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Chiral front propagation in liquid-crystalline materials: Formation of the planar monodomain
twisted plywood architecture of biological fibrous composites
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Biological fibrous composites commonly exhibit an architecture known as twisted plywood, which is similar
to that of the cholesteric liquid-crystalline mesophases. The explanation for the structural similarity is that
biological fibrous composites adopt a lyotropic cholesteric liquid-crystalline phase during their formation
process. In this work, a mathematical model based on the Landau—de Gennes theory of liquid crystals has been
developed to reproduce the process by which long chiral fibrous molecules form the twisted plywood structures
observed in biological composites. The dynamics of the process was then further investigated by analytically
solving a simplified version of the governing equations. Results obtained from the model are in good qualita-
tive agreement with the theory of NevillBiology of Fibrous Composite€Cambridge University Press,
Cambridge, England, 199Bwho hypothesized the necessity of a constraining layer to lock the direction of the
helical axis of the plywood in order to create a monodomain structure. Computational results indicate that the
plywood architecture is obtained by a chiral front propagation process with a fully relaxed wake. The effects
of chirality and concentration on the formation process kinetics are characterized.
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I. INTRODUCTION free energy minimization process driven by entropy. The free
energy of the system is lowered as the excluded volume be-
Skeletal and protective extracellular tissues of biologicaween the molecules is reducggl. Because most naturally
systems are highly organized composite materfals7]. occurring biological polymers are chiral—i.e., they are not
They exhibit remarkable mechanical properties but are builsuperimposable on their mirror image—the excluded volume
from relatively simple constituents such as cellulose, chitinis favorably reduced by twisted/helical packing.
and collageri1,7]. In addition, these composite materials are K_nowing that natural cqmposites are usually compacteql,
biodegradable and assembled at ambient temperature aR@rtially ordered, and required to pass via a more or less fluid

pressure in an aqueous environment. Biological composite,%tate’ it is likely that a lyotropic liquid-crystalline phase is

have therefore undeniable advantages over synthetic matel‘ﬂ"c’l.ve‘.j during thelr supramolecular self-.assenjbly. Lyotro-
ic liquid-crystalline phases form three-dimensional assem-

als and are of a growing interest in applied material scienc Slies, which combine the fluidity of liquids with the long-

A major challenge in the field is to pr ntheti iva- . . - Iy
ajor chatenge € field is to produce synthetic equ arange orientational order of crystals, above a certain critical

lents Of. these composite materlals._ However, to d_evelo_p oncentration of molecules in the solutipd]. Among the
synthetic route, the structural formation process of biologica ifferent types of liquid-crystalline phases found in nature,

composites needs to be precisely described and understogl,esteric mesophases demonstrate the greatest structural
[6]. . , ) similarities with the architecture of biological composites.
Strategies developed by material engineers to solve Mechglesteric mesophases are three-dimensional assemblies
chanical problems are often similar to the ones employed byhose molecules lie on a series of equidistant pseudoplanes
living organisms and even the lower or{@. Natural com-  that are slightly rotated with respect to one anotf@}.
posites exhibit laminated architectures called plywoflds ~ These mesophases, which are made up of optically active
The laminated architecture, the most widely found in naturemolecules, are characterized by a length scale known as the
is the twisted plywood, also referred as helicoidal plywoodpitch, p,, corresponding to the distance required by the mol-
[1-7]. The plywood architecture, found in nearly all regular ecules to accomplish ar2radians rotation of their long axis.
extracellular assemblies of living systems, is well docu-Figure 1 shows a schematic of the plywood architecture
mented in the literaturgl—7]. adopted by biological composité¢adapted from[3]). The
But how are fibrous macromolecules precisely manipu{iberlike constituents display the classical cholesteric or chi-
lated into the extracellular matrix so as to form the twistedral nematic spatial organization defined, in a rectangular
plywood assemblies found in biological composites? Thgx,y,z) coordinate system, by
most probable answer is that the extracellular matrix, which
surrounds the .f|brous water-ms_oluble molecules, passes ny=cosf(y), ny=0, n,=-—sinf(y), (1a
through a mobile phase during its development and self-
assembly1-7]. In thermodynamic terms, self-assembly is a1,
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Based on these considerations, the specific objectives of
this paper ardi) to simulate the ordering process leading to
the twisted plywood architecture found in cholesteric liquid-
crystalline phases and biological fibrous compositég,to
identify the conditions under which the stable defect-free
monodomain helicoidal plywood architecture is obtained,
and (i ) to characterize the kinetics of the formation process
of a monodomain cholesteric liquid crystal and thus predict
those of a twisted biological fibrous composite.

This paper is organized as follows. Section Il briefly pre-
sents the invoked theoretical framework on liquid-crystalline
mesophases and the derivation of the governing equations of

FIG. 1. Schematic representation of the twisted plywood archithe model describing the formation of the twisted plywood
tecture.(a) Parallel and equidistant layers. On each layer, parallelarchitecture. Section Ill is devoted to the computational
lines indicate the orientation of the fibers. The fibrillar direction methods used to solve the model. Section IV presents the
rotates by a small constant angle from one layer to the rbxt. computational and analytical results on the plywood archi-

Transverse section plane; the fibers appear as dots or segmentsiattyre formation process. Section V presents the conclu-
different length, all parallel to each othée) Oblique section plane;  gjgns.

the fibers appear as superposed series of nested arcs. The periodicity

seen in these various planes corresponds to a 180° rotation of the
fibers. Adapted fronj3]. IIl. THEORY AND GOVERNING EQUATIONS

. . . . . A. Description of the long-range orientational order
wheren is the unit vector(directon of the fibers,6 is the P g-rang

angle between the director and thexis, p,, is the pitch,N As mentioned above,_ the structure of quuid_-crysf[alline
is the unit helix vector, angl is the unit vector in they mesopha;es is characterlzed by a Iong-range orlentatlc_)nal or-
direction. Figure (b) presents a schematic of the director der of their constituent molecules. This long-range orienta-
field along a plane containiniy and shows that the fibers tional order is commonly described by a second-order sym-
rotate continuously along thedirection. Figure fc) shows Metric traceless tenso@ corresponding to the second
that an oblique cut of the plywood architecture displaysmom_e”t of th_e orientation distribution function. This macro-
arced patterns. The arced patterns are common in biologic8FOPIC quantity, usually referred as the tensor order param-
composites and have been thoroughly characterized by Ne@fer, read$9]
ille [1]. It is well known that such arced patterns are likely to 5
arise from a cholestericlike organizatiph-7]. Q= S( nn— —
Despite their similar architectures, cholesteric liquid- 3
crystalline phases and biological fibrous composites present . -
an essential difference. While liquid-crystalline materials ex-Vhere the following restrictions apply:
ist as a distinct state of matter which is intermediate between =0T, 2b)
tr(Q)=0, (20

+%P(mm—l-|), (2a)

a liquid and a solid state, mature biological fibrous compos-
ites are in a solid state. The liquid-crystalline character,
which is hypothesized to exist during the first steps of the
polymer secretion by the cells, is transformed in a solid state 1
by molecular cross-links. However, the imprint of the cho- - -<S=<1, (2d)
lesteric liquid-crystalline phase in the mineralized materials 2

is testified to by the properties of the twisted plywood archi-

tecture in electron and polarized-light microscofl~5]. —§<P<§ 20

Liquid-crystalline theories developed in condensed-matter 2 2

physics are consequently helpful to advance structural devel-

opment knowledge for biological fibrous composites. n-n=m-m=Il=1, (2f)
The mechanical reliability of biological composites re-

sides in their highly hierarchical structufe.g., molecules, nn+mm-+ Il = é. (29

macromolecules, microfibrils, fibrils, fibers, gtdut also in

their twisted plywood architecturfl,4,6,7. One essential The unit vectorsy, m, andl presented in Eqg2a), (2f), and
feature of these structures is that they are monodoniains (2g) form an orthogonal director triad which characterizes
The quasiabsence of defects found in most composites iie orientation of the phase. The unit veciois known as
believed[1] to be due to the presence of a constraining layethe uniaxial director, andn and| as biaxial directors. The
that fixes the rotation axiéN) of the plywood architecture quantitiesS and P, which are, respectively, known as the
along the surface unit normdj). Thus knowledge of the uniaxial and biaxial scalar order parameters, are measures of
conditions under which monodomain defect-free structurethe molecular alignment. The uniaxial scalar order parameter
are generated is essential to the understanding of biologicgives the degree of alignment along the uniaxial director
composites. while the biaxial scalar order parameter gives the degree of
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alignment along the first biaxial directan. The scalar order range orientational order can occur. This length furnishes the
parameters and the tensor order param@dmain fram¢  order of magnitude for the size of a defect. The parantefer
are given by is an external/geometric length that gives the thickness of the
material. The parametgy, is the pitch of the cholesteric
liquid-crystalline material. It is essential to recognize that
this model is therefore of a mesoscopic nature since it in-
cludes a moleculaté) length scale and a macroscopit,)

3 length scale. The remaining parameterepresents a mea-
P=35(m-Qm-I-Q-), (3b)  sure of the elastic anisotropy of the material. This parameter

is constrained to be greater tharl/2 in order to ensure the

3
S= z(n-Q-n), (33

- 1 - positivity and thermodynamic stability of the long-range
—=(S—P) 0 0 contribution to the free energy.
3 The time evolution of the tensor order parameggris
1 given by a standard dimensionless gradient flow equation
Q= 0 — §(S+ Py O . (3¢ [11,12;
0 0 2S gQ of [ of . of Il 5
i 3% —Y(Q)E—%— 0V wol (53

The tensor order paramet€ characterizes thoroughly the ) 2

microstructure of the phase by combining information about Q) =|1-35mQY ], (5b)
orientation and alignment. Its quadrupolar symmetry retains

the usual head-tail invariance that implies equivalence bewhere the superscrigts] denotes symmetric and traceless
tween the director fielah(r) and —n(r). According to Eq. tensors, and wherg(Q) is a rotational viscosity. Substituting
(3) the correspondences between phase and alignment args. (58 and (5b) into Egs.(4a), (4b), and (4c) yields the
isotropic (S=0,P=0), uniaxial 6#0,P=0), and biaxial dimensionless governing equati@=Q(r,t) for the time

(S#0,P+0). evolution of the tensor order parameter:
.. : : 9Q
B. Landau—de Gennes theory of liquid-crystalline materials —¥(Q) i SR+ LR, (63)

The Landau—de Gennes theory expresses the free energy

density of the liquid-crystalline material as a power series U (5]
expansion of scalar invariants of the tensor order parameter SR={1-3/Q-U(Q-Q™+U(Q:Q)Q, (6b)
Q and its gradientsvQ [9] representing short- and long-
range elastic effects, respectively. In the absence of external £\2 ) .
fields, the total free energy density of the mesophase can beLR=—| =] {V°Q—[V-(VQ) I+ V-(V-Q) ]}
given in the following dimensionless forf®,10]: 0

&\ € £\?

f=figt fort i, (42 = (—)[—8w<vxo>][s]+ =] [-167%Q].
o/ \ Po Po
(60)

1 U U u
fsr:_( 1- —) tr(Q%) — Ztr(Q%) + —[tr(Q*)]?, (4b)

2 3 3 4 The tensors SR and LR represent the short- and long-range
) contributions to the dynamics @. The coupling parameter
E) (V-Q)} ] &lhg controls the balance between short- and long-range ef-
ho ’ fects while &/pg controls the balance between chiral and

(40 achiral effects. In the limi€/py— 0, the material describes
an achiral ordinary nematic liquid-crystalline material.

2
+ v

(VXQ)+47T(£)Q
Po

where 5 is the free energy density of the isotropic state
which depends on conventional thermodynamic parameters,
such as temperature, pressure, and concentrdtipand f In order to understand the process which leads to the pla-
are, respectively, the short- and long-range contributions t@ar monodomain twisted plywood architecture observed in
the total free energy densify The dimensionless parameter the broad majority of biological fibrous composites, we
U is a thermodynamic potential proportional to the dimen-simulate the time evolution of the tensor order paraméer
sionless concentration of rodlike molecules in the materialn a lyotropic cholesteric liquid-crystalline material. Since
which drives the isotropic-cholesteric phase transition. Thehe tensor order parameter has five independent components
thermodynamic potentidl is related to the concentratidh  (symmetric and tracelegdive coupled time-dependent non-

by the relationld =3C/C*, whereC* is the concentration at linear partial differential equations need to be solve simulta-
the phase transition. The paramefas a coherence/internal neously. The computational domain is the unit square (0
length that gives the distance over which variations of long<x=<1,0<y<1), and henceQ=Q(x,y,t). We emphasize

Ill. COMPUTATIONAL MODELING
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that, despite the fact that the simulation domain is two di-whereS, and P, are random numbers betweerl x 10~ 1°
mensional(2D), Q conserves its five degrees of freedom. and 1x 10~ ° representing thermal fluctuations in the degree
of order. The random orthogonal unit vect&s e,, ande;

A. Boundary conditions describe the initial isotropic orientation of the molecules in
In order to restrict the influence of physical boundaries orin® material.
the material bulk, periodic boundary conditions are em- C. Numerical methods

ployed on thex direction. The boundary conditions adopted Th . i ived using the classical
on the remaining bounding surfaces are of the Dirichlet type. € governing equations are solved using the classica
The upper boundary of the computational domajn=() numerical met_hod of |I.I’]eS WhICh gonS|sts qf trar_nsformmg the
describes an isotropic state in order to represent the surfad§t Of governing partial differential equations into a set of
of a secreting cell, as described|[it], andQ is defined by ordinary d|ﬁer¢ntlal equathns by spatial .dlscret.lzatlon and
Eq. (2. The lower boundaryy(=0) corresponds to a crys- Subsequently integrating with respect to time. Since the ge-
tallized ordered layer. Along this boundary, the moleculesPmetry of the computational domain is trivial, we use

describe a strong planar anchoring and accordingly the dire&econd-order finite difference approximations for the spatial

tor triad is given by derivatives. The mesh refinement technique was performed
to confirm the invariance of the results with respect to the
n(y=0)=(1 0 0), (7@ grid spacing. Time integration was performed with a Runga-

Kutta-Chebyshev algorithm. This explicit method, with an
extended domain of stability, possesses an adaptive time-
stepping scheme that captures the physics contained in
abrupt changes of the tensor order paramitar.
The alignment of the molecules along these particular direc-
tions is given by the equilibrium scalar order paramegy IV. RESULTS AND DISCUSSIONS
and P¢q. These values are determined by the steady-state
solutions of the following autonomous nonlinear system of
coupled differential equations: Ordinary nematic liquid-crystalline materials are charac-
terized by their uniaxiality, whose amplitude and intensity
9IS _ E( 9Q are directly related to the value of the thermodynamic
ot 2 n at n potential—i.e., temperature or concentration. In the case of
cholesteric mesophasedshiral nematics the situation is
2 1 1 2 1 : :
:( —Tp2g_p24 23y —S) somewhat more complicated since the symmetry of the
9 9 3 3 3 structure is a function of the helical pitch. The importance of
2 this length scale on the symmetry of the mesophase is cap-
(S—P), (83 tured by a phase-plane analysis of the system of equations
(88 and(8b).

Figure 2 exhibits all possible orientation states in the sca-
£=§(m.§~m—|.§-l) lar order parameteS-P triangle for a given parametric
a2 choice. The states described are as follpt: (a) isotro-

) pic state(the three eigenvalues & are identicgk S=0 and

m(y=0)=(0 1 0), (7b)

I(y=0)=(0 0 1). (70)

A. Phase-plane analysis of cholesteric order

><U—s—4772(é
Po

P=0; (b) uniaxial statgtwo eigenvalues of are identical:
(i) line P=0, (ii) line P=3S, and(iii) line P=—3S; and(c)

282P 2Ps 2P3+ 1P
3 3 9 3
£\2 biaxial state(the three eigenvalues @ are distinct: S#0
XU—-P+ 12772(—) (S—P). (8b)  andP#0, interior of the order parameter triangle excluding
Po the three uniaxial lines.
Note that we haven/at=am/dt=al/at=0. In addition to this atlas of ordering states, Fig. 2 gives the
seven stationary points corresponding to the steady-state so-
lutions for the autonomous system given by E(a) and
(8b) for U=6 and &/py=0.03 (the pitchp, is 33.33 times
Initially, the liquid-crystalline material is taken to be in a longer than the coherence lengtiihe dashed lines indicated
stable isotropic state. This disordered state corresponds to timelliclines. The three nodal sink$l) give the value of the
physical situation of a low concentration of chiral fibrous equilibrium scalar order paramete3saandP. In simulations,
molecules in the surrounding extracellular matrix of the bio-the system always picks up the attractor located onShe
logical composite. The initial tensor order parameter field>0 part of the plane, since uniaxiality prevails over biaxial-
Qo=Q(t=0) characterizing the initial microstructure of the ity in this system. The nodal sour¢80O) corresponds to the
material is defined in the following way: unstable isotropic source. The remaining saddle pqBiy
are unstable solutions corresponding to defects that the sys-
tem might encounter in the presence of orientational incom-
patibilities [15]. The chirality ¢/py) forces the system to

B. Initial conditions

1
t3Poee-ee), (9

o
Qo:So<elel_ 3
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FIG. 2. Atlas of the orientation states in the scalar order param-
eterS-P triangle and steady-state solutions to the autonomous sys- /G- 3. Computed trajectories of the cholesteric sink node, as
tem given by Eq.(10). The orientation states are isotropic-state &/pg increases from 0.01 to 1. Each of the seven trajectories corre-
node G=0,P=0); uniaxial-statdi) line P=0, (ii) line P=3S, and sponds to a given value &f. As U increases, the trajectories shift
(iii) line P=—3S; biaxial state in the interior of the triangle ex- upwards in theS-P triangle. The start of each trajectory is the
cluding the three above mentioned uniaxial lines. The black dot§€arly uniaxial stateR~0) and the end is the maximally biaxial
represent the seven stationary points characterizing the symmetry §f€ (P=S). WhenU =3 (the limit of metastability of the ordinary
the cholesteric mesophase foF=6 and &/p,=0.03. The three Nematig, the increase of/p, brings the stable state to the isotropic
nodal sinks(Sl) give the value of the equilibrium scalar order pa- Node.
rametersS and P. The nodal sourcéSO) corresponds to the un-
stable isotropic source. The saddle poiff#\) are unstable solu- minimized gradient energy. However, the blue-phase archi-
tions corresponding to defects that the system might encounter itecture has been identified in biological composiitdsand is
the presence of orientational incompatibilities. relevant in many other biological systems such as DNA so-
lutions[16]. This simple phase-plane analysis of the reduced
governing equations allows an understanding of the symme-
try properties of these chiral assemblies at steady state.

slightly deviate from the uniaxial symmetry, characteristic of
ordinary achiral nematics.

The asymptotic behavior of the numerical solutions to
Egs. (8) can be used to establish the role of biaxiality in
cholesteric phases and therefore, by analogy, in biological
plywoods. Figure 3 shows seven computed trajectories of the
cholesteric sink node, a@p, increases from 0.01 to 1. Each  This section presents representative simulation results de-
of the seven trajectories corresponds to a given valud of scribing the formation process of the planar monodomain
(see legend to Fig.)3As U increases, the trajectories shift twisted plywood architecture found in both cholesteric liquid
upwards in theS-P triangle. The start of each trajectory is crystals and biological fibrous composifdd. For direct vi-
the nearly uniaxial stateQ~0) and the end is the maximally sualization of the tensor order parameter fi€lgk,y,t), we
biaxial line (P=S). WhenU =3 (the limit of metastability draw parallelepipeds which render possible the simultaneous
of the ordinary nematj¢ the increase of/p, brings the representation of orientation and alignment information.
stable state to the isotropic node. In other woglp, modi-  These parallelepipeds are defined with the eigensysteth of
fies the metastability limit of the cholesteric phase. The[17,18]; the three eigenvectofs,m,l) give the orientation of
uniaxial line P=0, corresponds to the solutions that mini- the parallelepipeds and the corresponding three eigenvalues
mize the short-range energy while the solutions on thg\,=2/3S\,=—1/3(S—P),\;= —1/3(S+ P)] give the de-
(maximally) biaxial line P=S minimize the long-range con- gree of alignment along these orientation directions. Since
tribution. For a certain value of the rat&/py, the balance the eigenvalues o) span the interval —1/3,2/3), they are
between short- and long-range effects shifts and the mostugmented by 1/3 so as to span the intefQal]. Therefore,
stable conformation for the system becomes the so-callethe microstructure of the material is depicted by the shifted
blue phase in which helicity is not restrained to lie on onetensorM = Q-+ é/3, as shown Fig. 4. Using this technique, an
plane[10]. This complicated structure is not accessed in ouilisotropic state is represented by a small cube. A uniaxial state
study since the physical values éfp, are expected to be is represented by a parallelepiped with two edges of same
such that the solution nodes tend towards Bwe O line, length and a biaxial state by a parallelepiped with three
where the stable phase is found to be cholesteric with a noredges of different lengths.

B. Formation of the planar monodomain twisted
plywood architecture
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. tion of the governing equation as follows:
4 2
LR=—(£) [V2.Q]+ £ E)[—87T(V><Q)][s]
ho ho/\ Po
I— ]
3

2
g + [—1672Q]. (10

Po

Figure 5 shows a time series of the tensor figlx,y,t)
I | describing the propagation of order in the material, fbr
' 1 ' =6, é/ppy=0.03, andé/hy=0.015. (For this representative
simulation the dimensionless pitch is therefore equal to
1/2) The computational grid has 301 nodes in thandy
FIG. 4. Representation of microstructure by the shifted tensofirections. When the thermodynamic potential (propor-
M =Q+ /3. The parallelepipeds are constructed with the eigensystiona| to concentration of fibrous molecules in the extracel-
tem of Q; the three eigenvectos,m,|) giving the orientation and lular matriX increases fromJ<8/3 to U=6, the homog-
the three eigenvalues\{,\,,\;) augmented by 1/3 giving the de- enous isotropic state becomes unstable and a nonlocal
gree of alignment. An isotropic state is represented by a small cubepontaneous phase-ordering process starts. Strong gradients
A uniaxial state is represented by a parallelepiped with two edges off order (S andP) are created between the initial constrain-
same length and a biaxial state by a parallelepiped with three edgefg layer aty=0 and the isotropic material bulk. Recall that
of different lengths. aty=0, (S,P) are the stable biaxial steady-state solutions to
Egs. (10). As a result, order and orientation are induced in
Since the effect of elastic anisotropy is out of scope in thighe unstable isotropic bulk of the material and converted into
study, we use the one-constant approximatierl that ren- a stable cholesteric phase. Figur@5shows a field of ran-
ders the splay, the twist, and the bend modes of deformatiodomly oriented cuboids representing the initial isotropic state
[6] indistinguishable and simplifies the long-range contribu-of the material. Figures(b) and 5c) depict the time evolu-
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tion of the microstructure. Order progresses as a movingholesteric pitch. In addition to the lag, Figgbg 6(d), and
front from the stable initial constraining layer and leaves6(f) illustrate the periodic extinction of light that character-
behind it a fully relaxed helical microstructure. The orderedizes the twisted plywood architecture observed in polarized
material exhibits a single helical directi¢N) that is perpen-  light microscopy and that arises every half-cholesteric pitch.
dicular to the moving frontand the surface of structure in ~ Figure 7 shows the time evolution of the scalar order pa-
formation). The material remains homogeneous in thei- ~ rametersS and P along the helix directioriN). The picture
rection perpendicular to the front. Once established, théhows that the initial shape of the front is conserved. Also,
defect-free cholesteric order is stable and no further reorierfn® speed of the front is constant and the degree of biaxiality
tation mechanisms occur in its wake. Figur@)5gives the 1S Very Iow_ compa_reo! to the degree of unlaX|_aI|ty_. The small
steady-state microstructure of the material corresponding tgvershoot in the biaxial order parameter profiles is explained
the planar monodomain cholesteric structure analogous tBY the nonlinearity of the front. Sinde is coupled toS and
the twisted plywood architecture. The absence of topologicalfs gradient, the highest value &f appears at the highest
defects is due to the fact that there is a unique helical direcv@lue in the gradient o8. This is easily seen by the arced
tion (N) for the whole material and therefore no orientationaltrajectory made by the front in th@ P triangle (Fig. 8.
incompatibilities between neighboring regions exist. Know-
ing that the microstructure of the bulk is greatly affected by C. Kinetics of the phase-ordering process
the limiting surfaces and therefore this “ideal” arrangement ) _ . )
of the molecules within the material is due to the specific N this section, we focus on the kinetics of the ordering-
anchoring of the molecules on the physical boundaries. ~ Process that leads to the planar monodomain twisted ply-
Periodic boundary conditions have been employed on th¥/00d. The objective is to get a sense of the speed of this
x direction in order to remove surface effects from the sidesProcess with respect to the thermodynamic poteriiand
The upper boundary of the computational domain represent§€ length scale ratiog/po and é/h, (material propertigs
the surface of the secreting cell along which the fibrous mol- !N order to do this, we assume that the cholesteric liquid
ecules are isotropically ordered. Hence, the only physica‘FryStal is uniaxial(this is justified by the strong uniaxiality

boundary that can act on the material bulk is the previousijnat prevails over biaxiality in the cholesteric geometry
solidified ordered layellower boundary of the computa- Also, we assume that the directoris fixed in time and that

tional domain. Along this initial constraining layer, the mol- it describes an ideal helix along the normal to the interface
ecules describe a smodine director orientation is perfectly (this is justified by the observation that, in the simulations,
regulay planar(molecules parallel to the surfacstate, the (he kinetics of the moving front are unaffected by the direc-
system naturally adopts its helical directiéM) perpendicu- (OF triad orientation Given these simplifying assumptions,

larly to the restraining surface. It is understood here that if® original problem reduces to a one-dimensional time-

the domain were to be expanded—i.e., as would be expandéifpendent Ginzburg-Landd@iDGL) type of equatiorf 19—

in a biological system—this boundary would be ordered ex-21)- , _ _
actly like its predecessor and serve as the new initial con- 'he TDGL equation associated with the present problem
straining layer in the expansion cycle of the biological com-¢ads
posite. Therefore, by analogy, the monodomain twisted 9S 2.2 2

X ; ‘ . L £\°9°S of 1 &
architecture of biological fibrous composites is assumed to __(_) —=— _:[_1+ —U—4772<—) }S
arise through an ordering process qualitatively similar to the at ho/ dy IS 3 Po
one described above, in which a planar anchoring of the 1 2
chiral molecules at the surface is indispensable. +-US?— -US3, (11

Figure 6 shows the time evolution of the uniaxial scalar 3 3

order parametes (degree of alignmentnd the out-of-plane
componentn,| of the director field using gray scale intensity ~ Equation(11) accepts two types of topological solutions.
plots, for the same parametric values and dimensionlesEhe first type of solutions interpolating between a local
times used in the simulations results shown in Fig. 5. Thenaximum and a minimum of the free energy potentieh)
fields go from white to black as the scalar order parameteare called relaxation modes. These traveling-wave solutions
goes from its equilibrium value to zero, and the out-of-planehave a multitude of possible velocities. A second type of
componentn,| goes from 0 to+1. From Fig. 6, it is clear traveling-wave solutions, interpolating between two minima
that both order $) and orientatiorin,| propagate as fronts. of the free energy potentici(S), are called domain wall
Both fronts have the same speed, but the director front presolutions(or interface layers These solutions have a veloc-
cedes the scalar order front parameter. This is not surprisindgly uniquely determined by the form of the free energy po-
as an increase in alignment—i.e., the scalar ordetential f(S) and by the boundary conditiof®2]. We are
parameter—requires a well-established average director oriherefore interested in the latter solution, which are time- and
entation. In other words, the distance that separates the frongpace-dependent traveling-wave solutions corresponding to
of the two processes corresponds to a preoriented layeihe roots of the free energy potentig]S). Although solu-
Therefore the phase-ordering process consists first of the eiens to Eq.(12) are well known for the case of an infinite
tablishment of orientation and then an increase of alignmenpitch py (i.e., achiral nematigs[19-21], the presence of
along the direction adopted by the system. The thickness athirality (py# 0) introduces new significant effects that have
the preorientation layer correspon@®ughly) to the half- not been established or explained.
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() ®

FIG. 6. Time evolution of the uniaxial scalar order param@&seleft) and the out-of-plane componemt,| of the director field(right)
using gray scale intensity plots. The fields go from white to black as the scalar order parameter goes from its equilibrium value to zero and
the out-of-plane componeft,| goes from 0 ta+1. The specific time are &),(b); 12.5(c),(d); 25 (e),(f). Alignment (S) and orientatiorin,|
propagate as fronts of equal speeds; however, the scalar order front parameter lags the director front, becaus® neegtowa well-
established average orientation. The thickness of the preorientation layer corregpoigtidy) to the half-cholesteric pitch. The periodic
extinction of light arises every half-cholesteric pitch. Boxes are of unit length.
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FIG. 7. Time evolution of the scalar order parame®rand P FIG. 8. Trajectory of the scalar order parameters through the

R o . interface in theS-P triangle. The nonlinearity of the front clearl
along the helix direction. The initial shape of the front is conserved gte. y Y
; . S appears from the arced trajectory.
and its speed is constant. The degree of biaxiality is very low com-

pared to the degree of uniaxiality. (iv) U** <U: the only stable phase becomes the ordered

. . _ one.
To establish phase stability of this system we follow the  The values of these critical thermodynamic potentials
standard approach ¢8]. In order to determine the critical U,c, U**, andU* are

values ofU and &/p, for the phase transition between the

isotropic and cholesteric phases, we use the following free o[ € 2
energy potential: Uic=2.711+4m ool |’ (139
2
11 V2] 1 1 8 2( 5) }
_|-_= 2 S 2 |3, = U=-|1+47—]| |, (13b
f [2 6u+2w(po) }S guS+gust. (12 3 Do
é: 2

Similar to achiral nematic liquid crysta[®], there are four U*=3 1+4772(p—) : (139
characteristic stability regions, limited by three critical ther- 0
modynamic potential**, Uc, andU*, as follows. When p,— we recover the well-known achiral nematic

(i) U<U™: the system has one global minimum corre- results[11]. As apparent from Eqg13), the critical poten-
sponding td5=0, so that the isotropic phase is stable and thejals U, , U** , andU* that are, respectively, 2.7, 8/3, and 3
ordered 6+ 0) phase is unstable. The thermodynamic potenfor achiral nematics are now amplified by[1
tial U=U** corresponds to the limit of metastability for the + 472(£/py)2]. Thus, to form a chiral nematic phase, a
cholesteric ordered phase. higher concentration of rodlike molecules is required than

(if) U** <U<Uc: the free energy exhibits two minima: for an achiral one. The thermodynamic potential dependence
the global/stable minimum corresponds to the disordere@f the equilibrium order paramet&U) for different values
phase while the local/metastable minimum belongs to thgf the ratio &lp, is given in Figs. ga)—9(d). The vertical
ordered phaseU,c designates the thermodynamic potentialjines indicate the critical thermodynamic potentials deter-
at which the isotropic-cholesteric phase transition occurs; ahining the stability of the isotropic and cholesteric phases.
this particular potential, the free energy is equivalently mini-The solid and dotted lines indicate, respectively, stable and
mized by the isotropic and ordered phases and therefore bofjetastable states of the given phase. The overall shape of the
are stable. This equivalence characterizes the first-order digitig] profile is conserved ag/p, is increased:S(U**)
continuous phase transition. =1/4,S(U,c) = 1/3, andS(U*) = 1/2.

(i) Uic<U<U™: the ordered phase becomes the global/ \we next analyze traveling-wave solutions to Etf). Us-

stable minimum of free energy while the isotropic state reping a front comoving frame, the scalar order parameter be-
resents a local/metastable minimum. The thermodynamic pQomes

tential U* marks the metastability limit of the isotropic
phase. S(y,t)=S(y—vt)=S(y"), (14)
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T T

FIG. 9. Dependence of the equilibrium order param&éor different values of the ratig/p,. The vertical lines indicate the critical
thermodynamic potential that rule stability of the isotropic and cholesteric phases. The solid and dotted lines indicate, respectively, stable and
metastable states of the given phase. The overall shape of the initial profile is conseé&/pg iasincreased.

wherev is the velocity of propagation in thg direction of S,=0, (183
the traveling-wave solution. Rewriting Eq11) using Eg.
14) leads to the followi di diff tial tion:
(14) leads to the following ordinary differential equation 1 1\/ 24 96 [ > .
s §>2a28 o 1L €1 R VIRV Vo I
Coy T lng) oy asT[T 3T T pg
11 \/ 24 96 ( ¢ )2
1 2 _ 2
2 =—4+—-\/9————7 —] . 180
~ZUSHIUS. (19 Si=77%3 U U7 \pg (189
The right-hand side of Eq15) can be written as The solutionsS; andS; correspond, respectively, to the iso-
df tropic and cholesteric minima of the free energy poterttial
@ " 2. 3 The $O|Ut|0n82 is related to a maximum of the_ free energy
gs~ASTASS HALS, (18 functional. As apparent from E¢180), the equilibrium sca-
lar order parameter of the cholesteric phase depends not only
1 o € 2 1 2 on the thermodynamic potentiglike achiral nematig but
Ax=|1-zU+dm ol |’ As=—3U. As=3U, also on the ratio between the internal length scale and the
(17) pitch. Since the solution of interest here is the interface layer
or domain wall between the cholesteric and isotropic phases,
and the roots of the polynomialf/dS are given by moving at a velocityy, Eq. (15) is subject to the boundary
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[}

conditions S(—«)=S; and S(+»)=S,;. Following the

10°
steps 0f19-24, Eq.(15) is rewritten using the solutiort; , 8r— T ; )=
S,, andS;: . Epg = 0.05 //‘ Py
08 b S L A(S—5)(S—5,)(S— Sy —h(S)=0 e
v dy/ dy/2 4( 1)( SZ)( 83)_ ( )_ ’ 4L //’// J.#-‘__,..-"’ J
(19 . o
. £ 2 L :
o v
with : a’:’.é ‘o
£ 0
2(¢\? 2
=<l . 20 9 i3
D 3 ho) ( ) ag’_ 2 1'.‘."'.;1 |
- : @ ’-,-":" — ¥/h, = 0.01
We know that the two minima dof(S) areS,; (corresponding 4 é/h°= 6.5 |
to the isotropic phaseand S; (corresponding to the choles- ¢ o g/h°= 0.03
teric phasg Consequently, we assume that the scalar order A L };/h0= 0.04 |
parametelS satisfies the differential equation 0

295 3 3.05 3.1 3.15

ds
d_y’ =K(S— Sl)(s_ S;), (21) Concentration, U
(a)
whereK is an unknown function of the equation parameters. 0.02 l : . .
Deriving an analogous relation for the second-order differen- £/, = 0.04
tial equation in the scalar order leads to 0.015
d’s d [dS| [d/dS|]|dsS 0.01 1
dy’? dy'\dy’) [ds\dy’]|dy’ "
& 0.005-
=K*(S—S)(S-S)(—$1+25-S;). (22 2
Replacing the above relations Eqg1) and (22), into Eq. % ° .,-" ',;'. 7
(19) leads to the following algebraic relation: 8 ooosd { { 7
B i i i
(S=S)(S—S3){(2DK?~Ay)S—[DK*(Sy+ S5~ AsS, o on
-0.011- &P = 0.
—vK]}=h(S)=0. (23 seeee E/P = 0.03
BO1EL —-- E/p,=0.04
The functionh(S) will be zero if ——— &lpy =005
(2DK2—A,)=0, (248 0% 28 29 3 31 32
Concentration, U
[DK2(S;+S;)—A,S,—vK]=0. (24b) (b)

These two former relations determikeand the wave veloc-

. FIG. 10. Behavior of the traveling ordering interfa¢a. When
ity v as

U>U,c, the speed of the front is positive as the stable cholesteric
U 1 phase is advancing into the isotropic metastable/unstable phase.
K= \ﬁ (é) (25) However, whenU<U,c, speed is negative and the isotropic front
3\hg is advancing. At the exact thermodynamic potentiskU ¢ the
interface becomes static. The speed increases with the gditjo
Uujfé 1 3 24 96 £\? (b) When the ratioé/p, increases, the speed decreafes any
v= 3( ) 9 2( ) . (26)

h_o ) + 4 U UTF given thermodynamic potentjal

Po

The solution of Eq(21) satisfies the full equatiofil5) if K Solution(27) has a front shape which connects the two non-
andv are given by the above relatioi25) and (26). The  degenerate minima of the free energy potential. It describes
speed of the traveling wave turns out to depend on all thehe domain wall between the two phases, moving at the ve-
different parameters of E¢15). The actual solutiols(y’) is  locity v. The velocity is unique because it corresponds to the
obtained by solving Eq21) which gives the classical front case where the potential difference between the two phases is

solution[19-24 exactly compensated by dissipation. Hence, solutis a
power balanced solitary wave or diffusive solit@8].
S(y’)=§{1—tan}{K§y’H 27) Equation (27) yields a positive velocity as long ad
2 2 ' >U,c which indeed confirms that the stable cholesteric
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phase is advancing into the isotropic metastable/unstable
phase. Similarly, itU<U,c, the velocity is negative and the
isotropic is advancing. At the exact thermodynamic potential
U=U the interface becomes static. In addition, when the
ratio between the internal and external length scajés,,
increases, the speed of the front increases too. However,
when the ratio between the internal length scale and the
pitch, &/pg, increases, the speed decreaffes any given
thermodynamic potential So the speed profiles shift in a
similar way to the scalar order parameter profiles. Since it
has been established previously from the phase-plane analy-
sis of the original governing equation that an increase in the
ratio £/py leads to an increase in the biaxial ordering, it is
concluded here that an increase in biaxiality of the ordered
phase reduces its speed of progression. Figurés) Hhd
10(b) summarize the behavior of the traveling ordering inter-
face.

Additionally, it is found that the shape of the scalar order
parameter profile at the interface is flattened by an increase
of the &/ pg ratio; this result is consistent with the observation
that as biaxiality increases, uniaxiality decreases. The thick-
ness of the interface reduces with théh, ratio, which is
again consistent with physically observed behavior. Looking
now at the effect of the thermodynamic potentiél)( the
two previous phenomena are observed to occur at the same
time. That is, as the thermodynamic potentidl) (increases,
the interface thickness shrinks and the equilibrium order pa-
rameter of the stable cholesteric phase increases.

Figures 11a)—11(c) show the behavior of the scalar order
parameter profile across the interface. The figures show that
the amplitude of the front is affected by the pitghyj and by
the thermodynamic potentiall), while the shape of the
front is affected by both the thermodynamic potential and
coherencdé) length. To assess the usefulness of the uniaxial
solution(28) we next determine its accuracy. Figure 12 com-
pares the shape of the computed frpmimerical solutions to
Egs.(6)] with the analytical solutiori27). The figure shows
that even in the presence of an induction time for the com-
putational solution, the front position at a representative time
of t=17.5 is almost identical. The front shape for both cases
is also very close. Thus, we conclude that for sufficiently
large pitches, the analytical results obtained under the
uniaxial approximation compare well with the numerical re-
sults of the governing equation and therefore are useful to
describe the parametric sensitivity of chiral front propagation
in cholesteric phases such as those found in the matrix of a
developing biological fibrous composite.

V. CONCLUSIONS

A model based on the Landau—de Gennes theory has been
used to simulate a lyotropic cholesteric liquid-crystalline ma-
terial in order to understand the structure formation process
of the twisted plywood architecture ubiquitously found in

FIG. 11. Response of the scalar order parameter profile for aRiological fibrous composites. The model is able to repro-

increase of(a) ¢/pg, (b) é/hy, and(c) U. The amplitude of the

duce the experimentally observed planar monodomain tex-

front is affected by the pitchp(,) and by the thermodynamic po- tures. 'I_'he numerical si.m_ulations g:onfirm that, as suggested
tential (U), while the shape of the front is affected by both thermo- by Neville[1], a constraining layer is necessary for the struc-
dynamic potential and coheren¢® length.

ture to have a unique helical axis and be monodomain. The
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reveals that biaxiality increases with the ratio between the
internal length scale and the cholesteric pitéip, (its
chirality). Since biological fibrous composites are long-pitch
systems, their structure is essentially uniaxial.

Finally, an analysis made under the assumption of a
uniaxial cholesteric mesophase showed how the different pa-
rameters of the model affect the speed of the ordering pro-
cess. As expected, the speed of the ordering process was
found to increase with the thermodynamic potential and the
ratio ¢/hy. However, the process is slowed by an increase in
chirality. This deceleration of the ordering process is in turn
linked to the increase of the biaxiality generated by the in-
creased chirality of the material as shown in &P tri-
angle. This means that the symmetry of the phase and its
asymmetric fibrous constituents greatly influences the time
required for the biological composite to assemble itself. Fi-
nally, the thickness of the dynamic domain wall shrinks with
an increase in the thermodynamic potential and a decrease of
the ratio&/hg.

We hope that these results will contribute to a better un-
derstanding of the mechanisms which control the formation

FIG. 12. Comparison of the front from numerical solutions andOf the planar monodomain twisted plywood architecture

uniaxial approximation at the representative tirtve17.5. The g
shape and position of the front are also very close which assess€§0US composite analogs.

the relevance of the uniaxial solution.

absence of such a preordered layer leads otherwise to mul-

found in cholesteric liquid crystals and their biological fi-
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