PHYSICAL REVIEW E 69, 011902 (2004
Error and repair catastrophes: A two-dimensional phase diagram in the quasispecies model
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This paper develops a two-gene, single fitness peak model for determining the equilibrium distribution of
genotypes in a unicellular population which is capable of genetic damage repair. The first gene, denoted by
o,ia» Yields a viable organism with first-order growth rate conskant if it is equal to some target “master”
sequencer,i, o- The second gene, denoted dy.,, yields an organism capable of genetic repair if it is equal
to some target “master” sequeneg., o This model is analytically solvable in the limit of infinite sequence
length, and gives an equilibrium distribution which dependg.esl €, the product of sequence length and per
base pair replication error probability, amd, the probability of repair failure per base pair. The equilibrium
distribution is shown to exist in one of the three possible “phases.” In the first phase, the population is
localized about the viability and repairing master sequenceg;, A&xceeds the fraction of deleterious muta-
tions, the population undergoes a “repair” catastrophe, in which the equilibrium distribution is still localized
about the viability master sequence, but is spread ergodically over the sequence subspace defined by the repair
gene. Below the repair catastrophe, the distribution undergoes the error catastrophe exegeds I/, ,
while above the repair catastrophe, the distribution undergoes the error catastrophg ekezeds Ik/f g,
wheref 4o denotes the fraction of deleterious mutations.

DOI: 10.1103/PhysRevE.69.011902 PACS nuni)er87.23.Kg, 87.16.Ac, 64.98.b

I. INTRODUCTION can exist in one of two “phases.” For sufficiently efficient
repair, the population was shown to exist in a “repairer”
To cope with genetic damage to their genomes, cellulaphase, in which the fraction of repairers is a finite, positive
organisms have developed a host of mechanisms to repajuantity which depends only on the efficiency of repair and
and, if necessary, replace damaged DNA. Environmentahe fraction of the genome coding for repair. The equilibrium
damage due to mutagens, metabolic free radicals, and radigenotype of the population is localized about the “master”
tion is repaired by enzymes which continuously scan th&ubsequence for which repair is functioning. When the repair
DNA molecule and repair the damaged portions. Replicatiorefficiency drops below a critical value, the population delo-
errors are also repaired by several methodsEsoherichia  calizes over the repair sequence subspace, and the fraction of
coli, the DNA replicase Pol Ill has a built-in proofreading repairers becomes zero in the limit of infinite genome length.
mechanism which results in a replication error probability of This phase is naturally termed the “mutator” phase. In Ref.
10" ’~10 ° per base pair. Furthermore, immediately follow- [9] the transition from the repairer to the mutator phases was
ing replication, a second proofreading mechanism, known asalled the repair catastrophe.
mismatch repair, identifies and corrects mismatched base The solution of the model presented in Réf] is incom-
pairs. InE. coli, the mismatch repair system reduces the erroplete, in that it describes the equilibrium behavior of the
probability to 10 1°~10 8 per base paif1]. system in the low-mutation rate regime. This allowed one to
The DNA mismatch repair system is of considerable in-assume that only point mutations were important, consider-
terest because it is believed that mismatch repair deficierdbly simplifying the calculations. However, another phase
strains, or mutators, play an important role in the emergencgansition has also been shown to occur when the mutation
of antibiotic drug resistance and can¢2r8]. Because mu- rate becomes too large. Above a critical mutation rate, repli-
tators have mutation rates which are 10—10 000 times highetative selection can no longer recover the loss of information
than wild-type strains, they can more rapidly adapt to hostilelue to genetic damage. This phenomenon is known as the
environments, thereby explaining their potential importanceerror catastrophe, and was first predicted to occur by Eigen
in understanding drug resistance. However, mutators can aend co-worker$11,12. It has since been studied in a num-
cumulate genetic damage much more rapidly than nonmutéser of theoretical papersl3—-29 (and references thergin
tors, and hence can serve as an intermediate for the appeand has also been observed experimen{&l;31.
ance of cancerous cells in multicellular organisms. Because the model presented in our paper was only
In an earlier work, we developed a simple, analyticallysolved in the point-mutation regime, it did not incorporate
solvable model to determine the equilibrium population ofthe effect of the error catastrophe. The assumption underly-
mutators in an asexual, unicellular population of replicatinging our initial approach was that mutators, despite their
organismg9] (we should point out a related study, REf0], higher than wild-type mutation rates, are still viable organ-
that was published almost simultaneously t9. Ghe main  isms, and so live well below the error catastrophe.
result of this model was that at equilibrium, the population The method used in our paper has since been generalized,
so that it is no longer necessary to assume only point muta-
tions. Thus, the interplay between the error and repair catas-
*Electronic address: etannenb@fas.harvard.edu trophes can be studied, making this paper a natural extension
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of the work presented in Ref9]. Eigen showed that the system evolves to an equilibrium dis-
This paper is organized as follows. In the following sec-tribution given by the eigenvector corresponding to the larg-
tion, we present a brief review of the quasispecies equationsst eigenvalue of [11,12. If the equilibrium distribution is

developed by Eigen, which are often the starting point fordenoted byxeq,, and the largest eigenvalue is denoted by
studies in evolutionary dynamics. We continue in Sec. IlI by)\’ then it is clear thak = ’:')Zequil-

developing the form of the quasispecies equations for our To obtain an expression far, (o', o), let us assume that

mutat<|)r rrf]odtehl. We ?I‘?t')"? th'fs mtgdel |fn Seb? IV. Spgc'f'ca”%mutations occur due to replication errors. We take a per base
We solve Tor the equilibrium fraction of viablé organisms an pair replication error probability ofe,. for o'. Let |

et e o g O Gence e Hamming diance btioeand
repair catastrophes. We study the localization of the distribu? - Then itis a standard resuee, e.g., Re{12)) that
tion and its limiting forms, comparing the results in certain e \!
cases with the corresponding results obtained in R#f. Km(g',g)zkg,(L) (1—e,)-"". (4)
Finally, in Sec. V we present our conclusions. S-1

II. THE QUASISPECIES EQUATIONS Ill. A TWO-GENE MODERLElgACISRPORATlNG ERROR
The quasispecies equations are possibly the simplest for

modeling the evolutionary dynamics of a unicellular, asexual ‘A Simple model to study quasispecies dynamics with ge-
population of replicating organisms. We Iet, denote the NeliC repair is a two-gene, single fitness p¢akp model.

number of organisms with genome, and «, denote the We take our genome to have an alphabet Szsomposed of

first-order growth rate constant of an organism with genome‘f‘bases" 0...,5—1. The first gene, denoted lay,;,, has

. If kn(o,0") is taken to be the first-order mutation rate N9t Lyia, and controls the viability of the organism. We
constant fromr to o', then the time evolution ai,, is given ~ 2SSume thatthere is a unique, “fit” sequentg, o such that
by Ky=k>1 if 0,a=0,a0 Otherwise,x,=1. There is no
loss of generality in assuming, =1 for the unfit sequences,
dn since time may always be rescaled so that the unfibe-
gt =KMot 2 [Kkm(0” o)y = k(0,0 )0 ). (1) comes 1.
o o The second gene, denoted by.,, has lengtiL ¢, and
is responsible for the enzymatic machinery involved in re-
The mappinK:{o}—{«,} defines what is called the fitness pair. As with viability, there is a unique sequeneog,, o, for
landscape. In general, the fitness landscape will be time devhich repair is functioning, and has a per base pair failure
pendent, since organisms usually live in dynamic environprobability of e, . For all othero ¢, repair is inactivated and
ments[8,16]. However, since in this paper we wish to study the organism is a mutator.
equilibrium behaviors, we take the fitness landscape to be For the mutators, the per base pair replication error prob-
static. ability is taken to bee. Thus, foroe, 0, the per base pair
The conversion to Eigen’s quasispecies equations is ageplication error probability i, €. If €, denotes the per base
complished by converting from absolute populations topair replication error probability of genome, then €,

population fractions. Thus, we define=X,n, and X,  =e € if oep=01cp0, ande otherwise.
=n,/n. When reexpressed in terms of thg, the dynami- This model is clearly an oversimplification of the actual
cal equations become genome and replication dynamics of an organism. Neverthe-
less, a two-gene, SFP model is probably the simplest for
dx, _ studying evolutionary dynamics with genetic damage repair,
at =Z Km(0',0)Xgr — k(D)X (2)  and itis therefore a natural starting point before considering

more complicated systems. Despite its simplicity, this model
_ still yields sufficiently rich behavior to be of interest.
where k(1) =2 kX, and km(o,0)=k, To determine the equilibrium distribution of genotypes in
—3 . 20km(0,0"). Note thatk(t) is simply the mean fit- this model, note that, by symmetry, we may assume xpat
ness of the population, and arises as a normalization terglepends only on the Hamming distancel

which ensures that ;x,=1 at all times. .EDH(O-Uia’O-Uia,O) and lI'EDH(Urepao'rep,O) [22]. We de-
We may simplify the notation further by defining  fine the Hamming class  Cy(l.l )={o
=(x,) to be the vector of population fractions, ar =0yia07ep| Dr(0via  0via,0) =1, D1(Trep,Orep,0) =1'}. Itis

=[A,, = k(o' )] to be the matrix of mutation rate con- r€adily shown thaCy(l,") contains
stants. We may also defineto be the vector of growth rate

— > > . Luia I-rep 141"
constants, so that(t) = «-x. Then we obtain Cyi= | v (S—-1)
dl:A)?—(E-)?))? 3) elements. Since, is assumed to depend only on the Ham-
dt ' ming class ofo, we may definex;,=x, for ce Cy(l,l").

011902-2



ERROR AND REPAIR CATASTROPHES: A TWQ . . PHYSICAL REVIEW E 69, 011902 (2004

We may also note that,=k if |=0 and 1 otherwise, so that, depends only or. Therefore, we redenote, by «; .
Similarly, we redenote, by €. . Finally, definez,;,=C,; x;;, to be the total fraction of the population @ (I,l").
We wish to express the quasispecies equations in terms &, theThe final result, derived in Appendix A, is given by

’ r_ !
L+ =15 o415 1
K +1-1,€, ,
! —
|l 1 2 1 +1=1

L,

dz”, 2 2 Lil 2 ( via— 2|1+|2 |1+|1—|2)(Lrep—|',—|1+|§

1150 1350 |17 I 15

L\ PN Bl e PRt
— LyiatLre 7|7|’7|17|i I1+I |2 1— I1+I |2 k—1 +1
E'i*'/"é) P “5-1 “5-1 2 41— Ly g 417 =157 [( )20+ 1]z,

5
wherezOEE|,“*p0 zy is simply the total fraction of viable organisms.

We now let the viability and repair sequence lendthsg, ,L,c, approacte, while keepinga=L 3 /Lep, u=Le, ande,
fixed, whereL=L ,;,+L¢p is the total sequence length. Sineﬁl+,,,|é=e or €€, it is clear thatM,i+|/,|éELe,iH,,|é
remains fixed in the limit — .

We claim that, for a giveh,I’, the only terms which survive the limiting process arelthel ;=0 terms. We then note that,
asl,ia:Lrep—,

— |+ 1 1 . I
via 2 |2 1 Lo 1
( ey e ) a+1“"'é) (6)
and
(1_E|/7Ié)|-uia*|_>e*(a/a+l)p,|r_lé. (7)

Taking similar limits for thelL ¢, terms, we obtain the infinite sequence length equations
ro Ip+15
dz”,= KI—IzaIZ

’
dt 12=0 1,=0 (PYAPY.

M -1y
a+l

ez, 1 k(D2 (8

To understand why only thig=1;=0 terms survive, let us proaches 1, so that the probability of back mutation goes

consider the mutational contribution from thoseto O.

2 +1-1,1+11-1; for which at least one of,,1;>0. A ¢’ This heuristic argument is given a more rigorous justifi-

EIC (I J:I—I 2|,+|,_|,) was obtained from ao cation in Appendix A. As a simple check, we also ensure that
HU 1 2,01 2 o ! e

eCu(l,1") by changingl, of the L,,,—| bases ino,, total population is conserved in the limiting process.

which were equal to the corresponding bases-jp o, and
similarly for 1; and Orep- Therefore, foro);, to mutate to IV. SOLUTION OF THE MODEL

o,ia» |1 Of the changed bases must back mutate to the cor- )
responding bases i, ;, o. However, in the limit of infinite A. The phase diagram
sequence length, the number of unchanged bases);in We begin our solution of the model by computing the
given byL ,i,—11—1+1,, becomes infinite, and so the prob- equilibrium values ok, andz,,. We begin with the dynami-
ability of a mutation occurring at one of those bases ap<al equations fog,/,

|
1’ 1"-1
e “Hzgot ke “E

I/
Zopr1—[(k=1)zo+ L]zgr - ©

€M 1

a+1l

d20|r k

dt |

a+1

We may sum from’ =0—< to obtain the dynamical equation fag. Together with the dynamical equation fy,, we have
the pair of equations

dz,

dt _k(e (ala+1)ep_ e (a/a+1)p,)z +[ke (ala+ L) _ (k 1)20 1]20, (10)
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TABLE I. The possible equilibrium values of{,zyy) as a func-
tion of u ande, .
Zy Zoo
273
ke e*—1 e_fr//-_e_(a/a“'l)/"
k—1 ef(a/a+l)erﬂ_ef(a/a+l)p_zo &r
—(ala+1)u__
ke 1 0
k-1
0 0
d 3.454
dZ(t)O:[ke_erM_(k_ 1)zo—1]zgp. (11) *

FIG. 1. Diagram illustrating the solution domaifis, (black),
Q, (gray), andQ 3 (white). The u axis is labeled only at IR/€, ¢
We may obtain the equilibrium solution of these equations=3.454, and the:, axis is labeled only ag; = 2/3.
by setting the left-hand sides to zero. A summary of the
possible solutions is given in Table I. We should note thatfor
with z5 andzy, calculated, it is a relatively simple matter to

Figure 1 illustrates the three solution domafng, 5,5
a=2,k=10. In Q4, the population is clustered within
) S finite Hamming distances about the viable and repair “mas-
recursively compute the equilibrium values of all the . o sequences. A finite positive fraction of the population is
This is detailed in Appendix B. viable, and of the viable organisms, a finite positive fraction
We need to map out the regions in the,€,) parameter o the population is capable of repair. As is increased
space for which the various solutions are valid. Firstheyonde, o;iy=al/a+1, so that f,€,) € Q,, the population
of all, note that we must have,e[0,1] and z5o[0.20].  becomes delocalized over the repair gene subspace, and the
For the first solution set to hold, we must therefore haveraction of repairers becomes zero. This phenomenon is
Os<ke “*—1<k—1. The second inequality is automati- known as the repair catastrophe, and was first predicted in
cally satisfied. For the first inequality to hold, we must Ref.[9]. Nevertheless, ifu is still sufficiently small so that
havee, u<Ink. In order forzgge[0,z5], we must then have (al/a+1)u<Ink, then the population is still localized about
0< (e r#—e (@atlu) j (gm(elatlen_o-(alarlmy < g the viable “master” sequence, and the fraction of viable or-
Again, the second inequality is automatically satisfied, bug@nisms is positive. If)s, u is sufficiently large that the
the first only holds wherg,<a/a+1. Therefore, the first POPulation completely delocalizes over the gene sequence
solution pair is only valid where, u<Ink, and e, <a/(« space, a phenomenon known as the error catastrophe.

+1). However, the other two solution pairs may still yield e may use our three solution pairs to computex for
physical values forZy,zo) in the domain of validity of the the three solution domains, or phases. We have(k
first solution pair. To resolve this issue, we note that we want™ 1)z0+1, so that

a solution which givego,—1 ase,—0. That is, if repair is ke et for (u,e)eQ,
perfect, then at equilibrium the population should only con- N _ | ke @atln for e)e O 12
sist of viable repairers. Therefore, as—0, we expect the (k.€r) (poei) 2 (12
first solution pair to hold, since it gives the correct limiting 1 for (u,€)eQs.
behavior. By continuity, the first solution pair holds over the  Figyre 2 shows a plot ok versus f,¢,) for a=2, k
setQ,={(u, &) €[02) X[0,1]|e u<Inke=<ala+1}. =10. Figure 3 shows the corresponding plot fgg.
As €, is increased beyond/a+1, the first solution is no The error and repair catastrophes both arise as a result of

longer valid, but the second solution may still be valid if O the interplay between two competing effedts) The selec-
<ke (@er*r_1<k—1. Again, the second inequality is tive advantage for being viable and for being a repairer and
automatically satisfied, while the first only holds when (2) The entropic tendency to be unviable and a mutator. For
(a/a+1)u=<Ink. The third solution pair may still be physi- a sufficiently low mutation rate, the selective advantage for
cal in the domain of validity of the second solution pair. To being viable is strong enough to localize the population
resolve this issue, we may note that we want a solutiorabout o;, o. However, when the mutation rate exceeds a
which givesz,—1 asu—0. That is, in the limit of no critical value, the selective advantage for being viable is no
replication errors, all of the population is viable. Therefore,longer sufficiently strong to localize the population about the
as u—0 with ¢,>al/a+1, we expect the second solution viable master sequence, and the population delocalizes over
pair to hold, since it gives the correct limiting behavior. the entire viability subspace. Below the repair catastrophe,
By continuity, the second solution pair holds over this occurs when the effective growth rate of the viable, re-
the set Q,={(u,¢)e[02)X[0,1]|(a/a+L)u<Inke pairing sequencer,i, o0repo beCOMes comparable to the
>(ala+1)}. The third solution is then the solution over the growth rates of the nonviable sequences, i.e., wkenf#*
domainQ;=([0,°) X[0,1])/(Q,UQ5,). =1. Above the repair catastrophe, there is no longer any
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both arise from a competition between maximum fitness
(minimum energy and maximal entropy. When the replica-
tion and repair error probabilities are sufficiently low, maxi-
mal fithess(minimum energy wins out, leading to localiza-
tion on the sequence space. When the replication or repair
error probabilities are sufficiently high, maximal entropy
wins out, leading to delocalization on the sequence space.
While not exact, this analogy nevertheless conceptually de-
scribes the origin of the phases observed in this study.
In this vein, we should also note that the repair catastro-
phe is related to the evolution of mutational robustr@Ss-
29]. In a series of studies initiated by Schuster and Swetina
[23], and continued by Wilke and othefg4-29, it was
shown that at sufficiently high mutation rates, a quasispecies
will evolve to a region of sequence space with maximal mu-
FIG. 2. Plot of\ for @=2, k=10. tational support, and not necessarily to a region of maximal
fithess. Essentially, at high mutation rates, the entropic cost
preference for being a repairer. The effective growth rate obf remaining localized to a highly fit but relatively nonrobust
the viable sequences due to mutation off of the viability peakitness peak becomes sufficiently large that the population
is ke~ “#/**1 "hence, above the repair catastrophe, the errofavors residing on a less fit but more robust fitness “pla-
catastrophe occurs wheéwe *#/**1=1. teau.” The repair catastrophe is similar to this phenomenon,
Below the error catastrophe, viable repairers have an that, when repair becomes sufficiently inefficient, the en-
slower rate of mutation off of the viability peak than viable tropic cost of being localized about the repairing sequence is
mutators, and hence have a higher effective growth rate. Fafo longer outweighed by the advantage of being a repairer,
sufficiently efficient repair, this discrepancy causes |Oca|izafesu|ting in delocalization over the repair subspace.
tion abouto¢, o. However, when the repair error probability
exceedse, oiy=ala+1=L /L, the selective advantage
for being a repairer is no longer sufficient to localize the B. Localization lengths
population, and the distribution undergoes the repair catas-
trophe, in which the distribution delocalizes over the repairf
subspace. Note that i, is simply the fraction of deleteri-
ous mutations and increases with increasingThis makes .
sense, since, the greater the fraction of deleterious mutations, N ,
the greater the relative advantage for being a repairer. Thus, (I >via=|§1 l"zg/, (13
for large «, repair has to be highly inefficient before the
repair catastrophe occurs. Conversely, for lewrepair has
to be highly efficient to give the repairers a sufficiently large
advantage for the distribution to localize about the repair ”
master sequence. (Drep=2 1210, (14
It should be noted that the error and repair catastrophes =t
are similar to thermodynamic phase transitions, in that they

The final set of quantities we wish to compute are the
ollowing localization lengths of the equilibrium distribution:

<I>E|21 >z, (15)

=L1'=0

(1= > 'z, (16)
1'=11=0

Using the dynamical equations for tag, we may compute
the various localization lengths at equilibrium. The basic
idea is to obtain an expression for the time derivatives of the
localization lengths in terms of the localization lengths them-
selves, and then solve for the equilibrium value. We illustrate
FIG. 3. Plot ofzy, for a=2, k=10. the technique fo(l"),i.. We have
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’
Il

d<| >u|a . dzOI' er:“ '=li+l [
=> I'——= e (et Denz, ke~ #2 2 ———— == zoy 1 —[(k=1)zo+1]{1"),,
I'=1 atl 17=01"=1]+1 ! atl] 7 e
Erp g (da € S 1 !
=k—re (kg ke “2 m = [<I Yoia*11(20= 2001~ [(k=1)Zo+ 1K1"),ia
1
E'LL ala € ala lL !
=k e (e Dekgg ke (! *”"((l >via+m(zo—zo@)—[(k—l)zoﬂ]a via (17)

so at equilibrium we obtain

k,u (Ee (ala+1)ep e (a/a+l),u)z te (a/a+1),uz

(k—1)zo+1—ke (@/atlu

(1"via= (18

To compute the remaining localization lengths using the above approach, we first need to crjpatife,z. Note thatz;,
is simply the total fraction of repairers. We computgby evaluatingdz)/dt==,_,dz,/dt. The result is an expression in
terms ofzy, zy, andzyg, which may be solved at equilibrium to obtain
(k— 1)e—er,u,/a+l
(k—1)zg+1—e et

1 Z00- (29

We then obtain

aeE ML (k_1)200+z(’)
<|>rep: : e ulatl —eula+1 (20
atl (k—1)zg+1—e cwla
e Lo M ,
CORUSIE Z_O(O’<I Jvia) + m[(k— 1)zp+1-(1-€)z5— (k—1)(1~€)Zp0)(a,1). (21)
I
C. Limiting forms of the distribution 2. Behavior in the limit @— «

Itis instructive to study the behavior of the distributionin ~ For «— we obtaine, .,;;=1. Hence, we are always
the following limiting cases(1) u—0. (2) a—>. (3) @  pelow the repair catastrophe. As long as<Ink/e,, then
—0. We handle each of these cases in turn. Zo0—2o=(ke~#—1)/(k—1). Thus, the solution pairs pre-
sented in Table | reduce to two possible solutions. Eiaer
=Zg9= (ke “#*—1)/(k—1) if we are below the error catas-

For u—0, note that zo—1, and zyy—(a/a+l  trophe ,u<Ink) or zy=2z4,=0 if we are above the error
—e)/lalat1(1-¢)]=1-¢€/[a(l—¢)], below the re-  catastrophe. This means that the fraction of mutators is al-
pair catastrophe. We may also note thef—zgo, and \ays zero. To understand this behavior, note that the prob-
((D.(1"))—(0(1"),ia). This makes sense since in the limit 5y of mutating off of the repairer sequence is 1
un—0, we expect that the entire population becomes viable. e~ <la+1 \while the probability of mutating off of a mu-
For the same reaso(l,);.,—0 asu—0. Finally, asu—0 tator sequence is e~ (“**1) Both go to 0 asa— .

1. Behavior in the limit p—0

for €< ér crit However, since fok, <1 the repairer sequence has a greater
(1Y yia— {1_(1_&)(1_ €r ) sele_ctive advantage _than the mutator_ sequence, the_: repair
L a(l-¢) strain comes to dominate the population. Onlyegt1 is
(a+l) m_ef) there an ambiguity, sincee( #—e~ @¥/atl)/(g-a&nlatl

—e *#e*1y_,0/0, which is undefined. Physically, since at
_ 1 ¢ atl e,=1 there is no difference between what we call a repairer
(at1)(€crit—€) ' @ and a mutator, we expect delocalization over the repair sub-
space, so thaty;—0.
= (L= €rcriv)/ €r,crie X € /(€ crit = &) pWe may alsog note that)— zyy/zo=1 for €,<1, and 0
As expected, these results agree with the point-mutation limifor ,=1. We also havgl),.,—ke,ue™ “#/(ke “#—1).
expressions obtained in R¢f]. Also, (1"),ia—0, for e,<1, andw for ¢,=1.
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3. Behavior in the limita—0 repair catastrophe to disappear entirelyuas-0, since the
difference in viability between repairers and mutators disap-
pears in the limit of no mutations. In R¢8] it was assumed
that mutations were sufficiently slow so that only point mu-
‘tations needed to be considered. In the complete model,
when we allow for mutations between any two genomes, we
do indeed obtain & dependence on the equilibrium distri-
bution of mutators. Interestingly, however, the repair catas-
trophe still occurs ak, ;= a/a+1, unchanged from the
point-mutation result in Ref9].

For «a—0, we havee, .,j;—0. Therefore, for alle,>0
we are beyond the repair catastrophe, and sineé« (
+1)u=0<Ink, we are below the error catastrophe as well
so thatzy=1 with zoo=0. This makes sense, since, for
=0, the probability of mutating off of the viability peak is
1—e (@/e*Dr_.0. Thus, the entire population is viable at
equilibrium. As forzy,, we note thatz,o=0 for €,>0, but
for ,=0 we obtain the expressione{—e®)/(e’—e% x z,
=0/0. Physically, we must havg,=1 ate,=0. This am-
biguity is therefore resolved by letting— 0 for ¢,=0. That

is, we evaluatezy, for a=0,6,=0 by settingzoolazoverzo ACKNOWLEDGMENT
= Iimaﬁozoo|a'5r:0. This research was supported by the National Institutes of
As expected, fore,>0 we havezy=0, (I'),,=0, Health.
(Drep=0,(I)=0, and(l")=c. Again, fore,=0 we resolve
any ambiguities by lettingr—0, giving, as expectedz, APPENDIX A: DERIVATION OF THE FINITE AND
=1, (I")ia={(Drep={1)=(I")=0. INFINITE SEQUENCE LENGTH FORMS OF
v P THE DYNAMICAL EQUATIONS
V. CONCLUSIONS 1. The finite sequence length equations

This paper presented a two-gene, single fitness peak To obtain the finite sequence length equations given by
model to determine the equilibrium distribution of genotypesEq. (5), we first obtain the quasispecies equations in terms of
in a unicellular population capable of replication error repair.the x;,, . To do this, we need to sum the mutational contri-
The work presented here was a continuation of [R&f.in  butions of all ¢ to the time evolution ofx,.. Let oy
which the equilibrium distribution of mutators was studied € Cy(I,1"). Any o may be obtained frona,, by changing
for mutation rates well below the error catastrophe. This pathe appropriate bases. Let us writg, = o,z |0 ep,’ and
per obtained the equilibrium behavior of the two-gene modebr= o ,j,0.¢,. By definition of the Hamming classy, i,
for arbitrary mutation rates, thereby incorporating both thediffers from o, ¢ in exactly | places. Thereforeg i, is
error and repair catastrophes into a single, two-dimensionadlentical too 5 o in L,ja—1 places. Of thesé ,;,—| bases,
phase diagram. While our model is probably the simplest onéet |, denote the number of bases which are changed i0f
could use for studying evolutionary dynamics in the presencehe | bases ino,;,, which are distinct from the correspond-
of genetic repair, it does nevertheless make experimentalljng bases ino,, 0, let |, denote the number which are
testable predictions. As mentioned in the Introduction, thechanged back to the corresponding bases,in , when cre-
error catastrophe has already been obsef86@1. The re-  ating o, and letl; denote the number which are changed to
pair catastrophe would be more difficult to observe experibases which are still distinct from the corresponding ones in
mentally, since it would be necessary to selectively interferquiayo_ The base changes determinedipyl,, andl; yields
with the DNA mismatch repair system. If possible, however,a ¢ ;, which is a Hamming distance df,+|—1, from
it would be interesting to try to experimentally map out the 0,ia.0 @nd a Hamming distance bf+1,+ 15 from o -
phase diagram shown in Fig. 1 for an actual organism, such For the repair gene, we may defitg, 15, andlj simi-

ask. coli. o L larly. Thus, given some oy, eCy(l,l’), the vector
In Ref.[9] it was noted that the equilibrium distribution of (I1,05,15,17,15,1,) defines a set of base changes to a

mutators did not depend agm, but only one, and «. This
was interesting since the larger the valueuothe greater the AU
difference in mutation rates off of the viability peak betweenPr(our 01 411,00 ) =i+t g+ +l+15. We
repairers and mutators. One might also naively expect théhen obtain that

0'|1+|,|2'|1+|/,|éeCH(|1+|_|2,|:I|_+I,_Ié), Such that

! ! !
)|1+|2+|3+|1+|2+|3

E|ryyr—y’
|1+| |2

— LyiatLrep—l1i—lo—l3—11—15—13
Km(a'll+||2,li+l’|é1UII’)_KIl+II2(v (1_€|1+|'—|é) viaThrepT1T2713T 27, (AL)

The total mutational flow rate into a given,, may be ob- eral, for a givero), and vector [y,15,13,17,15,13), there are
tained by summing over the mutational flow rates from allmultiple ways for generating a new gene sequence. For a
possible (1,1,,13,11,15,13). To put together a final expres- given |,;, we need to choosé, elements out ofL,;,—1.
sion, we still need to account for degeneracy, since, in genSince each selected base can be chang&ed-tb other bases,
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the total number of possibilities fdr is (Lvlia*')(s_ 1), similar analysis for the repair gene, and putting everything
1 together, we obtain a total sequence degeneracy of
for a givenl;, we need to choosk; elements out of the

Liep— "\ 17\ 1=,
Wl s
l1 2 I3
remainingl —1,. Since each selected base is changed, but is , ,
not changed back to the corresponding elementjp o, —1)litl(s—2)lstls,
there are5— 2 possibilities per changed base, hence the total
number of possibilities fok; is ( | |2)(S 2)'s. Performing a  Putting everything together, we obtain

For a givenl,, we need to choodg elements out of. Since

each selected base is restored to the corresponding base in

7 yia.0 the total number of possibilities fog is (:2)' Finally, ('—m")( | )("'2)
I

ER AN PR

- | ! ! ! !
, Lyia—1\/ 1\ [1=15) [ Lyep—1"\ [T\ (1" =1 , ,
S DYDY ( : )( )( 2)( i )( )( ,2)(8—1)'1*'1(8—2)'3+'3m o
dt |l:0 |2:0 |3:() |i=0 |é=0 |é=0 Il |2 |3 Il |2 |3 1 2

’

ls=hh 7'27|3X|1+|—|2,|£+|'—|é_;(t)xll’- (A2)

1—e€r.ys_ 1) lvia®t Lrep~l1—12
( 11 -1)

We may sum ovel,; andl} to obtain,

!

Lyia—1 |1 ’ ’

dX||' & Lrep ( via™ )( l )(LFEP_l I '1‘*"1
= ! ’ K —1,€,, ’ ’ 1
dt |1§=:o |2§=:o |§_:o 22—: AP 11 1) " _'2(
TR €T
. —=1"=1.—1! 1 2 1 2 -

—E|£+|1_|é)|‘v'a+|"ep ==l S5o1 1_ﬁ X|1+|—|2,|£+|'—|£_K(t)xll’- (A3)

We may then use,,=Cj, X, to obtain Eq.(5) after some manipulation.

2. The infinite sequence length equations

To establish the infinite sequence length form of E5).in Sec. Ill, we need to first establish some basic inequalities to
facilitate the computation of upper bounds. We begin with the following inequalityl,;fe0:

| -1 | |
B e PAV ISR I €rr—1y) 2 e \1 1 I 11 -1,
I )( s—1 ) |17 s <ls=1) U= JL(l*' kK )=
Note that this inequality also holds foy=0. A similar inequality holds for the primed indices. Our next inequality is simply

Lyia—! =11+,
I2

[+1
S-1

I
e) . (A4)

ktl=l, [ €
Tls-1

| -
€’ (1—5%+V49Hm "<y, (A5)

’ r_ !
Il+l I2

and similarly for the primed indices. Finally, we may note that<1 for alll,l1”. Now, to simplify the calculation, denote the
summand in Eq(5) of Sec. llI byS”l,Z,,,M. Then putting together our inequalities, we obtain

I’ Lyia— Lrep_l/ Lyia— I I |1
2 E Siol, 1701, =< 2 2 > E Si, i |'<2 Z Sior, 701, + > E E klg
12=0 0 1y=0 1}=0 I2= 1151 1250 7 =
Lrepflr I’ | " +1 |1 Lyia— I Lrep7|’ ' [+1 Iy ["+1 |]/_
23 5ie '3 s % S oz lsoae
I=1 15=0120 =1 1220 /=1 1)=0
[+1 | lvia™!
El lE +k(1+1)2(1"+1 1_(5_16 k(1)1 + 1)
-2 0|_0510||'0|’ (I+1)%( )S 1 1 (I+1)( '3
s—1°
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I"4+1 \lrepV l+1 \Lvia™! I"4+1 \lrepV
_(5—16 k(D20 + 1) =5 21_(8_16 _(5—16
I"+1 ( ) ) S-1 1 I+1 1 I"+1
s—1°¢ s—1°¢ s—1°
(A6)
Now, following the argument from Sec. Ill, we have that,las, ,L.,—> at fixeda,u,€,, we get that
K| |2 qué '2*1
! TH -1 ’ ’
|22 E Siol,l ol —>2 IEO NI e e Mz, (AT)
hence, since&—0 at fixedu whenL i, ,L.,—, we see from the inequalities given in E#\6) that
Lyia=! 1 Lygp=!" IV Kiol, /J’I’flé Ip+15
"n e M =1Zi 11—y A8
llEO |220 |12_o 251|||||—>20|£2_0|”| ) 221,11} (A8)

The convergence is not uniform, however, since our upper bound depends.on

This establishes the infinite sequence length form of our dynamical equations, as givet@ndec. Ill. We may verify
that total probability is conserved in our limiting process. Definmg, |z, , we obtain

A I I +1]
dz Ki-1, M-y B
= Iy 1 e M-z o —R(Dz
dt Zo Z:O |1§=:o Z:O Y R iZ g -y~ k(1)
i i i K-l [ SR B
= 1 eiﬂllflyz_ ;_r—Kt Z
1150 20 STy 72y 1! a+1l 1Z -1~ k(1)
S © @ 11
1 Mi! .
=2 X ke Mz g 2 X 1| — —K(t)z
k1=0 ' —¢o 1'1:0|’ 0 Il'li' a+1
- E E Ky Zky ki~ K(t)z
k1=0y7-0
= k(t)z— k(t)z=0. o)

Thus, sincez starts off at 1, it remains 1 at all times, hence total probability is conserved in the infinite sequence limit.

APPENDIX B: A RECURSIVE FORMULA FOR THE POPULATION DISTRIBUTION

Givenz,,zy, the equilibrium equations may be solved recursively to obtainzgnyor a given (u, ;) pair. Forl’>0, we
have

dzg, Kk " ' 1 H

ErM - _ ® _
—_— Erk I —_— ’ ! ~r r— - ’
at et e “Hzptke |’§—:1 i\t Zy) ,,l+ke zo—[(k=21)zp+1]zy, (B1)
1=
so at equilibrium we have
’ 1"—1 |/
1 k [ epm) 1 p |\
Zopr = — e ‘itz +ke*”2 — | =1 zZgy |- (B2)
o (k—1)zo+1—ke #| "1\ a+1 00 1 M at1l) O
We next turn our attention tg for |>0. We have
| —
dzo k[aeu ! _ . 1 [aepn 1 _
at _F(a+1 e “zgte 2 7| 7] - ote o [(k-1)zo+ L]z, (83)
! =1 ly!
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so at equilibrium we have

k |

PHYSICAL REVIEW E 69, 011902 (2004

1-1 I

1 aeu 1 [aepn
210~ m “ehzggte > —|——| 7z, ol B4
O (k-1)zo+1-e sn[I'at+l © 00" € |1221|1! wt1) A0 (B4)
Finally, we compute the equilibrium value @j, recursively forl,I’>0. The result is
1 ko[ ep |\ Kfap) 'S 1 H
Z) 1= CYI i e—erpzoo+_ _,LL _'uz el M ol 1!
(k=1)zg+1—e #|11'1 latl Ma+l P TTA R
=
’ -1 | "1 N -1 |
1 ep) 1 [aep\t 1/ p \1 1 ap |t
i IR ey +e —|— oS = == /
I"(a+1) € |2:0|1! at1) A-1.07€ ; 1\ et ZANER B I2:1|1! pr BEENPR
’ 1 Ih=1 11 1
-1 1"-1 y
1 wo\
+2 hf —— Zi—y. 1=y (BS)
|l=l|£:l |1||i| a+1 1 1

APPENDIX C: NUMERICAL SOLUTION OF THE MODEL
FOR FINITE GENOMES

changing. We introduce a fractional cutoff parameieiand
stop iterating when z(n+NE,”y—zn,,,,)/zn,,,,<5. N, is cho-

Equation(5) in Sec. Il gives the expression for the Ham- Sén to be sufficiently large so that of the order of one muta-
ming class symmetrized dynamics equations of our modelion is allowed to occur afteN, iterations, to ensure that

We can put this equation into matrix form

dz . . ..
—=Bz—(k-2)z,

at €D

equilibration is being accurately measured. For a large se-
quence lengthL, the probability of correct replication is

e ¢, so the probability of incorrect replication is-le~ €.
Therefore, takindN .= 1/(1— e -€) ensures that of the order
of one incorrect replication has occurred, so that if

wherez=(z,/) is the vector of population fractions in the (zn+N€’,|/—zn’”,)/zn,|,,<6 for all 1,1’, then it is possible to
various Hamming classeB, is the matrix of first-order mu-  assume that equilibration has been achieved.
tation rate constants between the various Hamming classes, Note that what this method does is account for the fact

and « is the vector of first-order growth rate constantsthat equilibration takes longer for smaller valueseofi.e.,

for the various Hamming classes, so that - z
. L . . .
=E|=0Lv'a2|,’i"0;<“,z”,, where )+ is simply «, in our

model.

for slower mutation rates. Since IimyN.=», and
lim._,4N_~1 for largeL, we see that our choice ™, ac-
counts for the slower equilibration rate by iterating more

The equilibrium distribution may then be solved usingtimes before comparing the changes in #e. In our nu-

fixed-point iteration, via the equation

- 1 .
Zh+1== 5Bz,
K-Zp

(C2

In principle, the iterations are terminated when thestop

merical simulations, we found thai=10"4-10 2 was suf-
ficient to achieve good convergence. Fer=2, k=10, it
was found that fol. =30 the equilibrium values of, and

Zoo Were almost identical to thelc=cc values. For this rea-
son, we did not give figures showing the results of numerical
simulations in this paper.
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