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Energy balance in feedback synchronization of chaotic systems

C. Sarasola
Department of Physics of Materials, University of the Basque Country, 20018 San Sebastian, Spain

F. J. Torrealdea, A. d’Anjou, A. Moujahid, and M. Gian
Department of Computer Science, University of the Basque Country, 20018 San Sebastian, Spain
(Received 8 July 2003; published 30 January 2004

In this paper we present a method based on a generalized Hamiltonian formalism to associate to a chaotic
system of known dynamics a function of the phase space variables with the characteristics of an energy. Using
this formalism we have found energy functions for the LorenzdRa, and Chua families of chaotic oscilla-
tors. We have theoretically analyzed the flow of energy in the process of synchronizing two chaotic systems via
feedback coupling and used the previously found energy functions for computing the required energy to
maintain a synchronized regime between systems of these families. We have calculated the flows of energy at
different coupling strengths covering cases of both identical as well as nonidentical synchronization. The
energy dissipated by the guided system seems to be sensitive to the transitions in the stability of its equilibrium
points induced by the coupling.
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[. INTRODUCTION straightforward answer in Hamiltonian systems where the
Hamiltonian function plays the role of the total energy of the
It is said that two different dynamical systems synchro-system[6]. A system is Hamiltonian if it has the form
nize when they approach their behaviors as a consequence fMVH(x); xe R?", whereH(x) denotes the Hamiltonian
their mutual interaction. The fact that it is possible to inducefynction:; andﬂ:(gld l,d), wherel 4 denotes the identity ma-
a synchronized regime bgtween deterministic chgot!g OSC'I_lat'rix in R". As M is a skew-symmetric matrix and VH(x)
tors makes synchronization a phenomenon of significant in

; . are always orthogonal. Consequently, the movement takes
terest in many areas of science and technology such as com:

S ) : . . place at a constant value of the Hamiltonianergy, that is,
munication, electronics, optics, chemistry, and biology. . S . .
Survey paper on different approaches in the synchronizatioh'(x) IS a f|r§t mtegral and the system Is conservative. Ne\{-
and control of chaotic systems can be found in Rai. erthele;s, dissipative chaoltlc systems are n.ot conservative
Usually the efficiency of a particular synchronization ap_and neither can t.hey be written in a Hamﬂtoman format nor
proach is only evaluated in terms of its ability to reach theN@ve they afirstintegral energy function. Some kind of gen-
established goal of proximity between the systems invowe&rallz_atlon of the _Ham_lltonlan formalism, including dlssu?a-_
and very little is said about the cost, in terms of energy, offion. is then required in order to be able to analyze a dissi-
the process itseff2]. Nevertheless, some of the mechanismsPative chaotic system under this perspective. In Reéf.
described for the synchronization of nonidentical chaoticMcLachlanet al. provide a general framework that encom-
systems imply feedback interaction with coupling strengthgpasses both energy functions, in the conservative case, and
going to infinity [3], and even the mechanism of complete Lyapunov functions, in the dissipative case, showing that
replacement first reported in Ré#] is equivalent to a dif- they have a common formulatiok=M (x)VH(x); xe R"
fusive type of coupling with infinite gaif5], which might andM is either a skew symmetric or a definite or semidefi-
result in a demand of an unlimited amount of energy if anite negative matrix. This generalization is compatible with
synchronized regime has to be reached and maintainethe extended view of thinking of a Lyapunov function as a
Much research on synchronization has been carried owind of generalized energy for dissipative systems. Neverthe-
working with theoretical systems for which it is not obvious less, dissipative chaotic systems do not fit into the
how to define a measure of their behaviors in terms of energi¥cLaghlanet al. generalization as they have neither a first
and, consequently, how to establish the cost of their synchrdntegral energy nor a Lyapunov function. A more general
nization process. That is the case, for instance, of the vergnatrix M(x) is required to account for the kind of dissipation
well-known chaotic systems of the Lorenz, $3ter, and that takes place in dissipative chaotic systems. In .
Chua families. In this paper we develop a formal procedureéBloch et al. express the general dynamics for systems with
to assign to a chaotic system of known dynamics a functiordissipation as sum of a skew symmetric Poisson bracket plus
of the variables of the phase space with the characteristics @ symmetric bracket. This approach is also adopted in Refs.
an energy. Usually, it is the understanding of the energy anf9,10] using an ordinary matrix notation, and it is the one
forces actuating on a system that permits to infer its kineticsthat we will be using in this paper when we refer to a gen-
The approach in this work needs to be the opposite. Giveeralized Hamiltonian formalism.
the kinetics, we have to investigate what function of the This generalized Hamiltonian approach has been used in
phase space variables can be consistently thought of aspmoblems of contro[9,11], where typically positive definite
possible energy function for the system. This question finds guadratic forms are sought to play the role of energy. Unfor-
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tunately, as any positive definite quadratic form can alwayshe coupling on the dynamical entity conformed by the

be forced to be a solution for the energy compatible with theguided system plus the coupling mechanism.

generalized Hamiltonian formalism, independently of the We develop in Sec. Il the mathematical formalism to as-

system itself, the same trivial positive definite quadratic formsign to any chaotic system of known structure a function of

has usually been assigned to different chaotic sysfgrs the variables of the phase space that could be formally con-
Nevertheless, assigning always the same type of energydered as an energylike function of the system. Energy func-
function to every chaotic oscillator fails to uncover the indi- ions for the Lorenz, Rssler and Chua families of chaotic

vidual traits of its particular dynamics. The generalizedsyStems are found in Sec. Ill. Section IV. is devoted to study

Hamiltonian approach requires additional hypotheses in orfl€ energy balance in the feedback synchronization process
f two chaotic oscillators. In Sec. V. the energy functions

der to be able to assign to each oscillator a particular energ i )
function. These additional hypothesis can be establishefPUnd in Sec. lll are used to exhaustively compute the energy
lance in the feedback synchronization of identical and dif-

forcing a link between change in energy and change in pha i X X
space volume in the sense that both go together. Any enerd§"€Nt chaotic systems for different values of the gain param-
ter of the coupling term. Finally, a discussion of the results

variation cannot occur without a variation in the phase space :

volume and vice versa. We show in the paper that when thi$ Presented in Sec. V1.

constraint is imposed to a particular chaotic oscillator as an

additional condition to its generalized Hamiltonian represen- 1I. DETERMINATION OF THE ENERGY FUNCTION

tation it determines an energy function which is specific for

the chaotic system and that is no longer, in general, a positive

definite quadratic form. We would like to emphasize that this .

condition occurs naturally in ordinary physical systems, and x=1(x), @

that when this approach is applied to an ordinary physical

system the energy obtained is the actual energy of the sydthere xe R" and f:U—R" is a smooth function with

tem. UCR". These dynamical equations can be expressed in a
Once the energies corresponding to two particular chaotigeneralized Hamiltonian form

oscillators have been found, the flows of energy that take

place when they synchronize their behaviors can be calcu- x=M(x)VH, 2

lated. Many theoretical studies of chaos synchronization

have been carried out coupling identical systems. In thesehere M(x) is the local structure matrix an¥H is the

cases, if feedback synchronization is used, identical synchraggradient vector of a smooth energy functidi(x). For

nization is reached spontaneously at a given, usually smalklamiltonian systemsM(x) is a skew-symmetric matrix

value of the gain parameté&r(coupling strength Neverthe-  which satisfies the Jacobian identity. For a generalized

less, in most of the practical occurrences of synchronizatiotdamiltonian systeni (x) is no longer skew symmetric but

the systems involved are not identical. They can be eithecan be decomposed into the sum of a skew-symmetric matrix

nonidentical systems of the same famil§2,13 or, even, J(x) and a symmetric matriR(x)

systems of a completely different structdte4,15. If non-

identical chaotic systems are forced to synchronize via feed- x=[J(x)+R(x)]VH. (3

back, synchronization does not spontaneously occur at a

given value of the gain parametkrbut, rather, it must be The time derivative of the energy along a trajectory is

firmly enforced through the establishment of large values otpep

the gain parameter. Identical synchronization between non-

identical systems is always a theoretical limit regime that

would occur for coupling strengths going to infinifg].

Nevertheless, the extent of proximity in the behavior of two ) .

systems that is going to be considered a synchronized reginf$ for the skew-symmetric matri(x),

will depend on the particular application considered and it

will be, consequently, an experimental decision. As different VHTI(x)VH=0. 6)

degrees of synchronization can be required for different prac-

tical purposes, to know about the dependency of the flow of In many physical problems the local structure matrix

energy on the degree of synchronization can become an ab}(x) and the energy functioH (x) of the dynamical system

pect of practical interest. Also, we show that maintaining theare known, and then the energy change in time is easily

guided system in a synchronized regime requires an averagwaluated by Eq(4). In our case we only know the vector

nonzero flow of energy per unit time. This flow of energy field given by Eq.(1) and we do not know either the energy

should be provided, or absorbed, by the coupling device antuinction of the system or its structure matrix. The problem is

compensate the interaction of the guided system with its erthen to associate to the dynamical system an energy function

vironment through the dissipative components of its strucand a local structure matrix compatible with its dynamics,

ture. This flow of energy, which can be assimilated to a disthat is, in the form of Eq(2). This association is not un-

sipation process, turns out to be sensitive to some saliequivocal, and to use as an energy function the trivial qua-

features of the bifurcation pattern of equilibriums induced bydratic positive definite function of the state variab[63 is

Consider an autonomous dynamical system

H=VHTJ(x)+R(x)]VH=VHTR(x)VH (4)
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frequent. In doing so, the procedure assigns to every dynami R L

cal system the same type of energy function and fails to
uncover the particular characteristics of its dynamics. We_JWW\ﬁ_Nm_
adopt here a different approach. As E2). does not uniquely @}Ei@_ lw(t)
determine matriXM (x) and energyH, additional hypotheses d L~ L
are required in order to use that formalism to assign a spe . 1 o 1
cific energy function to the system given by Ef). In ordi- i®)) ——c | 2 "o
nary physical systems any energy variation that occurs as
consequence of their dynamics always takes place togethe
with a volume change in phase space. In what follows we
show that if we impose this natural condition to the energy
function to be associated to the dissipative chaotic oscillator FIG. 1. AnRLC electrical network.
given by Eq.(1), this energy function becomes unique.
According to Liouville’s theorem, the volume rate of J(X)VH=f(x). (10)
change in phase space associated to the vector velocity field
f is related with the divergence of that field loyv/(t)/dt On the other hand, fa¥(x) to be a skew-symmetric ma-
:fA(t)din(X)dX: fA(t)Ein:lﬁfi /&XidX, where A is a trix,
bounded set in the phase spdttandV its volume. If we
could isolate unequivocally from the vector fidldhe com-
ponent that contributes to its divergence we would be able t
determine the energy associated to that vector field, imposing
the condition that any temporal variation of the energy along VHTf.(x)=0, (12
a trajectory of the system occurs exclusively due to the pres-
ence of that component. which defines for each dynamical system a partial differen-
Helmholtz's theorenj16] guarantees that we can decom- tial equation from which the energy functidi(x) can be
pose a vector field into the sum of one divergence-free calculated.
vector f that accounts for the whole rotational tensorfof Once the energy functioH (x) is known, the system can
plus one gradient vector fielf}; that carries its whole diver- be easily rewritten in &=[J(x) + R(x) ]VH(x) formulation
gence. to make explicit the corresponding skew-symmeiiig) and
symmetricR(x) matrices. We would like to point out that
f(X)="f(x)+fq(x). (6)  whereas the energy function is unequivocally determined by
the velocity vector fieldf, the matrices](x) and R(x) are
In practice, we can construct the vector fi¢|dtaking all  not, which simply shows the fact that different formulations
the terms of that contribute to its divergence and only thosecan be compatible with the same dynamics.
terms. The rest of the terms of the vector fiélhrm f .
The decomposition given by E(6) can be used to deter-  |;; ENERGY FUNCTIONS FOR SOME WELL-KNOWN
mine the energy associated with the systemf(x) impos- CHAOTIC OSCILLATORS
ing the condition that any change of the energy along a tra-
jectory of the system occurs exclusively due to the In this section we apply the above procedure to assign

VHTI(x)VH=0 (11

contribution of the ternf. energy functions to three well known families of chaotic os-
If we impose in Eq(4) the condition cillators, Lorenz, Resler, and Chua. In these three cases, as
x e R3, we will use the standard notationy, z for the phase
R(X)VH="14(x), (7)  space variables. First, we would like to illustrate our point
finding an energy function for an ordinary dissipative elec-
we have trical oscillator. This circuit will also be used as an introduc-
tory example for the analysis of the balance of energy during
H=VHTf(x). (8) the synchronization process.

Consider the serieRLC electrical network of Fig. 1,

That is, the energy is dissipated, passively or actively, dud'hereR is the resistance of the resistarthe inductance of
to the divergent component of the velocity vector field andthe coil, andC is the capacity of the capacitor. The state
can be thought of as the work per unit time of the energyvariables are the currenthrough the circuit and the voltage
gradient along this velocity component according to @. ~ differencev between the terminals of the capacitor. This

To determine the energy functidd that fulfills this re- ~ €lectrical circuit is modeled by the equations
quirement it is sufficient to realize that if E({f) holds, then

Eqg. (3) can be rewritten as i=— Ei - Ev
L L’
X=[J(X)+R(X)]JVH=J(X) VH + f4(x), (9) L
and, consequently, v=ch (13
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If we identify in the velocity vector field the part respon-
sible for the divergence of the fieldy, and the part that
does not contribute to if,;, we have

1 R
v R
fo= 1 and fg= L (14)
EI

Then, according to Eq12), the energyH associated with
the circuit will satisfy the partial differential equation

v JH N i oH 0 15

Lo Cov (19
which is satisfied by the quadratic form

H=3(Li%+Cv?), (16)

which corresponds to the energy usually associated with the
electrical circuit, as sum of the potential energy in the coll
plus the energy accumulated in the capacitor. Note that the
componentf. of the vector field is conservative with respect

to H as it does not contribute to the change of the enéfgy
along a trajectory of the system.

We can also find, according to E@), the rate of change
of this energy along a trajectory of the system.

R.

H=VHTf4(x)=(Li,Cv)| L
0

= —Ri2=—ugi,

17)

wherevg, is the terminal voltage in the resistor. Thus, we can
see that the described procedure determines a dissipation
process that occurs in the correct place, the resistor, and

the appropriate rate; vy i.

A. Lorenz

In this section we look for a function of the phase space
variables that could be consistently considered as an energy

function for the Lorenz family of systems. L&t=f(x) be
the following Lorenz system:

X=0oy—oX,
y=pX—y—XZ, (18
z=Xxy— Bz.

To find a decomposition of the velocity vector fieff
the type described by Ed6), we first investigate which
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FIG. 2. Isosurface corresponding to a constant energy Mdlue
=687,53 for a Lorenz system with paramet€t§, 45.92, 4 En-
ergy is in arbitrary units.

ay —oX
fo=| pX—xz and fyg=| —Vy (19
Xy — Bz

As it can be observedly is a gradient vector that carries
the whole divergence of the vector fieldnd f. is a diver-
gence free-vector that takes account of its whole rotor. So,
the decompositiorf = f_ + f4 of the velocity vector field of
the Lorenz system given by E(L8) satisfies the conditions
of Helmholtz’s theorem.

Consequently, according to E(L2), the energy function
H(x,y,z) will obey the following partial differential equa-
tion:

JH JH

dH
O'yx'i‘(pX—XZ)W'FXyE:O, (20
8he solution being the nondefinite quadratic form
Y P o2,
H_E(_EX +y°+2z°|. (22)

The derivative of this energy along a trajectory is accord-
g to Eq.(8):
H=px?—y?— Bz°. (22)

Figure 2 shows the isosurface of constant eneky
=687.53(arbitrary unit$ for a Lorenz system with param-
eterso=16, p=45.92, B=4. The location of the actual Lo-
renz attractor and a trajectory corresponding to its conserva-
tive componenk=f.(x) can also be seen.

Once the energy functioH is known, the Lorenz system
can be easily rewritten, according to E®), as sum of a
skew-symmetric matrixJ(x,y,z) and a symmetric matrix

terms in each component of the velocity field contribute toR(x,y,z). Note that matriced(x,y,z) andR(x,y,z) are not
its divergence. These terms, and only these, define the vectanique. The following is an example of decomposition of the

field f4. The remaining terms form the vector field. We
identify the following vector fields:

Lorenz system where the symmetric matrix takes a diagonal
form

011606-4
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2
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X . 23
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B. Rossler

If we apply the same procedure to thésREer system

X

X=-y—z,
FIG. 3. Isosurface corresponding to a constant energy vdlue
y=x+ay, (24) =75 for a R@sler system with parameters 0.2, 0.2, 5.7. Energy is in
arbitrary units.

z=b+(x—c)z,

1/27?
we obtain H=VHT ay . (28)
—y-z 0 (x—c)z
fe= X and fq=| ay |. In Fig. 3 a Rasler attractora=0.2, b=0.2, c=5.7, along
b (x—0c)z with the isosurface corresponding to eneky 75, in arbi-

trary units of the phase space, is shown. The trajectory on the

This time the vector field is not a gradient and, conse- surface corresponds to the conservative comporent
quently, this decomposition does not satisfy the conditions of= f¢(x) of the Rasler dynamics in the particular decompo-
Helmholtz’s theorem. That is, althoudly carries the whole sition performed in this work. Note that the energy function
divergence of the velocity field, it still retains part of its H is not, strictly speaking, an exclusive characteristic of the
rotor. A quick inspection shows that the additionftpof the ~ Rossler system but rather of any system with the same con-
divergence_free vector (]12 O,O)T compensates its rotor servative Componerﬂ;c. On theiother hand, the derivative of
while keeping its divergence unchanged. Thus Helmholtz'she energy along a trajectory, is strictly linked to the
decomposition of the velocity fielfl of the Rssler system Rossler dynamics as it is a direct consequence of both dy-

will be f=f.+fy, with namic components, the conservatifgand the dissipative
fq. The same consideration obviously applies to the other
—y—z—1/27? 1/27? families of chaotic systems that we are considering in this
fo= X and fy= ay , work.
(x=c)z (25) C. Chua
For the case of a continuous Chua system given by the
wheref. carries the rotor of andf its divergence. equations
Consequently, according to E€l2), the energy function ) 5
H(x,y,z) will obey the following partial differential equa- X=ay—aX"—acCX,
tion:
y=X+z-Yy, (29
+ +1/22aH+ aH+baH—0 26
(y+z+122%) 2+ 5o +b57=0, (26 oy
which has the solution the following vector fields
H=3{[x+b(z+1)]2+(y+Z%2+z—b??}. (27 ay — ax®— acx
The derivative of this energy along a trajectory will be fe=| x*2 and  fq= Y (30

given according to Eq(8) by - By 0
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in phase space and consequently to arbitrarily close energy
values. Thus, on the attractor the time average of the energy
rate given by Eq(8) will be zero,

0.6
5 (LVH (01" 4(x)) =0, (34
where the brackets represent averaging in time dhdle-
notes the energy function of systets f(x).

So far, systenx=f(x) has been considered as an autono-
mous dynamical system. In this section we intend to evaluate
the energy balance that takes place when a system is forced
to synchronize another guiding system. A chaotic oscillator

O e~ x=f(x) can be forced to synchronize a different guiding
NN/oog y chaotic systeny=g(y) via feedback coupling according to
04 08 02 01 Dt the equations

01 02 o8 04

0.2+

-0.2—

0.4

-0.6—

x

FIG. 4. Isosurface corresponding to a constant energy Wlue y=9(y),
=0.001 for a Chua system with parametét§, 16,—0.143. En- )
Xie= (X)) + K(y =%y, (39

ergy is in arbitrary units.

are, respectively, divergence-free and irrotational and, consdherex,y e R", f,g:R"—R" are smooth functions is the

quently, we have the following law for the energy function >N diagonal matrix with diagonal entrigs>0, a gain pa-
rameter that measures the strength of the couplingxgftdl

Hxy.2), indicates the state of the guided system when the gain pa-
oH oH oH rameter is set té. Note thatk(y—x,) is the coupling inter-
ay +(x+2) oy _IBYE:O! (3D face required in order to be physically able to implement the
coupling of both systems=f(x) andy=g(y).
which is satisfied by the nondefinite quadratic form If the oscillatory systenf(x,) is maintained in a forced
regime outside its natural attractor, E8) will produce a net
o } _ 1x2+ 2+£zz (32) nonzero average dissipation rate. Nevertheless, considering
2 @ y B the whole entityf(x,) +K(y—x), the trajectoryx,(t) re-
mains, for every value of, confined to an attractive region
with time variation along a trajectory of phase spacgl7] and the net average energy variation
, corresponding to systef(x,) + K(y—x,) will also be zero.
H=x*+cx*—y?. (33 Thatis,
In Fig. 4 a Chua attractorg=10, 8=16, c=—0.143, ([VH (x )1 fa(x) + K(y—x)1)=0, (36)
along with the isosurfackl =0.001, can be seen.
from which,

IV. FEEDBACK SYNCHRONIZATION ENERGY BALANCE

. . . . ([VH () 1K(y=x0)= = ([VH'(x1fa(x0). (37)

In the preceding section we have assigned different en-
ergy functions to different chaotic oscillators. The existence According to Eq.(37), the coupling device provides the
of a function of the phase space variables that measures tfilew of energy needed to compensate the energy exchange of
energy of a particular state of a given chaotic system permitsystemf(x,) with its environment. Thus, the amount of en-
evaluation of the energy exchange of the system with iteergy per unit timeP(k) that is necessary to provide the
environment when it moves along a particular trajectory. Theyuided system with in order to maintain the degree of syn-
energy derivative given by Eq8) measures the energy ex- chronization attained with a coupling of gain parameter
change of systerm=f(x). It can be thought of as a dissipa- and, consequently, forced to follow an unnatural trajectory
tion process that takes place in the divergent constituents & (t), will be
the system. The energy derivative given by E8). can be
either positive or negative, and, consequently, the exchange P(k)=—([VH (x)1Tf4(x)). (38
of energy that the system maintains with its environment
should be understood as being sometimes an active anthis energy can be considered as the cost of maintaining that
sometimes a passive, dissipation process. An autonomoymrticular level of synchronization.
chaotic oscillator initially located outside its natural attractor The degree of synchronization reached, measured in terms
will lose, or gain, energy in its movement towards its naturalof the error vectore=x,—y, depends on the magnitude of
oscillatory region of phase space where its net average emhe gain parametet. The norm of the synchronization error
ergy variation will be zero. This is so because on the attractocan be made arbitrarily small, as long as a sufficiently large
the trajectory will repeatedly return to arbitrarily close statesgain k is implemented. To find the cost of maintaining a
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FIG. 5. AnRLC oscillatory electrical circuit coupled via feed- Gain parameter k {amplifier)

back to a chaotic Lorenz system. . . . .
Y FIG. 6. Power required to synchronize an oscillatory electrical

circuit with R=1Q, L=1 H, andC=1 F, to a Lorenz signal at

regime of complete synchronization we can substit(te different gain values. Power is in watts.

for x,(t) in Eq. (38) to obtain

. ; T The powerP(k) that is necessary to provide the guided
lim P(k)=—([VH(y)]"fa(y)). (89 system with in order to maintain the synchronized regime
koo attained by the circuit at a gakwill be, according to Egs.

) . i . (38) and(17),
As variabley(t) is confined to move in the attractor of the

guiding system, Eq(39) shows that the cost, or power R
needed to maintain both systems completely synchronized, _ - fi" -
remains bounded in spite of the fact that its attainment might P(k)=—1{ (Lix.Coy) =(Rii). (41

imply arbitrarily large values of the gain parameker

Note that this power supply is delivered to the system, via
the electronic amplifier, from an external energy source. Fig-
In this section we present computational results concerndre 6 shows computed results of the power needed to main-
ing the energy balance of the synchronization process dfin the synchronized regime of the oscillatory circuit with
some chaotic systems in a wide range of values of the gaiR=1(), L=1 H, andC=1 F, at different values of the gain
parametek. First we introduce the subject with an illustra- parametek. As it can be appreciated the required power to
tive example where thBLC circuit studied in Sec. lll tries to maintain complete synchronization of the currem¢nds to-
synchronize its behavior to a chaotic Lorenz signal. Secondyards a limit value of about 160 watts at very large values of
we study in great detail the transition towards identical synthe gain parametek.
chronization of two coupled identical Lorenz systems and
also of two coupled identical Chua systems. Finally, synchro- A. Identical synchronization
nizing different chaotic systems is studied in the cases of a

Chua guided Resler system and a Chua guided Lorenz sys- ™Many works on synchronization of chaotic systems are
tem. concerned with synchronizing systems with the same struc-

Let us consider theRLC circuit of Fig. 5 coupled via ture and the same parameter values. In this case a synchro-

feedback to a scalar signal corresponding to the variabfe nized regime of zero error, identical synchronization, is usu-
a Lorenz system with parameters-16, p=45.92, 8=4. The ally obtained when the gain paramekeanf the coupling is set

guiding signal is chaotic for these particular values of theeyond a certain value, usually small. In the two examples
parameters. As it can be appreciated in Fig. 5, the coupling1at follow the setting up of the coupling situates the guided
requires an electronic amplifier to set the appropriate voltaggYStém in a dissipative regime that can only be maintained
that physically implements the interaction tekfx—i). The with a continuous provision of energy through the coupling

complete set of equations that models the synchronizatiofl€Vice- The energy dissipated per unit time increases kvith
process is then until, abruptly, an identical synchronization regime is

reached and the cost of maintaining that synchronized re-
gime becomes zero.

V. COMPUTED SYNCHRONIZATION ENERGY

R 1
Tl okt k(x=ig), . —
L L 1. A Lorenz system guiding another identical Lorenz system

We have chosen two identical Lorenz systems with pa-
0 =£i (40) rameterso=16, p=45.92, 3=4, coupled via feedback cou-
kKTck pling in the way described by E@35). At these parameter
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FIG. 7. A Lorenz system with parameters-16, p=45.92,8=4
guiding another identical Lorenz system. In p@t average energy FIG. 8. A Chua system with parametess=10, c=—0.143,
of the guided system at different values of the gain paranmtetér ~ 8=16 guiding another identical Chua system. In p@it average
(b), average energy dissipated per unit time by the guided system @&hergy of the guided system at different values of the gain param-
different values of the gain parameterEnergy is in arbitrary units.  eterk. In (b), average energy dissipated per unit time by the guided
system at different values of the gain parameteEnergy is in
values the Lorenz system operates in a chaotic regime. Thgbitrary units.
gain parametek has been varied smoothly ranging frdm

=0 tok=2. For each value df the energyH(x,) given by ) >
Eq.(21) and its time derivativél(x,) given by Eq.22) have parameterk in a waving pattern that abruptly ends at the
9. k9 Y EQ. moment synchronization is reached. The Chua attractor is a

been averaged along a trajectory of the coupled system Ionsqﬂall region around the origin of phase space, that is why the

enough as to be qons_|dered averaged on th_e attractor. Tg\%solute values of the exchanged energy are in this case
results are shown in Figs(& and 1b), respectively.

X o . rcpuch smaller than in the previous case. As long as the gain is
As it can be seen, the coupling interface makes the guide . : -
not large enough as to force identical synchronization, the

system attractor move through phase space regions of dlffeg'ystem is dissipating energy on average, and, consequently,
ent energy following a waving average energy pattern. Fo

all these values of the galithe systems are not yet synchro- to m'a!ntam that regime at any given Va'ﬂe Iofe'qu|re's a
, . o . provision of energy. For values &faroundk=0.35 identical
nized. ldentical synchronization occurs at values of the ganl?

. . synchronization is reached, at a zero energy maintenance
parameter in the_nelghborhood lof=1.6 w.here.the average ot This case and the previously described Lorenz guiding
energy of the guided system returns to its original level. A

S o SLorenz case exhibit a gualitatively similar pattern of energy
ca_n_be seen n Fig.(3) the derivative of the_ energy of the variation which could probably be considered representative
original guided system, in the sense described by (Bd),

. . of the feedback identical synchronization behavior.
along a trajectory, of the coupled system follows a differ-
ent pattern. As soon as the coupling is connected, the average 3. Sensitivity to perturbations
energy derivative of the guided system becomes negative, _ . .
that is, it starts to dissipate on average an energy that the R€@l systems are unlikely to be identical as some param-
coupling device will have to provide in order to maintain the €€ mismatch can always be expected. If two systems are
forced regime. The required energy increases linearly, witf10t €xactly the same, identical synchronization at zero cost
two different slopes, with the gain parameter until the will not spontaneously occur. Nevertheless, a regime of
onset of the identical synchronization stage. At valueiof ~ N€arly complete synchronization can be forced, at large val-
the neighborhood ok=1.2 some structural change must YeS ©f the coupling parametér whose maintenance will

happen that would permit the guided system to reach ver§flémand a limited amount of energy per unit tinie

quickly identical synchronization at the already mentioned— M, _...P(K), given by Eq.(39).

value of the gairk=1.6 with no energy consumption at all. Equation(39) can be used to evaluate the sensitivity of

We conjecture that the onset of this identical synchronizationhis limit flow of energyP to the parameter mismatch. Let us

stage is linked to the transition to stable spirakat0.77 of  suppose that in the previously studied Lorenz guiding Lorenz

the previously two unstable spirals equilibrium points of thecase,x, y, and z are the variables of the guiding Lorenz

perturbed Lorenz system. We will elaborate on this idea irsystem with parametes, p, and3, and the mismatch in the

the following section. parameters of the intended identical response Lorenz system
are respectivelygo, dp, and 58. According to Eqs(39) and

2. A Chua system guides another identical Chua system (22), the energy per unit timedP, required to maintain a

As a different example of identical synchronization we Synchronized regime will be
have performed computational experiments with two identi- _ 22 2
cal Chua continuous systems with parametersl0, c= OP=((p+p)x“—y = (B+6B)Z%). (42)
—0.143, B=16 linked together with the same type of feed- Taking into consideration that the average energy dissipated
back coupling described before. This set of parameter valudsy the response system is zero when its parameters are iden-
makes the Chua system itself maintain a chaotic behaviotical to the corresponding parameters in the guiding system,
The results are shown in Fig. 8. we have

As in the previous case the average energy varies with
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SP=8p(x?)— 6B(z?). (43 12 02

o

Equation(43) shows that the synchronization energy due to ¢
the parameter mismatch is not sensitive to parametand
that its sensitivity to parametercan be found by computing

Energy derivati
(2]
Energy derivative

ot : @ i} (b)
the average value of the square of the guiding variable 4 04
while its sensitivity to parameteg is given by minus the —08
. g . 2
average value of the square of the guiding variablblote
that these results refer to the theoretical limit case of a gair 9, 005 o oqs 08 w0 100 180 200
parametek going to infinity. Gain parameter k Gain parameter k

The presence of noise will also prevent two theoretically _ _
identical systems from reaching a regime of identical syn-B:Té;' ugidi:\ C;h;Z;gftsrztgv,:hwﬁﬁrazgﬁeﬁg ;_b(iglg ’
chronization at zero cost. Equati¢®8) can be used to com- 9 9 4 P o v

. - c=5.7. In part(a), average energy dissipated per unit time by the
pute the cost at different values of the gain paramkter guided system at small values of the gain paramietér part(b) a

larger range of values of the gain parameters. Energy in arbitrary
B. Synchronizing different systems units.

When the systems to be synchronized are different the . . ) ) _
mechanisms governing the dynamics of the synchronizatioguided system studied, exhibits a bifurcation diagram of
are likely to be more complicated than in the case of identi-€quilibrium points as a function of the coupling parameter
cal systems. A possible approach to its understanding is t1at can explain some salient features of the computed en-
contemplate the guided system and its coupling device in th&rgy. Fork=0, the unperturbed initial Risler system has a
second of Eqs(35) as X,= f(x) — Kx+ Ky which shows weakly unstgble sp_lr_al _saddle point very near the origin
the original structure of the guided systefitx,) perturbed whose stability condition is very soon altered as a func_tlon of
by the coupling device td(x,) —Kx, plus an exogenous the parameterk. For k=0.Q4. the perturbed syster_nk
input Ky. For different values of the gain parameterthe = f(Xi) —Kx, has a stable limit cycle that collapses into a
whole lot of limit sets of the perturbed guided system expe-Stable spiral node, bly=0.098. This bifurcation scheme can
riences a pattern of bifurcations which can be relevant for th&xplain the fine structure of the observed energy at very low
dynamics of the coupling system, specially for low values ofvalues of the parametds In fact, the pattern of Lyapunov
k and weak leading signals. In particular, when studying theéXponents of the response system at these values of the gain
energy balance of the synchronization at different values oParameterk is complicated but ak=0.098 the largest
the gain parameter, the bifurcation pattern of equilibriumlyapunov exponent becomes negative and generalized syn-
points could determine the behavior of the coupling at |o\,\,chron|z_at|or[18]_occurs due to the destruction of the specific
values ofk, while what is going to happen for larger values dynamics of thex,=f(x,) —Kx, perturbed system. The on-
of the gain parameter could be more dependent on the cha$et of this synchronized regime is detected by a sudden de-
acteristics of the master system. That is, roughly speakingline of the energy exchanged per unit time as it can be seen
the traits of the coupled regime reached at low values of th&) Fig. 9(@). For larger values of the gain parameter the
gain parameter, weak couplings, are likely to be characterigRossler guided system is progressively dragged towards the
tic of the slave system itself and relatively independent of théasin of attraction of the guiding Chua system to a regime of
master system, while for strong couplings the guiding systen§omplete synchronization that takes place at the expense of a
becomes dominant. Sometimes very weak couplings can beet income flow of energy, of about 0.8 arbitrary units per
able to produce stable periodic orbits or stable points in th&econd, required to maintain its dissipative condition. In Fig.
perturbed system which induce the onset of synchronizatiof(P) the average derivative of the Beler system energy is
phenomena such us phase synchronization or general Syﬁtesented versus a high range of values of the gain parameter
chronizatior[1] or even regimes of nearly complete synchro-k-
nization at low values of energy exchange.

In what follows a Chua guided Lorenz system and a Chua 2. A Chua continuous system guiding a Lorenz system

guided Rasler system are studied. In this case a Chua continuous system with parameters
a=10,c=—0.143, 8=16 guides a Lorenz system with pa-
rameterso=16, p=45.92, B=4. With those values of the

We study here the case of synchronizing two differentparameters the free behavior of the drive and response sys-
chaotic systems where a Chua continuous system with paems is chaotic. Due to the relatively low energy values cor-
rameterse=10, c= —0.143, =16 guides a Rssler system responding to the states of the attractor of the guiding Chua
with parametera=0.2, b=0.2, c=5.7. The parameter val- system, aroundi=0.001 as it can be appreciated in Fig. 4,
ues have been chosen to guarantee a chaotic free behaviortbé variation of the energy balance of the synchronization as
the drive and response systems. a function of the gain parametkrdepends on the particular

The intrinsic dynamics of the autonomous family of structure of the bifurcations of the equilibriums of the per-
Rossler systems perturbed by the coupling , thatig, turbed family of guided systems in the sense expressed in the
= f(x) —Kxy, wheref(x,) stands for the particular Reler  preceding section.

1. A Chua continaous system guides a $&ter system
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FIG. 11. A Chua system with paramete#s-10, c= —0.143,
B=16 guides a Lorenz system with parameters16, p=45.92,
B=4. In part(a) energy derivative corresponding to the theoretical
o5 equilibrium regime at each value &f(dotg and actual computed
energy derivativgfull line). In part (b), difference between both
energy derivatives, actual minus theoretical for the steady state.

~1725 spiral equilibrium points of the guided Lorenz system in that

range of values of the gain parameker
-17.6 This behavior implies that the main responsible compo-
nent of the observed energy exchange pattern is the overall
movement in phase space of the oscillatory region of the
_ . _ - guided system towards the origin, as the strength of the cou-
f;g a;;gs;g'zer%':;\t’raa'j”eifof; TRZS;S"; Esgacziﬁii’oﬁhgz'tea 4Pling increases. Superimposed to it, and hidden, remains a
' " : low of energy that could be in some way associated with the
states of the perturbed Lorenz system in that range of values of the o
gain parametek is also shown. cost of the frequency and phase synchro_nlzatlt_)n of both sys-
tems. As the energy function and the bifurcation pattern of
_equilibriums of the guided system are known, the main en-
gray component associated to the location of the guided os-
cillatory regime can be theoretically calculated. Figuréall
shows the derivative of the energy that corresponds to the
r§éJccessive equilibrium points as a functiorko©n the same
icture the actual computed energy derivative of the guided
orenz system is also shown. In Fig. (bl the difference
between both energy derivatives, which we have called re-
duced energy derivative, is shown. The transition to a stable
regime of the intrinsic dynamics of the guided systenk at
points atk=0.77 and to stable nodeslat 17.24. Finally, at =0.77 has a qlear ef'fgct on this redqqed energy lderivativg. It
can be seen in the figure as an initial dissipative transient

k=19.63, the two fixed points collapse to zero and disap-"". o this t ent i th derivative b
pear, according to a pitchfork bifurcation pattern where thg €9IMe. Lnce this transient 1S over, the energy derivative be-
zero unstable fixed point becomes stable. Eorl9.63, the comes positive for an ample region of values lofThat
origin is the only stable equilibrium point. According to this, means that at every value kfwithin this range the system

the perturbed guided system loses its chaotic character frOtIrr1Ies to increase its average energy via a kind of active dis-

k=0.77 , and becomes susceptible to being guided by thglpation. Nevertheless, as the system is confined to a recur-

external Chua system. This situation is reflected in the Con[ent region of the phase space it must have a constant aver-

ditional Lyapunov exponents, the three of them becomin age energy and, consequently, the coupling device must

; ! - ghecessarily absorb the supply of energy. At values of the
negative fromk=0.77 generating conditions for the appear_coupling strength aroun#t=18 this situation is reversed.

ance of a regime of phase synchronization together with 9en: e is a large perturbation, apparently produced by the

eralized synchronization. :
As a consequence the guided Lorenz system soon Stari:é)llapse of the two stable spirals to a stable node at the

synchronizing in frequency with the Chua guiding systemc.)”g'n' t_hat makes Fhe guided system become very dissipa-
I ; . tive. This perturbation relaxes with increasing gains and a
and at values ok beyondk=0.77 the guided system tries to Lo ) i .

. : A less dissipative regime is reached kat 25 that continues
replicate the driver although at the wrong location in phas asically unchanaed for anv other laraer value of the qain
space. The location in phase space is determined by the | _arame}[/er 9 y 9 9
cation of the equilibria of the perturbed Lorenz family. Fig- P ’
ure 10 shows four instances of Lorenz guided systems at
values ofk, respectivelyk=5, k=5.5, k=6, andk=6.5.

The figure also shows the movement through phase space In this paper we have presented a method to assign to a
that the coupling imposes to one of the originally unstablechaotic system of known dynamics a function of the phase

=27

FIG. 10. A Chua system with paramete#s-10, c=—0.143,
B=16 guides a Lorenz system with parameters16, p=45.92,

As k increases, the family of perturbed autonomous Lo
renz systems changes the position and stability of its natur
equilibrium points according to the following bifurcation
pattern. Initially, fork=0, the unperturbed Lorenz system
has three unstable equilibrium states. One saddle point at t
origin and two symmetric unstable spiral points at a certai
distance from it. The origin remains an equilibrium point for
the whole range of values of the paraméteiThe two spiral
points move symmetrically towards zero, Bsincreases,
changing their stability condition to stable spiral equilibrium

VI. CONCLUSIONS
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space variables with the characteristics of an energy. To do We have also studied and discussed the flows of energy at
so we have used a generalized Hamiltonian formalism withdifferent values of the coupling strength for nonidentical syn-
the additional condition that any energy variation along achronization between Chua guided bothsBler and Lorenz
trajectory of the chaotic system be linked to the divergenceystems. We show that the dissipated energy is sensitive to
of the vector field responsible for the volume contraction ofsome salient features of the bifurcation pattern of equilibria
the phase space. In this way, the energy function associated the perturbed guided system and it is able to detect some
to a system becomes intimately related to its particular strucof their transitions to stability. We show that the whole con-
ture conveying a real physical meaning. We have assigneglipution to the dissipated energy can be analyzed in terms of
energy functions to the Lorenz, mer, and Chua families of two Componentsl The quantitative|y most important compo-
chaotic systems. nent can be associated with the trajectory described in phase
We have used the previously deduced Hamiltonian enefspace by the stable steady states induced by the coupling in
gies to establish a measure of the cost, in terms of energy, ghe guided system. The rest of the dissipated energy could be
the maintenance Of diﬁerent degrees Of Synchronized rei'n some Way related to the accomp“shment of the Synchro_
gimes between these chaotic systems. Our results confirfjzation in frequency and phase.
that the cost of maintaining an identical SynChronized regime Fina”y, we think that the energy approach deve]oped in
between identical systems is zero. Nevertheless, for couplingjs paper can be used to explore some of the well-
strengths weaker than the required to establish an identic@staplished phenomena in the synchronization of chaotic sys-
synchronization regime a continuous supply of energy is detems such as the collapse of the trajectory of the coupled
manded by the guided system that slumps to zero at the onsgjstem to some invariant subspaces or the intermittent loss of
of the identical SynChronization. We have observed this besynchronization in Coup|ed identical Systems when the cou-
havior performing computational experiments of identicalpjing strength is just beyond the synchronization threshold
synchronization with both, a Chua guided Chua system and gnd the system is subjected to small perturbations. The tran-
Lorenz guided Lorenz system. sition to stability of the synchronization manifold is revealed
A synchronized regime between systems of differentyy the transition to negative values of the conditional
structures never occurs SpontariEOUSiy at any given value Q! apunov exponents. Nevertheless, if the Lyapunov expo-
the gain parametek. Complete synchronization between pents are negative and yet there are persistent desynchroni-
nonidentical systems is a limit regime that requires couplingzation events with synchronization errors reaching levels be-
strengths going to infinity. Nevertheless, a theoretically infi—yond that of the perturbations, it is because there are
nite coupling strength does not mean an unlimited provisionnyariant sets locally unstable which are able to magnify the
of energy. We have proved that, in the limit, maintaining anperturbation. These regions in phase space might be charac-
identical synchronized regime between nonidentical systemgyrized by positive local Lyapunov exponents. An analysis of
requires a limited energy per unit time that can be foundhe |ocal average energy variation corresponding to the re-
averaging the dissipation of energy of the guided systemyions in phase space with positive local Lyapunov exponents
along a trajectory of the guiding system. Thus, this limitwould show the way the synchronization energy can be sen-

value of the average energy depends on the particular chagitive to the influence of the unstable sets of the synchroni-
acteristics of both systems. zation manifold.

This result can be used to evaluate the robustness of the
synchronization between supposedly identical systems to pa-
rameter mismatch. We have illustrated this point studying the
sensitivity of the synchronization energy to parameter mis-
match in the case of a Lorenz system guiding another iden- This work was partly supported by Gipuzkoako Foru Al-
tical Lorenz system. dundia and the Basque Government.
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