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Asymptotic solutions for the equilibrium crystal shape with small corner energy regularization
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Dynamic models for facet formation often employ a regularization of the surface energy based on a corner
energy term. Here we consider the effect of this regularization on the equilibrium shape of a solid particle in
two dimensions. Using matched asymptotic expansions we determine the explicit solution for the corner shape
in the presence of the regularization. Our results show that for a class of surface energy anisotropy models the
regularized solution approaches the classic sharp-corner results as the regularization approaches zero. The
results validate the use of the regularization in numerical calculations for the equilibrium problem. Finally, a
byproduct of the analysis is @axactsolution for the equilibrium shape of a semi-infinite wedge in the presence
of the regularization.
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[. INTRODUCTION surface wrinkling with a growth rate for the instability that
diverges as the length scale of the wrinkling goes to zero
The role of surface energy anisotropy in determining thg12,13. In numerical simulations this ill posedness would
equilibrium shape of a solid particle in a liquid is a classicmanifest itself as “blow-up” on the finest scale. A regulariz-
materials science problem that has been studied for over iag term smooths the small-scale instability and removes the
century. Herring[1,2] reviewed the work on the so-called ill posedness.
Gibbs-Curie problem for the equilibrium shape of a solid One approach that has been used extensively in the litera-
particle, including Wulff's construction3] of the equilib- ture for regularizing the ill-posed problem is to add a higher-
rium shape and corrections and extensions of Wulff's prooforder term to the surface enerfly3—27. The main idea is to
Post-dating Herring, many elegant alternative descriptions ahclude an additional term in the surface energy, which pe-
the equilibrium crystal shape have been developed, such amilizes sharp corners and makes them rounded on a small
the tangent angle formulation in Burton, Cabrera and Frankength scale. A simple model for the two-dimensional prob-
[4], the Frank plot[5], the double-tangent construction of lemis[1,13,14,17,18
Cabrerd6,7], the Cahn-Hoffmar vector[8], and Andreev’s

construction[9]. A modern perspective of the equilibrium ¥=70(0)+ BK?, (1)
crystal shape problem appears in books such as in Refk. . '
ory[ll] pep PP I . ! wherex is the curvature of the surface aydis taken as an

isotropic “corner energy” parameter. Sharp corners corre-
spond to| x| —< and thus make the effective surface energy
v divergent. In the equilibrium problem, minimization of the

Following Refs.[1,2], consider the two-dimensional case
where the angular orientation of the surface normal and
the surface energy ig(60). Depending on the details of
v(6), the equilibrium crystal shapéWulff shape”) can
have flat and/or curved sides which are connected smoothly
or by corners(Fig. 1 illustrates the case where the shape
consists of curved sides connected by cornefsat sides
correspond to facets and are possiblg(if) has cuspslocal
minima wherevy is not differentiable¢ Corners can occur
when it is energetically favorable to exclude high energy
orientations, which occurs when the “surface stiffness”

+ 9" is negative.

While the equilibrium problem is well understood, imple-
mentation of anisotropy in models for tdgnamicsof evolv-
ing surfaces creates two difficulties, the first due to cusps in
y(6) and the second due to ill posedness when the surface
stiffness is negative. The presence of cusps(ifl) depends
on whether the system is above the thermal roughening tem-
perature or not. We restrict our attention here to the case
where the surface is thermally rough and cusps are not
present. Even without the presence of facets, the issue of ill
posedness due to orientations with negative stiffness makes FiG. 1. (Color online Equilibrium crystal shape foy(#6) given
the dynamic model intractable unless the evolution model iy Eq. (14) with a=0.5 andu=1. The crystal shape is shown as
regularized. Without a regularization, a planar surface orisolid (red) curves, and the unphysical “ears” are shown as dashed
ented so that it has negative stiffness will be unstable tablue).
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effective surface energy should lead to corner roundingeters and other functional forms for the anisotropy, such re-
Since a large curvature at the corner has high energy becauselts have not been demonstrated in general, so it is not clear
of the regularization, and a small curvature at the corner ha$ the Wulff shape is always recovered for any form of the
high energy because of a larger area with orientations witkanisotropy.

larger surface energy, the amount of corner rounding that The scope of the present work is to use asymptotic analy-
minimizes the energy is determined by a compromise besis to show in general that there are no surprises regarding
tween these two competing energy penalties. the effect of this regularization on the equilibrium shape,

This regularization was first proposed by Herring for theeven though it enters as a nonlinear singular perturbation.
equilibrium problem in Ref{1]. Herring determined a crude For a broad class of anisotropies, the Wulff shape is always
order-of-magnitude estimate of the effect of this regularizarecovered as the regularization approaches zero. Moreover, a
tion by replacing the corner between two facets with acentral result of the work is an explicit solution for the shape
rounded corner with constant radius of curvature. The regunear the corner in the presence of the regularization, as well
larization was first suggested for the dynamic problem inas a description of the entire equilibrium shape. Finally, in
Ref.[14] and then studied in Ref13] (see also Refd17]).  deriving these results we also obtain teeact regularized
This model or a linearized version of it has been used in thgolution for the semi-infinite wedge geometry.
dynamic models of facet formation in Ref§15,16,18— For clarity, we restrict our attention to a two-dimensional
21,23-29, calculation of equilibrium island shapes in system corresponding to a solid particle surrounded by a
strained epitaxial film$28], and in equilibrium and dynamic liquid (or vapo) (see Fig. 1 The generalization to three
calculations of void shapes in stressed so[i26]. In Ref.  dimensions is not trivial and is not attempted here. We also
[18] the regularization is derived from the interaction of restrict ourselves to the case wheg€6) is sufficiently
atomic-scale steps near a corner. The thermodynamics of thignooth(twice differentiablé, so we do not consider the case
regularization and its correct representation in threewherey has cusps and the equilibrium shape has facets.
dimensional models involving surface diffusion and phase The equilibrium shape is constructed using matched
transitions has appeared in RE22], and Ref[27] includes  asymptotic expansiorf29]. Away from a corner the regular-
this regularization in a comprehensive general treatment ofation term is not important and the shape is governed by
thermodynamics and kinetics of evolving interfaces. the Wulff construction. Near the corner, the local behavior is

The plausibility of the regularization for rounding corners governed by a nonlinear differential equation in which the
is clear, however, to our knowledge there has not yet been gorner energy plays a controlling role. The nonlinearity of
concrete description of how this regularization affects thethe corner problem poses a challenge for the construction of
basic problem of equilibrium crystal shapes. It is expectedsolutions which round the corner and match the appropriate
that asg—0 we should recover the Wulff shape, but since “wulff” angles of the outer solution. However, we show that
the additional higher-order term is a nonlinear singular perthe corner problem can be reduced to a linear double-
turbation it is not obvious that the=0 results are recovered eigenvalue problem, and the only solution to this eigenvalue
in the limit of 83— 0. Herring’s original work{1] suggested problem that corresponds to a rounded corner is the one
that adding a curvature dependence to the surface energyhich precisely matches the Wulff angles at the corner. The
would round corners of the Wulff shape. In this work, how- resulting composite solution consists of the rounded corner
ever, the true equilibrium shape was not determined. Rathegolution near the corner and the Wulff shape away from the
an order-of-magnitude estimate was obtained by assumingorner. The results mean that for a class of surface energy
that the corner would have a constant radius of curvatureanisotropies the regularized solutions recover the Wulff
From energy minimization of corners with constant radius ofshape as the regularization goes to zero. The convergence of
curvature it was found that the radius of curvatwrevas  the asymptotic results also provides a validation for using the
proportional tog2. Technically, however, imposing a con- regularization in computations of the equilibrium shape; nu-
stant radius of curvature at the corner does not satisfy thenerical calculations should converge to the Wulff-shape pro-
conditions of equilibrium for the regularized problem, and sovided the regularization is sufficiently small, as seen in the
the question of the actual corner shape was not resolved. numerical example of Ref26].

More recent work has studied the regularization in more The asymptotic solution near the corner is similar to some
detail, but has not addressed the equilibrium shape problewf the analytical results for the dynamics of corners in Refs.
directly. DiCarloet al. [13] was the first to study the regu- [23—-29 (see also related work in Refsl8—21]). The main
larization extensively, but the work focuses on the regulardifference is that here the fully nonlinear regularization is
ization in the context of dynamics for an evolving interface.employed in the corner region, whereas in RE28—-25 the
Liu and Metiu[16] discuss the equilibrium problem in the model equation contains only the linearized regularization
absence of regularization, and use the regularization in therm. When the regularization term is linearized, as is appro-
dynamic problem, but do not consider the effect of the regupriate for a small-slope theory of an evolving interface, there
larization for the equilibrium problem. Sieget al. [26] de-  is a strong parallel between slope selection at a facet corner
termine the equilibrium shape of a void numerically for aand spinodal decomposition in the Cahn-Hilliard equation
particular choice for the anisotropyyy(6)=vy*[1 and the convergence of the regularized solutions to the zero-
+0.15 cos(#)] and show that the Wulff shape is recoveredregularization solution is easily establisH&®] (see also the
as the regularization is reduced to zero. While it is expectedliscussion in Refl18]). The analysis presented here extends
that similar results would hold for other values of the param-the small-slope results to the case where nonlinear effects are
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important at the corndbut only for the case of equilibrium I, (0)=7,(0)+7.(0) (6)
Another work related to the corner problem in the presence

of the regularization is Ref[30], where existence and s the surface stiffness and

uniqueness results were demonstrated for a semi-infinite

wedge with a rounded corner and prescribed far-field orien- d2x
tations. The paper is primarily concerned with the dynamics C,(k)= —F+ %Ki (7)
of evolving corner solutions, but one part of the work applies dsizr

to the equilibrium problem and is potentially applicable to o o
the local corner problem. However, the work is restricted tolS @ Comer energy term. At equilibrium the surface satisfies
orientations for which the stiffness is negative and thus the« =const, and bounds a solid with prescribed atga
work does not apply to equilibrium crystal shape problem for Without loss of generality we can restrict our attention to
which the corner orientations are stable and with positivéhe caseu, =0. The caseu, <0 is equivalent to the case
stiffness. M, >0 under the transformationg, ——u, and «,—

The rest of this paper is organized as follows. In Sec. II~ K« , i.€., converting an exterior solidvoid) domain to an
we formulate the problem in nondimensional variables. Ininterior (drop) domain or vice versa. The inversion symmetry
Sec. Ill we review the Wulff shape obtained by setting theOf interior (drop) and exterior(void) shapes is well known in
corner energy parameter to zero. In Sec. IV we use matchdfe absence of the regularization term. Here we note that this
asymptotic expansions to construct the equilibrium shap8ymmetry is also preserved in the presence of the regularized
when the corner energy parameter is small. We find explici€orner term.
solutions for the corner behavior and demonstrate that it can In the following derivation of equilibrium shapes, we
always match to the corner angles prescribed by the Wulfshall consider a general form foy, (6). We only require
shape. In Sec. V we present the solution for a semi-infinitéhat v, (6) and its derivatives up tg/; are continuous. In
wedge, obtained as a by-product of our analysis. Finally, irsome instances, it is useful to illustrate the results with a
Secs. VI and VIl we discuss and summarize the main resultspecific example. In such cases we consider the prototype

model for surface energy with a fourfold anisotropy,
Il. FORMULATION

Y« (0)=7v0[1+acog46)], 8
Let the solid surface be described by a closed curve in

(X4 ,Y«) space, parametrized by the orientation anjlend  where 0<s <1 measures the degree of anisotropy.

the arclengths, , wheres, traverses the boundary of the  We define a length scaleas a characteristic radius of the
solid with the solid on the right and is measured clockwise solid region fromA, = L2, Let y, be a characteristic value
from a fixed reference orientation, say (0,1). The local cur-of the surface energy. In nondimensional form, the equilib-
vature of the surface is taken as positive for a solid bumpyium condition becomes

which is given by

de =T'(6 40 _ d3—0+l(d—a)3 9
K*:+ds (2) M= ( )dS B d53 2 dS ’

when the solid is interior to the boundafiput includes a where

minus sign when the solid is exterior to the boundary

The total surface energy per unit length of the surface is L'(0)=T+(6)vo, (10
described by an anisotropic surface energy dengijty6) — 11
and a corner regularizatiohs, 2 [1,13,14,18, S=S, /L, (11)

;*:7*(0)+%ﬁ* Ki . 3 B= P /(’yOLZ), (12)
The total energy of the surface is and
m= i Ll yg. 13

E. :f Y« ds, . (4)
In the above equations, the paramegemeasures the rela-

Minimizing the total energy of the surface subject to thefive contribution of the corner energy, « ~ B, /L? to the -

constraint of fixed solid area, enclosed by the curve gives Surface energy~yo. The nondimensional area constraint is

the modified form of Herring's equatiadi®1] for the chemi- A and in nondimensional form the surface energy model for

cal potentialu, at the surface of the solid, which here in- the example is

cludes the effect of the regularizatipb3],

My =T (0) Ky — B, Ci(Ky), 5 . . - . .
Finally, the value ofu is unspecified, but is determined so
where that the area of the solid particle satisfies the area constraint.

v(0)=1+ a cog480). (14
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I1l. SOLUTIONS IN THE ABSENCE OF REGULARIZATION

The equilibrium shape problem whef=0 has been
solved from a variety of approachg¢$—9]. We summarize
the results here in some detall, as they play an important role
in the regularized case discussed later. We follow most
closely to Refs[6,7] and[4]. 2

When 8=0, the chemical potential can be absorbed into
the length scale. Defining

S=su (15
o 1 1 1 1 1 1 1
the outer problem becomes 1.5 -1 05 0 0.5 1 1.5
q
de
re)—==1. (16) FIG. 2. (Color onling Projected surface enerdyq) and com-
ds mon tangent constructioh(q) for the cos(4) model with «

The shape of the particle is found from E@6), and it has a =05

corresponding ared. The area constraint is then satisfied by stiffness have Fourier components with temporal growth

choosingu appropriately so thah= x?A, giving rates that diverge as the spatial frequency becomes large. In
- the equilibrium shape problem, the orientations with nega-
pn=\AlA. (170  tive stiffness generate a crystal shape with nonphysical

“ears.” See Fig. 1 for an example.
Put another way, in the absence of the corner energy term, |n the case where the crystal has nonphysical ears, one
the shape of the crystal is independent of the crystal size anghn determine the corner orientations by locating the points
can be found by solving the problem far=1, giving @  where[x(6),y(6)] crosses itself. Without loss of generality,
crystal with aregA. The effect ofu is to modify the length  we can orient the crystal so tha(0) is a local maximum
scale, so by choosing appropriately crystals of different andI'(0)<0. The corner orientations on either side of the
area can be constructed. Viewed in this wayscales in-  corner,6= 6, ,6, , are given from the two jump conditions
versely with the dimensions of the crystal: small particles

correspond tou— while large particles correspond to [x]|0°+—0 23
n—0%. The special casgx=0 corresponds to a semi- o,
infinite domain and will be discussed in Sec. V.
The crystal shape determined from integrating B) is oF
[yll,>=0. (24)
Cc

7}
s=f r'(6)d6, (18
0

For the special case wheg 0) is symmetric with respect to
the reference orientation, then the corner is symmetric with

which gives an implicit definition off(s). The shape in  ientations given by- 6, where 8,>0 is the root of
(x,y) coordinates can then be determined from integrating

'(6c)

dx tan f,) = — : 25

5 =co0), (19 o)== 9

d Cabrerd 7] showed that truncating the unphysical ears of the
—y:—sin( 0). (20) crystal does, in fact, correspond to minimizing the energy.
ds This was done by formulating the solution to the energy

minimization problem in terms of a common-tangent con-

It can be show4] that the resulting solutions are equivalent .. - . .
vexification of a nonconvex energy function. In this reformu-

to lation, the common tangent spans the range of orientations
x=7'(0)cod 6)+ y(0)sin( 9), (21)  Wwhich are missing at the corner, and the ears correspond to
portions of the energy surface which lie above the common

y=—1v'(6)sin(6) + y()cog 6). (22) tangent and are hence higher enefgge Fig. 2 To show

this analogy in detail, define the surface slope of the crystal
Construction of the crystal shape depends on the details afs
v(6). If T'(0)=vy++y"=0 then the crystal shape is given
exactly by the above description. If(§) <0 for some ori- g=tan(6), (26)
entations then the surface has orientations with negative
“stiffness.” In a dynamic setting, a negative stiffness makeswhere — 7/2< < w/2, and define the projected energy on
the evolution problem ill-posed: orientations with negativethe x axis as
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y(6) here to describe the behavior {81, corresponding to the
f(a)= cog0) (27 case of a small corner energy contribution, appropriate when
the dimensions of the crystal are large relative to the radius

The convexity off(q) is determined by the sign of the sur- Of the corner rounding. In physical terms, this means that the

face stiffness, since atomic dimensions usually associated with the corner are
much smaller than the dimensions of the crystal, which is
d?f satisfied except for nanoscale crystals.
— =cos(O)[y(6)+7"(6)]. (28) Inspection of Eq(9) shows that3 enters with a higher-
dg?

order derivative and is thus a singular perturbation. When
Cabrera showed that i+ y">0 for all orientations then B=0 the surface equation is a first-order differential equa-

f(qg) is convex and the stable equilibrium shape consists ofion: While for 3>0 the equation is a third-order differential
all orientations. Ify+y"<0 for some orientations, thefifq) ~ €auation. A reasonable approach then is to treatAked

has regions which are nonconvex. In this case, the energy [FoPlem as the “outer” problem and then look for boundary
minimized by the convex envelope f{q), in which the layer solutions which round the corners and connect adjacent

portion of the energy surface containing the nonconvex rebleces of the outer solution.

gion is replaced by the common tangér(g). The energy

minimizing shape is then obtained by omitting those orien- A. Corner problem and solution

tations spanned by the common tangent to the double-well jithout loss of generality, we take the reference orienta-
curve (see Fig. 2 Thus, the end points of the common tan- tion for ¢ to lie in the range of missing orientationE(0)
gent @- andq. ) give the slopes at the corner of the crystal <. This means the corner orientations are of opposite sign
associated with minimum energy. Furthermore, since EQsyjith 6 <0 and 6y >0.

(21) and(22) for the equilibrium shape are equivalent to We defines=0 at the corner of the outer solution and

df look for a corner-layer solution fas<1. Letting
*=dq’ 29 s=eS 33)
df and
y=f—q daq’ (30)
6(s)=0(9), (34)

the end points of the common tangent also correspond to the
crossover points marking the ears on the equilibrium shapeve find a dominant balance in E(@) when e=B"2 and the
To see this, use Eq$29) and (30) in the corner conditions resulting inner problem is
[Egs.(23) and(24)] to obtain

g2 r(@)d@ d3+1(d@)3 -
df||9+ "= _— | — 4 2| —
dq| ~© @Y dS ds Tlds
q_
We then seek an inner solution as an expansiogif
dfl]|a+ _
{f—qﬁ =0, (32) 0(9=0(9)+8Y20,(S)+BOLS)+:--. (36

q_

. . » The O(1) problem for the corner shape is the nonlinear
which are precisely the statement of the conditions for thgpirq-order differential equation

common tangent td(q) atq_,q.; Eqg. (31) requires that

the slope of the tangents at both points is the same, and Eq. d3e de de\3
(32) requires that the tangents have the sametercept. ——F(®)—+%(— =0. (37)
Thus, truncating the unphysical ears of the equilibrium shape ds’ ds ds

obtained from Eqgs(21) and (22) is identical to the energy ) )
minimizing shape obtained from the common tangent conlNote thatu does not appear in the leading order problem and

struction in which orientations spanned by the common tanSO the corner problem is generic in the sense that it is inde-
gent are omitted at the corner. pendent ofu (and hence independent of the crystal sire

the limit of B—0. For our corner shape we seek a solution
that rounds the corner and decays to a constant orientation
far away,

We now determine how the Wulff shape of Sec. Il is
modified by the corner energy regularization. Wher 0 ©—0 asS—xx. (38
the equilibrium crystal shape has sharp corners with a well- N
defined jump in orientations across the corner. Bor0 itis ~ To match theg=0 solution with corner orientationg;, , we
expected that the corner energy term penalizes regions e¥ould need the far-field values of the inner solution to be
high curvature and so leads to a rounded corner. We sedllentically the corner orientatior®; = 6, . Noting that the

IV. ASYMPTOTIC SOLUTIONS
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inner problem is autonomous, the final boundary conditiortion, at this stage it seems questionable that these eigenval-
specifies the origin for the inner problem, ues would necessarily match the required corner orientations

:.
0=0 atS=S. (39 The explicit solution to the linear problem is straightfor-

In th il h th ‘ . ¢ ward to construct. Recalling thht=y+ y" it is seen that the
N the Special case wnere e surtace energy IS SYmmetnG, e, 3y solution to the differential equation is ju3{O)
with respect to the corner, the symmetries can be used in the

inner problem. The symmetric version of the inner problem ¥(0) and the general solution is explicitly given by
and its solution are presented in the Appendix.

Because the inner problem is nonlinear, it is not obvious
that there exist solutions which round a corner and approacwhereA andB are constants. The boundary conditions give
constant orientation® . far away. Even if solutions of this

Q(0)=9(®)+Acod®)+Bsin0), (46)

type exist, it is also not clear that there is sufficient freedom A=—[¥(0;)cog0;)—y'(0,)sin0)], (47
to choose the orientatior®; = 4, far away. Despite these I i +
apparent uncertainties, we shall show that this matching can B=—[7(0.)sin(0,)+y'(0.)cos0.)], (48
always be accomplished. : + - ;
In principle, the nonlinear equatio(87) is difficult to with ©, and®.. determined by
solve for arbitraryI'(®). However, the problem can be ] o
transformed by first treating) as the independent variable [7(®)cog0)—y'(0)sin(®)]] “=0, (49
and defining N
de [7(©)sin(O)+ 7’(®)Cos{®)]lg°i=0- (50)
K= gs (40 o
Note that Eqs(49) and (50) are precisely those used in the
as the dependent variable as in Hdf3] to obtain determination of the corner orientations in the outer problem,
Egs.(21) and(24), and hence are also equivalent to the com-
d? Lo 1o mon tangent condition§31) and (32). Thus, given that the
K W(EK )+(zK%)-T'(0)=0. (41) outer problem does in fact have a corner, then the existence
of the common-tangent construction for the outer solution,
Excluding the trivial solutiork =0 and defining [Eqs._(31) and(32_)], gua}rantees existence of the solution for
the eigenvalues in the inner problgfags.(49) and(50)], as
Q(®)=1K? (42) the conditions determining these eigenvalues are identical
with the conditions determining the common tangent. Fur-
we obtain thdinear problem ther, the correspondence of the common-tangent conditions
and inner boundary conditions means thquilibrium solu-
d’Q tions which correspond to rounded corners can only exist
EJFQ:F(@)- (43 petween orientations determined by the common-tangent

The boundary conditions 0®(®)= K2 now correspond to

construction Finally, since the conditions o®_; in the inner
solution andg, are determined by the same equations, the

the behavior of the curvature. Far away we seek a solution ifiner solution always matches the Wulff angle of the outer
which the curvature approaches zero as the orientation agolution,

proaches its far-field value. Thus the boundary conditions on

Q(®) are two-point boundary values,
Q=0 at0®=0]. (44)

However, sinceQ’ (0)=K?(dK/dS), and sincedK/dS—0

as®— 0 , we also have the additional boundary conditions

d
Q5 se-0:.

do 49

The transformed problem fd@(®) now is now linear and

0.=6,, (51

and guarantees matching of the inner and outer solutions. It
then follows that if self-consistent corner orientations are
prescribed for the outer solution, then the resultp@) is

unique.
OnceQ(0) is known, we invert to find the curvature
K=*.2Q(0), (52

where we choose the sign to obtain the physically relevant
corner solution for a solid lying on the interior of the bound-

second order, but the four boundary conditions make th%ry_ ForK to be real, we nee®(®)=0. This is, in fact, true
problem overdetermined. The extra degrees of freedom s not obvious from Eq(46). To show that it is true, define

needed to +satisfy the boundary condit+ions come from th% andf(q) as in Eqs(26) and(27) replacingd by © and let
choice of®_, . In this new formulation®.. play the role of  he common tangent ti(q) from q_ to q. be the line
eigenvalues for the inhomogeneous problem. While it seems

possible tha® > might be found to construct the inner solu- L(q)=mg+b. (53
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Then identifyingA=—b and B=—m we can rewrite Eq.
(46) as

Q(®)=cog®)[f(q)—L(q)].

Since L(g)<f(q) in gq_<qg<dqg, by the common-tangent
construction, it follows that

(54)

Q(®)>0 for ©,<0<0O]. (55)
Therefore real values df are also guaranteed.
Finally, the inner solution in terms off,s) can be found

from integration of Eq(40) to obtain
61
S=J —dO+ S, (56)
o K

where Sy determines the local surface coordinate whére

PHYSICAL REVIEW B9, 011603 (2004

composite

0.2 0.4
FIG. 3. (Color onling Asymptotic solution for corner with regu-

larization. Shown is the orientatiohversus arclength coordinase
The dashedblue) curve is the outer solution with a jump in orien-

=0. OnceS(0) is determined, it can be inverted to find tation at the corner corresponding to the Wulff shape. The solid

O(S) sinced®/dS>0 for O, <O<O .

B. Matching of outer and corner solutions

Having constructed the local corner solution we now
verify that it matches the outer Wulff shape. As we have
confirmed tha®_ = 6. in the preceding section, we expect

matching to be satisfied without difficulty.
Consider matchingd — 0, asS—o=. We define the in-

termediate variable
s, =5s/7,

(57)

where 82< »<1. Expanding the inner solutiof56) in the
intermediate variable we find

0=0]—Cexp —\s, 5/ BY%)+0(B¥?), (58)
whereC is a constant and
A=yQ"(®F) > 0 (59

gives exponential decay of the second term in 8). Ex-
panding the outer solutioflL8) in the intermediate variable
we find

0=0*+ns—*+... (60)
©red)

Thus, by virtue of Eq.(51) the inner and outer solutions

match at leading order. The matching problenBas— o is

similar to that forS— + .

C. Composite solution

(red curve is the composite solution from the asymptotic analysis
with a transition layer thickness of ordgt2 The parameters here
area=0.5 andB=0.01.

0(5): 00Ut6r+2i [ggnner_ aimatch]' (61)

whereé' ..., is the matching behavior af, e, and 6!, ,, in
the neighborhood of corner

D. Summary

The above results describe the leading-order approxima-
tion to the equilibrium shape as an expansion in the small
corner energy paramet@. In this solution, each corner has
a local solution which rounds the corner between angles of
the Wulff shape. The width of this corner-rounding region
scales with8Y? and the radius of curvature in this region is
of order Y2, as in Herring’s original estimatgl]. As B
decreases, the scale of the corner rounding decreases but the
shape of the corner is preserved. Thus, in the ljgnit 0 the
equilibrium shape converges to the Wulff shape with infini-
tesimal corner rounding.

E. Example

As a specific example, consider the fourfold anisotropy
model in Eqg. (14) for «=0.5 with a corner energys
=0.01. We apply the above general results to this model to
determine how the corner is rounded by the regularization.
The outer solution has corners centeredd&t0 and incre-
ments of7/2 as shown in Fig. 1.

Figure 3 shows the local behavior near the cornep at
=0. The outer solution has a discontinuous jumg@iat the
corner. The composite solution smoothes the jump transition

The above analysis describes the local behavior near ia 6 over a transition layer of thicknes3(5?).
single corner. Each corner of the outer solution has its own The equilibrium shape inx(y) coordinates is obtained
inner solution describing the rounding of the corner. Let theusing Eqs(19) and(20) to integrated(s) from Fig. 3 to find

corners of the outer solution be denotedibgnd the inner
solution at cornef be 6;,,,. The leading-order composite
solution is constructed from

the shape in thex(y) coordinates. The results are shown in
Fig. 4. The composite solution rounds the corner in a transi-
tion region of thicknes®(B%?), but away from the corner it
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0.4

which is exactly the same form as Ed87)—(39) for the

°°mp§3t'te‘i — leading-order solution to the inner problem. In E¢40)—
(56) we derive the exact solution to this problem and show
02 | d that the only permissible far-field orientations for the wedge

are those given by the common-tangent construction for the
Wulff angles. Thus, in the context of the semi-infinite wedge,
influence of the regularization determines that the only pos-
sible wedge solutions are those that correspond to Wulff ori-
entations far away from the corner.

VI. DISCUSSION

. . . The main result of this analysis is that there are no sur-
204 0.2 0.0 0.4 prises rega_lr_dir)g the eﬁec_t of the_corne_r regularization term
on the equilibrium shape in two dimensions. For any anisot-
ropy y(6) which has continuous derivatives up {4, the

FIG. 4. (Color onling Asymptotic solution for corner with regu- local asymptotic solution rounding the corner can be con-
larization. The dashe(blue) curve is the outer solution with a jump structed when corner regularizatighis small. As the regu-
in orientation at the corner. The soliced curve is the composite |arization approaches zero, the size of the rounded corner
solution from the asymptotic analysis with a transition layer thick-region approaches zero and the equilibrium shape ap-
ness of orde3"”. The parameters here asie=0.5 andg=0.01. proaches the Wulff shape. The robustness of the corner regu-

] ) ) . larization results may also be interpreted as a validation of

precisely matches the outer solution obtained from settingsing the regularization in numerical calculations of the
B=0. _ ) _ equilibrium shape; if the regularization is small enough, the

‘One feature of the composite solution apparent from Fig¢g|culated shapes should correspond to the sharp-corner re-
4 is that the corner rounding causes a decrease in the areagfjis in the absence of the regularization. While the “no sur-
the enclosed region. Since the corner rounding iI©68)  prises” result holds for the equilibrium problem in two di-
over a width ofO(8%?) the decrease in area B(B). As mensions, there are important extensions for which the role
discussed earlier, the choice @fcontrols the overall area of of the regularization is still not clear.
the crystal via the outer solution. To retain the area of the Generalization to three dimensiariEhe generalization to
original outer solution, the value of would have to be three dimensions is not trivial. What were corners in two
adjusted by an ordeg correction. Alternatively, if one views dimensions become either edges or apex points in three di-
w as prescribed, say for a particle in an environment withmensions. The local problem for an apex between three dif-
constant chemical potential, then the corner rounding correferent orientations would require finding an inner solution to
sponds to a small dissolution of the corners to maintain conthe nonlinear partial differential equation which matched the

stant chemical potential on the surface of the crystal. three far-field orientations corresponding to the neighboring
orientations of the apex. While some of the ideas here might
V. SEMI-INFINITE WEDGE SOLUTION apply to the three-dimensional case, such an extension is a

significant challenge.

Effect of stress on corner anglekn many applications
astic energy is an important factor in the determination of
the equilibrium crystal shape. For example, in strained solid
films, elastic strain causes the formation of “islands” in films
which would be planar in the absence of strasee, for
62) example, Ref[28]). When the crystal has sharp corners it

has been shown that elastic energy should not affect the per-
missiblemicroscopiccorner angles determined from surface
energy along32,33 (see also Ref.34]). However, whether
this conclusion holds for the regularized model has not been
firmly established. As with the problem without stress, the
issue is that the regularization enters as a singular perturba-
tion and the behavior might be different than the results in

Here we describe thexactsolution for the equilibrium
shape of a semi-infinite wedge in the presence of the corney
regularization. The problem for the semi-infinite wedge in
dimensional form is obtained by taking, =0 in Eq. (5)
with the boundary conditions,

6—6, ass,—*oe,
=0 ats,=s0. (63)
Defining a length scale ds=(8*/v,) and defining a non-

dimensional arclengtB=s, /L, with ®(S)=6(s, ), we ob-
tain the nondimensional wedge problem

do [d%e 4o\ 3 the absence of the regularization. The only analysis so far on
[0)——|—+ %<_) =0, (64)  this question is in the work of Sieget al.[26], who numeri-
dS [dg ds cally determine the effect of the regularization on corner
angles of voids in the presence of elastic stress. Their nu-
0—0; asS—*+wx (65  merical results show that in the presence of the regulariza-
tion, elastic stress can make the apparent corner angle differ-
=0 at S=S,, (66) ent from the Wulff angle, and that this difference persists as
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the regularization becomes small. These results suggest that APPENDIX A: SYMMETRIC CORNER SOLUTION
there may be a generalization of the analysis presented here
in which the influence of elastic energy in the regularized
corner region alters the permissible matching behaviors fo
the outer solution, in effect modifying the Wulff angle.

Here we present the simplified results for the inner prob-
Lem when surface energy is symmetric with respect to the
corner orientation. The symmetric corner shapésS) is
given by the nonlinear third-order differential equati@Y)

as in the nonsymmetric case. The boundary conditi@8s
and(39) are replaced by

We have considered the effect of a small corner-energy

VIl. SUMMARY

regularization on the equilibrium shape of a crystal in two 0—0, asS—+, (A1)
dimensions. By taking the corner-energy parameter as small,

we were able to construct a leading-order solution using ®=0 atS=0, (A2)
matched asymptotic expansions. The “outer” problem corre-

sponds to the Wulff shape. The “inner” problem for the cor- d’e _ _

ner is a nonlinear problem. By transforming the nonlinear @_0 at S=0. (A3)

problem into a linear eigenvalue problem we have shown

that there is only one local solution that rounds a corner, and\pplying the transformation in Eqg40)—(42) yields Eq.
it necessarily must match the equilibrium Wulff shape. In43) with the boundary conditions

particular, by formulating the problem in terms of the pro-

jected surface energy as a function of the slope, we show that dQ

the common tangent construction for minimizing the energy ge 0 0=0, (A4)
of the crystal in the absence of the corner energy also plays a

critical role in determining the shape of the rounded corner. Q=0 at®=0,, (A5)

The main results of the analysis are the following.

(1) We demonstrate that the regularized solutions ap- dQ
proach the classic equilibrium shape as the regularization _=
approaches zero. do

(2) We give an analytic formulation for the shape of the .
corner in the presence of the regularization. Here there are three boundary conditions for the second-

(3) The work validates the use of the corner-energy regu®rder problem. In analogy with the nonsymmetric ca3e,
larization in numerical calculations of equilibrium shapes inPl2ys the role of an eigenvalue. The explicit solution to the

two dimensions; for sufficiently small regularization the lin€ar problem is given by Eq46) with the simplified con-
regularized solutions can be made arbitrarily close to th&tants
classic sharp-corner results.

(4) A by-product of the work is an exact solution for the
equilibrium shape of a semi-infinite wedge in the presence of
the regularization. Regularized wedge solutions only exist
for far-field orientations corresponding to Wulff angles.

=0 at0=0,. (AB)

A=—7(0.)cod0.)+ 7y (0.)siN(0.), (A7)
B=0, (A8)

and with®,, determined by
Finally, the generalization of these results to include the ef- ) )
fects of elasticity and/or three dimensions was discussed. Y(0.)sin(O.)+y'(0.,)cog0O..)=0. (A9)

Here the eigenvalue conditid@\9) is the same as Eq25)

that determines the corner orientations for the symmetric
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