P& =38(E—1)+38(E+1). (7
1 1
— 1, 1
D(=0) represents the intensity of externally driven Lange- m(")—ﬁzl & Xi—ﬁgl &(xi) (11)
vin noise. The set of Langevin Eq&) yields the Fokker-
Planck equation of probability densify(t,xy, ... Xy+1): and the second term represents the so-called noise part fluc-
Vi1 i1 tuating over sites that obeys a Gaussian distribution with

wP__ s KA. +2 Jixi|pl+D 2 A mean 0 and variancer(". The third termI'x;, which re-

at =1 ox ﬁxl & Xi mains to be a stochastic variable, denotes the effective self-

(8) coupling one that arises from the renormalization of nonsig-
nal part of the local field within the framework of the
According to theH-theorem for the Fokker-Planck equation SCSNA. Noting that RHS of E¢10) involves only the vari-
the probability density is ensured to approach its equilib- able of sitei, we may rewrite Eq(5) to have a single body
rium density peq(t.X;,... Xn+1) for long times [38,39,  Langevin equation for variabbe ,
which reads
dXi 07¢(X ) 7o)

1 _q (Nt 1 at em+ JarMz +Txi+ (1), (12)
peqzmex%ﬁ[zl ¢(Xi)_§__z_ Jinin} ;

ij#j)

o) wherem, r, andI" have to be determined self-consistently in
the course of our analysis. The corresponding Fokker-Planck

whereZy, 1 is the partition function of the system. equation reads

We are interested in the equilibrium statistical behaviors P ~
of the order parameters relevant to associative memory re—ep(xi,t)=——[(~ @' (x)+ &M+ JarMz +T'x;)p]
trieval under the assumption of synaptic couplif@s When Jt IXi
the potentialg(x) is of double-well type and just a single a%p
pattern is consideredp&1), the system turns out to be +DK (13
equivalent to the mean field model of ferromagnets, wilkere
plays the role of temperature and the spontaneous symmet
breaking occurs below a certain critical valuelbés a result
of the onset of a pitchfork bifurcation in the limit of large T
[40—-43. In such a case the method of the nonlinear Fokker- — $(x) + (EEm+ Jar Mz )x, + = x2
Planck equationg40—47, which belong to the class of ' ! v 2
nonlinear master equatiof48], is known to be powerful for D
the analyses of equilibrium and nonequilibrium properties. In (14
the absence of the Langevin noide€0) Eq. (5) takes the
form of an analog neural network equation of associativel he average is then given by
memory, whose macroscopic equilibrium behavior for the
retrieval states can be analyzed by the method of the SCSNA (x)= f Ped X)) dX
[21,22 when one considers an extensive number of patterns: ! e v
p(=aN).

Phe equilibrium distribution is given by

Ped Xi) =C exp

(15

which we consider to represent the renormalized output
functionY(z) in the SCSNA framework. In other words, the
above equation may be viewed as resulting, via the SCSNA,
We study the stochastic system given by E%). from  from the equilibrium equation for a certain deterministic ana-

the viewpoint of applying the SCSNA. Assuming=aN log neural network model whose macroscopic statistical be-
and confining ourselves only to equilibrium or near equilib-havior is the same as that of the original stochastic network
rium of the system, we formally apply the basic schefbe (5). We can indeed expect the TAP equation to serve as such
of the SCSNA to the stochastic quantity of the local fieldan equilibrium equation, as is shown later.

B. SCSNA: Heuristic derivation

011904-3
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Then, using the SCSNA, we formally obtain the order- T
parameter equations fan”, g, rM UM andT\a — (X)) +yX + Exiz

[21,22: G(y):J x;C exp 5 dx (21
m<”)=<§f Dz(x>> ) (168  where we have introduced the coefficient of the Onsager re-
4 action termh gns, Which has to satisfy
q" :< J DZ<x>2> , (160 Nons= T (22
¢ Then noting Eq(17), we see that the analog of relation
(4) holds
,/ar(II)U(II):<f Dz Z(X>> } (160
¢ Nons= — T'Sdsna- (23
n alU We can apply the deterministic version of the SCSNA to the
I'scsna= 1—ym’ (16d  1ap equation(20). This is the very situation where we write
down Egs.(16) under Eq.(15).
q™
r(”)=m. (1698 I1l. TAP EQUATION

In this section we systematically derive the TAP equation
for our stochastic systertd) to justify Egs.(20), (21), and
(23), using the cavity methofil,19]. In view of the equilib-

Furthermore, it will be reasonable to assume that

f‘zFQQSNA, (17 rium density given by Eq(9) we consider anN+ 1)-body
system with coordinates<g,X,,...,Xy), whose Hamiltonian
since we may expect from E¢L0) that is given by
~ N 1

2 ()= &m"+ar Mz +T(x;) (18) HN*D=3 d(x)—5 > XX, (24)

J#1 =0 2ij{i%))
and we are applying the SCSNA prescriptidn to the RHS where
of Eq. (18).

From Eqs.(16) and(17) together with Eq(15), which we 12 e
expect to constitute the set of order parameter equations for Jij ZN,ZH &g, 1,j=0,..N. (25
the SCSNA of stochastic version, one can determine the stor-
age capacity as the marginal value of the storage rafior Then the Hamiltonian can be rewritten as
the existence of the retrieval solution with("? = 0. We will
confirm the validity of the above procedure based on the HN* D =HN + (x) —hoXo (26)
Ansatz(10) in later sections. )
It should be noted that in the deterministic lirBit+0 the ~ With
average in Eq(15) turns out to be given by the saddle point N
evaluation of the integral of Eq15), which reads hozgl JoiX; (27)
dPp(X; ~
—%l')ﬂLgilm(“)Jr VarMz+Tx;=0. (19 N 1
! HM=2 o) =5 2 X, (28)
i=1 iji#])

This equation is the same as what is obtained from the

application of the SCSNA to the deterministic analog net-where H™) represents the Hamiltonian of tid:body sub-
work equation that follows from settin=0 anddx;/dt  system with coordinates(,... xy). We set

=0 in Eq.(5).
It is also worth noting that we can propose the explicit 1
form of the TAP equation for our system that is consistent B= D (29)

with the analog of Eq(4). Noting Eq.(15) together with Eq.

(18), we suppose the TAP equation to be of the form
(xi)=G ; Jij (X)) + AGRX)) | (20

with

in what follows. We consider the probability density

[ELSSET

_ (N+1)
Xe BH Xm"‘dXN,

PN+1(XOrhO):m

(30

011904-4
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where Zy,, is the partition function of the system with

HN*D We can rewrite Eq(30) as (ho)Nijl Joi{Xj)n s (39
1 N
Pn+1(Xo0,ho) = Z 1 7n 5( h0_121 Jo;*j) N b
Sho)Dn= 2, Joidoi{ 86X )= pEr(Sm, om,
><e_,BH(N)e,B[hOXO_¢(X0)]dxl...dXN <( O) >N ij§=:1 Qi OJ< I J>N % §O§O< 12 >N
IN_ o pihgxo- d0x) 3 2=
=50~ 40a)py (), (31) =2 ((m)A)n=ry (40)
N+1 I
where
with
1 N
PN(hO): _f 5( ho_ Z JOJXJ) —BHM dx “‘dXN .
Zy =1 1 N
(32) u:ﬁ2 £, (41)
We have
Zni: 1 where sho=hy—(hgy)y, and we have noted that the off-
_ | —paNED : . X
N j e dxod Xy - -dxy diagonal terms in the sum over and » have only a negli-
N N gible contribution for sufficient larg®&l under the condition
that p= aN.
:f Zy(ho)Pn(hg)dhg It can also be assumed that in the latgdimit
=(Zo(ho))n (33 ~

where we have defined

Then we have the probability density b,
Zo(ho) = J e A6~ hoxo) g (34) P y y b
and( )y stands for the average over the probability density - 1 (ho—(hon)?
Pn(hg). Using Egs.(31) and(33), we obtain the average of Pn(ho)= —&Xp — >R (43
(Xg)n+1 in the (N+1)-body system as 27R
(xo>N+1=J XoPn+1(Xg,ho)dxedhg for sufficient largeN.
Using this we can compute the averages in kibody
A(h system,
_(Athon. @5
(Zo(ho))n
1
where <ZO(h0)>N:J' f dxodhg——
27R
A(hg)= f Xge ™ Plexo) ~hoxolgx, 36
( O) 0 0 ( ) (h0_<h0>N)2
xXexp — B(P(Xo) —hoxe) = —————
2R
<A(h0)>N:f A(hg)Pn(ho)dhg. (37 L
= | exg — B(d(Xg) — (hgdnXo) + — RBX2 | dXq,
We also obtain the average of local fidhg in the (N f F{ A(#(x0) = (hoo 2 F%o| A%
+1)-body system as (44)

(hoZo(ho))n

<hO>N+1:J' hoPn+1(Xg,hg)dXodhy= (Zo(ho)on

(o)) = [ Xoexst— ALt~ hopxs] + SRl

45
Sincehg in Eqg. (27) can be considered to be a sum of 49
independent random variables, it obeys a Gaussian distribu-

tion. Its mean and variance are given, respectively, by Furthermore, noting that
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dudxy

((ho— <ho>N)zo<ho>>N_f f

- RB ,
:fRonex -B ¢(Xo)_<ho>NX0_7xo

we have
(hoZo(ho))n={(ho—(ho)n)Zo(ho))n+ (ho)n(Zo(ho))n
=RB(A(No))n+ (No)n{Zo(ho))n - (47)

It follows from Eqgs.(35), (44), and(45) that
j Xo eXF{ _,3( B (Xo) = (No)nXo— 7)(%) }dxo
—xg) 1dx0

(48)

(Xo)nt1=

ex;{ _ﬁ( B(X0) —(ho)nXo—

It also follows from Eqs(38), (44), and(47) that

(ho)n+1=(No)n+RB(Xo)N-1- (49

Substituting this into Eq(48), one has

N
<X0>N+1:F(;1 ‘]0j<Xj>N+l_§ﬁ<XO>N+1> (50)

with
f Xo eXF{ _,3( $(Xo) —hXo— %XS) }dxo
F(h)= = ,
J exp[ —B( b(Xo) —hXo— ?xé) ]de
(51
where we have noted that
N
<hO>N+1:j§1 Joj{XjIn1- (52

Equation(50) takes the form of the TAP equation. How-

PHYSICAL REVIEW E 69, 011904 (2004

Rp (u—RBxo)?
Xp[ —B( $(x0) = (No)w¥o— —-x5 | - TO
dxo=RB(A(ho)), (46)

|
we consider the Hamiltonian of the network that is obtained
by adding a new patterf\O (i=1, ... N) independent o/
(i=1,... N, u=1,...p) to the above-mentioned system,

N

1 N
—_ 0.0 _
HpH—Hp—mimZ#“ EPElxix=Hy— 5 mi+ o5 2 X2
(54)
with
1 N
mO:NEi £ . (55)

We define the probability density of the, that is consid-
ered as the random variable in tpe-1 pattern system as

Pp+1(mp)

1 18,
:Zpﬂf 5(mO_NEi §ixi)

1 1g
XefﬁHp_,_lXm...dXN:Z—f (S( mo_NE gioxi)
p+1 !

xex;{—ﬂ(H Nm0+ E x)

Xm' "dXN .

(56)

Noting that (1/2\I)xi2 can be neglected in comparison
with ¢(x;) for largeN, we have

4 2
Pp.1(mo) = 5 ——eM2ANMP (mp). (57)

p+1

ever, we still have to determiri@ in Eq. (50). For this rea-
son, to be precise we refer to E§O) as the pre-TAP equa-

tion in the present paper. For the purpose of obtaifnge
proceed to the second step of the cavity method.

Letting the Hamiltonian of the network with stored ran-
dom patterns be

To obtain the probability density?,(mg) in the p pattern
system we note

< m0> p— 0 (59)

P
2 §f‘§,ﬂ)xixj (53

"

Z| -

N 1
=2 $(x)- 5 (
i=1 iji#j)

and compute the variance of,

011904-6
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N N p
1 1
(M3)p=((8Mo)2)p=12 2 E6](%id%;)p (hohn=2 17 2 E6€/(xj)n
N4 =1Ng=1
1 1 P
=1z 2 ((D0)2)p=1z 20 (()p=(xi)p) =éo(myt 3 g(m,)n. (65
1 We assume here that the pattern overlap order parameter
= (Gs—a), (59 corresponding to the condensed pattern takes a finite value
of O(1) in the limit N— oo:
where we have neglected the contribution from the off- (m)y—m (66)

diagonal terms in the summation and introduced
whereas for the pattern overlaps for noncondensed patterns

1 18
Q3:N2i (x%)p. q:NZi (x1)p- (60 (M =0 (67)

&

Hence the sunm, of independent random variables in the The second term of the last line of E@S) representing

pattern system obeys the Gaussian distribution the noise part of the local field is a sum of independent
' (6D distributed according to a Gaussian distribution, when site 0

2 random variables. Accordingly it should obey a Gaussian
P N Nmy
M7 N 2m(ge- & " 2000 _
runs over the whole network, and also that the site average

distribution. This implies that the size of the noise part is
Using Eq.(57) together with Eq(61), one obtains the vari- can be replaced by the average over the Gaussian distribution

ance ofmg in the p+1 pattern system as well as over that of the condensed pattern. It follows that
4s—q C
SMe)?) py 1= . 62 < >, &(m >N> =0, (68)
<( 0) >p+l N[l_B(qa_q)] ( ) re=p) 13 aito

Substituting this into Eq(40) one has P 2
22 §g<mu>N = 0-27 (69)
_ M= it
a(qz—q) 63) site

1-pB(az—q)’ where( )i represents the site average that is given by taking

i i ) average with respect to random patterng/
quatlon(SO) together with Eq(63) constitutes the TAP (i=0,... N, u=2,...p). The expression for the constant
equation. The fact that the TAP equation obtained here is thg2 il pe given in the course of the analysis. Evaluation of

same as the one proposed in Sec. Il will be shown in the nexfe yajue fora? at this stage of the analysis, however, can be

R=

section. straightforwardly made and presented in Appendix A.
Then in the largeN limit we can rewrite Eq(64) in terms
IV. SCSNA OF THE STOCHASTIC VERSION: of a Gaussian random varialitewith mean O and variance
SYSTEMATIC DERIVATION o? as
We develop in a systematic manner the SCSNA that be- (xq)=F(£5m+2) (70

comes applicable to the stochastic netw@k to show the

validity of the anzatz of Sec. Il. We make use of the cavitywhere we have introduced=32F_,£5(m, )y and (Xo)n+1
method to lay its foundation and pay attention to the first step=(Xo). The overlapm can be rewritten as

of the previous section in deriving the TAP equation. To this

2
end, we pick up an arbitrary elemegtamongN+ 1 ones of _ 1f TN —Z
the network to view it ax, and to make an appropriate m={ & | Fl&m+2) Np . ex 207 dz L
renumbering of the variables for applying the basic equation )
(48) to the stochastic networts). E<§1F>~ N (71)
Confining ourselves only to equilibrium states of the net- 0" 724

work, we can repeat the argument of the previous sectiO(M1ere represents average over the condensed m
leading to Eq.(48). Then using Eqs(48) and(51) we note <>§é P 1 9 ] pa&ﬁe
that the averagéxo)y. 1 is given by and( >’2’§é average ovef; and the Gaussian random variable

Z. When we note that the pre-TAP equati@@®) holds with

(Xo)n+1=F({ho)n). (64)  respect to equilibrium states with subscript 0 capable of rep-

resenting every site, we can view such an equation as defin-
Then the local fieldhg)y is rewritten, in terms of the ing a deterministic analog network equation corresponding to
pattern overlaps defined by E@ll), as the stochastic networts):
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N+1
Ui:F(E JijUj_ﬁ,BUi), i=1,...N+1 (72
J#i

with u; representingx; )y 1. Note that the coefficient of the

Onsager reaction terigys is expressed as

Mons= —RB.

PHYSICAL REVIEW E 69, 011904 (2004

U= B((X5)ez.c~ {(Xo)egz.c) = B(ds—0).  (81)
Equations(74) and (76) give R as a function o,

R MY 82

T BIU); (82

We will apply the SCSNA to the above analog network.\yhich is necessary to determine the functional fd¥raf the
For the moment we can proceed without knowing the exTap equation. Substituting E¢81) into Eq. (82) we recover
plicit expression(63) for R. Then we have the renormalized Eq.(63), which has previously been obtained for the Onsager
output equation that is obtained as a result of the renormalsaction term coefficient-RA of the TAP equation by

izing noise part of the local fielf21,22,

Ui =F[&'m+2+ (T scona RB)U], (73

whereZ represents a Gaussian random variable and the con-
stantl’scgna represents the coefficient of the output propor-

means of the second step of the cavity method. The TAP
equation

(xi)=F ; Jij<Xj>_%<Xi> , i=1,..N

tional term characteristic to the SCSNA, which is determined

just below.
Comparing with Eq(70), we obtain an important result

I'scona=RB, (74

which verifies Eq.(23) and simplifies the matter consider-
ably, together witltZ=7Z,. Relevant quantities necessary for

determining retrieval stated, I'scsna, 02, andq are given
within the framework of the SCSNA as follow21,22:

dF
U= < E>2§é, (75)
U
FSCSNA:f__Ua (76)
aq
02:(1——U)2’ (77)
a=(F?)z. (78)

Here we note that use of the same notatipas in Eg.
(60) is made for Eq(78). Differentiating F(h) in Eq. (51)
with respect tch yields

dF ) )
% _B(<X0>eq_ <X0>eq)! (79)

where( )4 denotes the “thermal average” given by

dxo

R
J g(x&exp[ —B( b(Xo) —hxo— fx%)

B
f exr{ —E( B(Xo)—hxo— fxé)

Then we have from Eqg75) and(60)

<9(Xo)>eq:

dxo

(80

with F given by Eq.(51) also turns out to recover the one
given by Eq.(20) with Eq. (23) we have proposed in Sec. Il
by means of a heuristic argument.
Noting o®>=ar we see that Eqs(51), (71), (75), (77),
(78), and(82) constitute the set of order parameter equations
for our stochastic systertb), giving the framework of the
SCSNA of the stochastic version, which ensures the validity
of the result described in Sec. Il under the correspondence
m=m, q"=q, U=u, and T
=TI"gcsna- IN particular, we note that the crucial ansétp)
in the heuristic derivation of the SCSNA has been justified.
We can take an alternative approach to obtain the above
set of order parameter equations without using the determin-
istic version of the SCSNA by assuming, this time, the TAP
equation with the coefficient of the Onsager reaction term

given in terms ofR which is a function ofq and g3 [Eq.
(63)]. We note in this case that noise variancein Eq. (77)

can be given by a direct evaluation as shown in Appendix A
leading to Eq(77) together with Eqs(75) and(78). We have
Eq. (71) as before. Since combining Eqé3) and(81) gives

the expressiof82) for R, which in turn determines the func-

tion F in Eq. (51), we conclude our alternative procedure for
obtaining the stochastic version of the SCSNA.

P =y

V. REPLICA SYMMETRIC CALCULATION

The result obtained in the preceding section can be con-
firmed by the standard method of statistical mechanics. In
other words, the set of order parameter equations are recov-
ered by the method of replica symmetric calculatj@Q—

12], with which we are concerned in this section.

The partition function in Eq(9) reads

z=j IT dx exr{—,@(z (¢(xi)+%axi2)

-3 (3]

(83
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The standard replica symmetric calculation can be applied to With setting
this partition function to obtain the free energy. A brief deri-
vation is given in Appendix B. The resultant free energy ~ 4=0,, U=BQ, [I'scsna=2aBR—a, r=2r,

takes the form (95)
B B(Q—dy) ) together with
f:§m2+%[ln(l_ﬂQ)+1_—B(gl +a’Bz(r2Q+qu)

Y(2)=(x), (96)

1 z° .
_ _f ex;{ _ —)In[Tr exp(B\2ar hxz+ afZRY Egs. (85), (94), (89), (87), and(86) constitute the order pa-
V2w 2 rameter equations that recover those given by the SCSNA of
Secs. Il and IV. A similar set of order parameter equations

o was also obtained by Kuhet al. [11,12] using the replica
,8¢(x)+,8§xm)]dz> ' (84) calculation for a different type of stochastic analog network
with multiplicative noise.
Differentiatingf with respect tom, g,, Q, R, r5 yields a Our present result shows that the SCSNA is on the same
set of order parameter equations, level of analysis as the replica symmetric calculation, as far
as a stochastic system satisfies the energy condition.
ﬁ=0: m=<J ng(x>> , (85
am ¢ VI. SUMMARY AND DISCUSSION
of 1 We have studied a stochastic analog neural network
—=0: ———=—+BR=0, (86) model for associative memory to elucidate statistical me-
99, 2(1-8Q) chanical aspects of the mean field model of a certain type of
random systems to which the present model with random
ﬂ —0: orl= 9.-Q 87) patterns stored belongs. We have taken three approaches, i.e.,
aQ ’ 2 (1-BQ)%’ TAP equation, SCSNA, and replica symmetric calculation

approaches to compare them and obtained the same set of the
of ) order parameter equations for investigating statistical prop-
SRO @i fDZ<X> ' (88 erties of retrieval states.
The main results are the followingl) We have obtained
1 the TAP equation for the stochastic analog networks satisfy-
<x)>, (89) ing the energy condition using the cavity method2) We
V2ar, have formulated the SCSNA of the stochastic version to ob-
tain the set of order parameter equations for memory re-
where trieval states(3) We have established the connection be-
tween the Onsager reaction term in the TAP equation and the
(9(x))= Trg(x)exd S| (90)  output proportional term in the local field of the SCSNA.
TrexdS] The advantage of conducting the comparative study is to
get deep insights into the structure of the TAP equation and
S=pB\2ar,xz+ aB?R¥— Bp(x)+Béxm,  (91) its relation to the SCSNA. Indeed, the SCSNA method,
which was originally developed for deterministic analog net-
1 72 works has been extended so as to be applicable to the case of
f Dz---=f dz——=ex ——)--- stochastic networks and the relationship between the TAP
V2w 2 equation and the SCSNA has been made clear. The key idea
) o ) ] bridging over the two approaches is the concept of cavity
Note that differentiatingx) with respect toy2arjz yields  method together with the treatment of the Onsager reaction
term. To be more specific, we have employed the cavity
d(x) _ 2N N2 method for deriving the pre-TAP equation and applied the
mdz_ﬁux )= 0% SCSNA to such a deterministic equation satisfied by thermal
average to obtain the set of the order parameter equations.
Accordingly, Eq.(89) can be rewritten as This process constitutes the stochastic version of the SCSNA
and reveals an important relation as shown by Eds.or
) (23), that is, the Onsager reaction term that appears in the
Q=0a:~ J DZ(x)%). (93)  TAP equation and the output proportional term in the local
field that occurs within the framework of the SCSNA cancel
Then one has each other. As a result of this, the Onsager reaction term
turns out to be explicitly determined without resorting to the
_ _ 2 second step that is usually used in the cavity approach. On
2=01~ Q= <j Dz(x) > (94 the other hand, when we first assume the full knowledge of

arh

Jf <
=0: BQ= Dzz

92
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the TAP equation with the Onsager reaction term given bywhere noting Eq(67) we have performed the Taylor expan-
Eqg. (63), we have shown that it is not necessary to use theion and defined
deterministic version of the SCSNA for deriving the stochas-
tic version of the SCSNA.

Our systematic approach in Sec. IV of the present paper to (hj)(N”_)l— > EEN(XIIN-1- (A4)
develop the stochastic version of the SCSNA is based on the N&Z) i7u
model equatiori5) where the existence of an energy function
is assumed for simplicity. Extending present analysis to other gypstituting Eq(A3) into Eq. (A1) leads to
network models with the energy concept will be straightfor-
ward. Our recent study indeed shows that the SCSNA, TAP,
and replica approaches are consistent with each other also for (M n= 2 gﬂF(<h >(M)
an oscillator neural network based on the phase oscillator wINT
model that has an energy function, and the relatidnis
proven[49]. The outline of the stochastic SCSNA for this (m
oscillator neural network is given in Appendix C. The Ansatz N 2 (mun-1F (A (AS)
or heuristic derivation of the SCSNA described in Sec. Il,
whose validity has been confirmed for the model Equation
(5), is quite naive and seems free from such an energy con-
dition. We may expect its validity to still hold for more gen-
eral cases without the energy condition by observing prelimi- “ (W
nary results based on numerical simulations for such NEigj F(hn=0)
systems, although it is hard to prove the validity by follow- (mon= 1=(F' ,
ing the procedure for obtaining the marginal distribution of (F' e
Xg as given in Sec. Il for lack of the Gibbs-type equilibrium
densities. The problem of finding the TAP equation for gen-where(F’); . represents the site averagefof as given in
eral systems, if any, will be of value and interest. There istext. Accordingly it follows that
also an open problem of whether the SCSNA can deal with
the instability of the replica symmetric solutions. Such issues
will be studied elsewhere. >

AssumingN so large thatm,,)y=(m,)n-1, one then has

(A6)

1 1
M= 072 W2
WINTT=U2Z N
APPENDIX A: DERIVATION OF EQ. (77) USING
A DIRECT COMPUTATION BASED ON THE xS S S s F ()P DRI
RENORMALIZATION OF NOISE [21,22] w7 %

We directly derive the expression for noise variance in 2 («h,
Eq. (77) from Eq. (69). We first evaluatgm,,) in Eq. (69). (1 U)2 [F((hn- V]?
Noting Eq.(64) with N replaced byN—1, we have

1 1 = (e (A7)
(M= 2 &= 2 EFChN-)  (AD (1-u)*

where we have put) =(F’ ) 2 as in Eq.(75) and noted that
one can safely replac(éu),\, 1 With (hJ>N 1 in this stage of
the analysis. Equation$9) and (A7) give Eq.(77).

with

<hj>N—1:gj Ji(XioN-1

APPENDIX B: DERIVATION OF THE FREE ENERGY (84)

1
NE > EEIN-1 BASED ON THE REPLICA SYMMETRIC
k#j v CALCULATION

1 1 Using the partition function83) corresponding to the

— M _ Vev

“NE& SEL O N,gj ,,;M &8 xiN-1- equilibrium probability density(9), one computes the free

energy by means of
(A2)
Then it follows that (ZM -1
f=Ilim lim N (B1)
F((hiyn-1) =F(Ch)R2 )+ E4m)n-1F ((hR?y) N=een=0
+0 1 (A3) Introducing n replicas and using the Hubbard-
\/ﬁ Stratonovich transformation, one obtaif$ as

011904-10
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_ f Il dxiaexp[—ﬁ; |2i B(xa)

w3 e

N pn/2 _
:f H dXiaf ;IL_L dmﬂa('lj—w) eXF{_ﬁ% d(Xia)

N
_%é mia"'ﬁ% 2| giﬂxiamﬂa ) (B2)
where
D(Xia) = b(Xia) + 3 aXPy. (B3)

After some manipulations we have

- (BN P2 BN\ ~(P=DN2) _ o g2N n2
o B8

%[ T amJT dou]] drpepn @4
a (ab) (ab)

N -1
0=-"23 me- TS nldetB{guh)

—N% @B aplant N(IN(T, {exd — BH({m})1}),,
(BS)

where the trace stands for

T 1= | T axal ) (86)

with the Hamiltonian

Hf({ml})z - ( aﬁgg) IapXaXp— é E’(Xa) + ; fxamla)

(B7)
and the matrixB is defined by
B=1-Q (B8)
with
Qap= Z leiaxib : (B9)

In the largeN limit the above integral in Eq(B4) can be
evaluated using the saddle point method where we assumF

the replica symmetry

Ma=M, Jap=02 (@#b), Qaa=01, Tlap=Tr2

(a#b), rga=rq. (B10)

PHYSICAL REVIEW E 69, 011904 (2004

Then it follows that

o (21 B L,
f_nllexrlm[no oN 2 m +aBr.q;

@B 24 lim — In(detB
C(B 2q2 n[nozn n(e )

— lim <|n(Trx {exr[ IBHg(m)]})>§1 (Bll)
r‘I~>O
where one can easily evaluate
.1 Baz
r|1|210 0 In(detB)=In(1—Bq;+ Bd,) — m
(B12)

The trace part of Eq(B11) can be calculated using the

Hubbard-Stratonovich transformation as

1
Iimoﬁ<ln(T,Xa{eXF{—ﬁHg(m)]}»g

_ fdziex _Z_z)m[T exp(SH,)]
\/% 2 rx 13 !

4
(B13)

where

He=\2arjzx+ aB(r,—rpx2—(x)+ &xm. (B14)

Accordingly we have

B ,
f= > m?+ aB%r 10, — aB2r5q,

+> lﬂ(l—ﬁq1+ﬁq2)—%}
—< dziex —Z—Z)In[T,Xexqﬁﬂg)]> .
A2 g
(B15)
Setting
Q=0:—02,
R=r,—r}, (B16)

we finally arrive at the expression for the free ene(@¥

,B(Q_(h)}

m 2+ ap? (r2Q+q1R)+ 1- 30

In(1-BQ)+

1 2 .
_<fdzJT_wex;<—§)ln[TrxeX[XBH§)]> . (B1?)

&
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APPENDIX C: STOCHASTIC SCSNA FOR THE The Fokker-Planck equation corresponding to the single-
OSCILLATOR NETWORK body Langevin equation that is reduced from EQ1) using
Eq. (C2) yields the marginal equilibrium probability density

The network dynamics is assumed to be given by Ped ), Which is the analog of Eq14)
e 1/ ]

do;
rTa —H(#6)

Ji' i Hi—ﬁ- fit, -:1,...,N
;  sin( i), peq(ei;gilmgrzc,“zs):(:ex;{ D ) (C7)

(Cy

with white noisef;(t) and synaptic coupling;; being given  with C representing the normalization constant and
as in Eqgs(5), (6), and(7). We are concerned with the equi-

librium state. Noting that the system has rotational symme- H(6;)=—cosb,(&mi+7.) —Zssinb;
try, one can choose a gauge such that one of the overlap
order parameters that will be given below vanishe$=0. a(Ugs—Uy)
In this case the stochastic SCSNA claims the following T 4(1-Uy)(1-Uy) c0s ;. €8

ansatz of the local fields of the oscillator neurons:
Equations(C4)—(C6) together with those for the overlap
hiczz Jij COS@j=§ilmé+7c+rfc,cc):SNA0030i , m: [Eq. (C3)], Edwards-Anderson-like order parameters
i7i ([(c0S)eql®) site ANA([(SIN B)egl®) site CONStitute a set of order
parameter equations for the oscillator netw@@l), which
can be justified by applying the method presented in Sec. IV.
The deterministic limitD—0 recovers the previous result
© ) [30,49.
+scsnasSing (€2 The TAP equation under the gauge witit=0 for the
oscillator network(C1) can be straightforwardly obtained as
in deriving Eq.(20) of Sec. Il by noting Eq(C2):

. 1.1, ~ . ~
h?:; Jij sin 6= £'mi+Zs+ ' §anasin 6, =%

where

L 1 .
mi‘:N; £/(C0S0;)eq, miZN; £/(SiN6))eq,

27
3 (costi)eq= |~ d6; cOS6,Ped 0 THIAPE) g AP(s))

where ( )¢q denotes the average over the marginal equilib- o
rium probability densityP.{6;) that is self-consistently de- (SiN6;)eq= f d6; Sin ;P 6, ;HAP®  HTAPE)),
termined belowI Qgy, andT'Ske, s, analogs of Eq(16d) 0

are given, within the framework of the SCSNA, by (C9
where
I'Lsna= % T Qe (CH
— Y 1_Us
TAP(c) — - A () ]
with U, and U, representing H;i “ Jij(€080))eq— I'scsn( COSHi)eq,
U<‘9< e>> u<a<'e>>
={—(cos , ={—=(sin , - -
< \z Ve =\ Y site HiTAP(S):jEi Jij(SiN0)) g~ T SLenA(SIN O )eq-  (CLO)
(CH)

where the site averagg)g. denotes the average over the We see that the analog of relati¢d) also holds in this
pattern{£'} and the two Gaussian noises. The Gaussiartase. The above results can be confirmed by a more system-
noisesz, andZ, with mean 0 are independent of each otheratic approach based on the procedure presented in Secs. IlI

and have variances and IV. The TAP equation under a more general situation
without using the gaugm§=0 can also easily be obtained,
2 H 2 . . . .
g :a<[<0039>eq] )site ) :CV([(S'” 0)eql “site ensuring the relationship between the output proportional
c/site (1-Uy? s/site (1-Ug? term and the Onsager reaction term as claimed in the present

(Co) paper. More details will be published elsewh@t8].
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