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Concentration dependence of droplet deformation in a phase separation process
under an electric field
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We show how deformation of droplets, arising in a phase separation process of a two-phase dielectric or
conducting liquid composite material under a low frequency electric field, depends on their volume fraction.
The electric interactions between distorted particles is taken into account in a self-consistent way based on the
effective medium approach. It follows from our model that the main physical mechanism responsible for the
dependence of droplets’ deformation on the volume fraction is the formation of an effective anisotropic
medium. A two-parameter condition of the droplet instability was derived as a function of the dielectric
permittivity or conductivity mismatch between the two phases and the volume fraction of the inclusions.
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[. INTRODUCTION =1-10 kV/cm [12,13 demonstrated formation of stable
strongly elongated particles with a volumeV
Anisotropy introduction in originally isotropic materials is ~10 '—10 8 cn?®. In general, the degree of elongation de-
widely considered as an effective way to obtain desirablgpends in a complicated way on relations between the polar-
mechanical 1], ferroelectric[2,3], and nonlinear optical ma- ization energyU,, of the patrticle, the interface enerdys,
terial propertied4—6]. During the last decade much atten- and the elastic onefl4]. The influence of elastic strains
tion has been paid to the use of external electric fields taipon the shape of inclusions can be neglected if phase sepa-
achieve this goal. The desired modification of a material igation process occurs in a liquid-liquid system. Such an ap-
possible if (i) material demonstrates a high susceptibility proximation is also acceptable for glass melts with a forming
with respect to an external field afid) induced changes are micro-crystal phase and polymer melt/solvent systems,
sufficiently stable. Two different approaches are usually apwhere inclusions grow like liquid drops and are crystallized
plied. One possibility is to introduce an anisotropy at theby aftercooling[12,15.
molecular leve[7,8]. Application of a strong constant elec-  Effect of an external electric field on the shape of a drop-
tric field to a homogeneous glass or polymer sample, heatedlét surrounded by a liquid dielectric matrix has been thor-
to an elevated temperature, results in breakdown of the maoughly investigated by Garton and Krasu¢kb], who con-
roscopic inversion symmetry due to ion displacements and/osidered the balance between the electric and surface forces. It
reorientation of molecular dipold¥,9]. The asymmetry is was shown thatl) the droplet is approximately an ellipsoid
“frozen in,” when the sample is cooled down. Such a treat-elongated along the electric field af®) at a certain electric
ment is termed “the thermal poling.” Recently, experimental field the droplet becomes unstable and breaks up on condi-
investigationg 10,11] have shown that thermal poling of ho- tion that the ratio of the dielectric constants of two compo-
mogeneous silicate glass probably stimulates preferentiallgents is bigger than a critical valyg,,~20. The contribu-
oriented crystallization, which enhances the third-order nontion of the electrostriction effect, which gives rise to a
linearity in addition to the breakdown of the inversion sym-change of the density under an electric field, was neglected
metry. in Ref. [16]. In such a case the expression for the surface
Another approach is based on the use of composite matelectric forces is reduced to the much simpler Maxwell stress
rial, whose properties strongly depend on its structural mitensor. The approach is exact for incompressible liquids, but
crogeometry. To satisfy the conditiofig and(ii) for a com-  already for weakly compressible media the approximation is
posite material an electric field should be applied duringsatisfactory only for low-frequency electric fields, when
phase separation process and removed after quenching. lihe contribution of the electrostriction effectp(de/
dicative experiments carried out for a number of nonpolarp)(E?/87) is compensated by a change of the hydrostatic
polymer systems subject to a low-frequency electric fleld pressure® and the relatiorP — p(de/ dp) (E?/87) = const re-
mains valid[14,17].
For magnetic suspensions under magnetic fiégl and
*Electronic address: avolchek@home.ru electrorheological fluids in electric field49], a slightly dif-
Electronic address: agusarov@sckcen.be ferent formalism, based on the consideration of the competi-
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tion between the magnetic/electric polarization energy and Within the effective medium approach the analyzed sys-
the surface energy, was used. The equilibrium shape of #&m is considered as a set of identical noninteracting ellip-
droplet corresponds to the minimum of the free energy soidal particles with a dielectric permittivity™™ in a con-
focal coat with €™, immersed in effective anisotropic
medium. The components of the effective dielectric permit-
tivity tensor e(®'" satisfy the following condition:

F:Ue|+ US

with respect to the particle shape at givérand T=const.
This method gives results which are similar to those obtained
from the balance equation for forcgk6,18.

The one-particle approximation for the polarization en-|n this case the equation for the electrostatic potential distri-
ergy [16—19 is only valid in the limit of a small volume pytion is
fractionf of embedded particles, when the electric interaction

ff) _ ff ff i
eM< el )—ege )< eeM < i, (4)

between droplets can be neglected. Consequently, this ap- P Fn Po
proach results in an expression for the droplet deformation, el — + el — 4+ —=0. (5)
which is independent of the inclusion concentrafib6—19. IX ay Jz

To modify properties of a macroscopic system to a degree , o,
suitable for a practical application a remarkable valugisf By _means of the coordinate transformatior’ =x/
usually required. On increase of the second phase concentraes . Y =y/\eF™ 2’ =2/ Eq. (5) is reduced to
tion, characteristics of medium surrounding a precipitatingthe Laplace equation for isotropic mediuthgp=0 [14]. In
particle during phase separation are modified. Such a modthis way the electrostatic problem for an ellipsoid character-
fication can result in different magnitudes of a droplet defor-ized by ay, embedded in an anisotropic medium, is trans-
mation at different stages of phase separation process, asf@med into the problem for an ellipsoid with a renormalized
was recently observeid3]. ye= (™1 e)2 in an isotropic mediunf20].

In our work we extend the model of Refd6,18 to the For a coated inclusion solution of the Laplace equation
case of finitef composite materials by considering the elec-with the boundary conditions corresponding to the continuity
tric interparticle interaction, which becomes significant onof the potential and the normal component of the electric
increase off. Deformation of an individual inclusion is induction on the “inclusion-coat” and “coat—effective me-
treated in a self-consistent way, taking into account the locaflium” interfaces[21] results in the following expression for
electric field, which is formed by the system of distortedthe dipole moment of an inclusion with a volurie
inclusions. We derive the dependence of a droplet deforma-
tion on the inclusion volume fraction and the droplet insta-
bility criterion for a given value of.

€™ +n () - ™) EV
€M n,(y,) (M — My 4’

Po(y)= (€M — M)

(6)
Il. MODEL

We consider a two-component system built from identicalWhere

dielectric liquid droplets immersed into a liquid dielectric 2
matrix. The dielectric permittivities of these components are 1-edy)
€™ and e(™M< €M for the inclusion and the host, respec- ec(y,)®
tively. Such a two-component “inclusion-host” system is
nonsymmetric with respect to the two phases; the propertis the depolarization coefficient along thexis[14] and the
demonstrated by typical composite system investigated inenormalized semiaxis ratig, <y takes into account the ef-
Refs.[12,13,18, for which separation of a matrix and a fect of macroscopic dielectric anisotropy.
phase that forms inclusions was immediately observed. In order to determine®') we use the Maxwell-Garnett
The free energy of an ellipsoidal particle elongated alongapproximationlMGA), which takes into account the dipolar
the direction of a low-frequencithe field is assumed uni- interparticle interaction by means of the Lorenz local field
form over the particle sizeelectric field E, which corre- [22]. Strictly speaking, the MGA is not applicable to systems
sponds to the axis, is given by with a high density of embedded particles, where a strong
correlation between particles’ position requires account of
both the pair or higher-order particle correlation and higher
multipole moments contribution into the interparticle inter-
action. However, this approximation gives very good results
for the description of properties of random composite sys-
tems even with remarkable magnitudesfef0.4, when the
component identification as “inclusion-host” mentioned
above is possiblg23]. For the simple-cubic arrangement of
particles the MGA is exadwithin the dipole approximation
and for other ordered systems principal features related to the

n(y,)= {tanh [ec(y,)]—ec(y)} (7)

Fi=—3PA7)E+as(y)V??, )

where y=alb is the ratio of the ellipsoid semiaxea @nd
b), « is the interface tension coefficierR,(y) is the dipole
moment of the particle, and

97 1/3 y

sin“‘ec(y)]| V¥ (3)

is the ellipsoid surface, witkec(y)=(1— vy 2)2 being the
eccentricity.

dependence of the dielectric permittivity dncan also be
analyzed within the MGA19,24.
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FIG. 1. Dependence of the ellipsoid semiaxis ratid.) on the
dimensionless parameterfor (a) different volume fractions of in-
clusions andp=30; 1, small volume fraction limitt —0; 2, f
=0.05; 4,f=0.4 and(b) different ratios of the dielectric constants
andf=0.2; 1,p=50; 2,p=35; 3,p=25. In this paper function
log(x) designates the decimal logarithm xof

Taking into account the macroscopic anisotropy of the

medium, the components ef¢'" are determined by the sys-
tem of nonlinear equatiorf20]

e 1+ (y)(1-F)+f](p-1)
1+n,(y)(1-F)(p—1)

= ®

e 1+ [ny)(1-H+f)(p—1)
€M 1n(y)(1-f)(p-1)

©)

wheren,(y,)=[1—n,(y,)]/2, andp= €M/ is the ratio
of the dielectric permittivities. Within the effective medium
approach the free enerdgyof a unit volume of a composite
material can be written as

1 f
- —ggeff)EZ—l-—aS(y).

F= 8 Vl/3

(10

Taking into account that the MGA is exact for the model of

identical coated particles filling the entire spd@s], Egs.
(8) and(10) can be rewritten as
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FIG. 2. Dependence of the ellipsoid semiaxis raicon the
dimensionless parametér Solid curve, Eqs(6)—(9) and dashed
curve, Eqs(14)—(16); f=0.05, p=30.

egeff)

F=F L em e 12
=Fiy—eVg (12

whereq,=P,(y)/(VEe™) is the effective polarizability of

a volume unit of the model system. Therefore, minimum
search ofF or F, with respect toy gives an identical result.
The equation determining the position of the free end¥gy
extremum can be written as

(dS(Y) (dqz(v)
dy dy

-1

(13

The right-hand side of Eq13) is a dimensionless parameter
L=(eME?V¥¥)/(2a), which characterizes the relative
strength of the electric and surface forces.

Figure 1 shows the dependence of the droplet deformation
v(L), Eq.(13), for different values op andf. This depen-
dence is either a monotonic or an S-shaped curve, just as it
was obtained within the one-particle approximation for the
free energy{16,18. However, one can se¢rig. 1) that in
addition to the dependence on the dielectric permittivity ratio
p, the deformation depends on the volume fraction and is
very sensitive to a change bét largep. Even an increase of
f up only to 5% significantly displaceg L) and makes the S
shape less curved, as compared to the limit0 analyzed in
Ref.[16]. [cf. curve 1 and curve 2, Fig(d)]. For a small but
finite volume fraction the deformation is described well by
Eq. (13) with the following approximations for Eq$6), (8),
and9) (Fig. 2:

o M(in_my gy »
2T A () (M — )y A
(eff)
€2 f(p_l)
~1+ , 15

™ T TEn (- D) (19
Eg(eff) _ f(p—1) o
e(m 1+n,(y)(p—1)°
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As compared to the case of nonintgracting particles d2F d2s(y)  €ME2V d?q,(y)
[16,18, y was replaced by, in Eq. (14). This replacement 5 13 i 5
takes into account anisotropic properties of the effective me- dy dy 2 dy
dium. Therefore, wheri<1 the differences between the re- .
sults of the one-particle approximation and the MGA are® obtain
mainly due to the macroscopic anisotropy of the composite
system.

: (21)

2
dL d4? dy

ll. DISCUSSION : - : . .
The effective polarizability along axis,q,(y), increases if a
The derivative of the polarization energy density with re-particle becomes more elongated and consequently
spect toy can be considered as an effective polarization(dy/dL)(d?F/dy?)>0. Thus, a point wherdy(L)/dL<0
surface forcel on condition that an ellipsoidal shape is kept. corresponds to a free-energy maximudti/dy><0), i.e.,
This force contributes to an inclusion elongation and its maga thermodynamically unstable state.

nitude is The presence of the unstable states, corresponding to an
interval y;<y<y, on the S-shaped curve, means that drop-

E2 del*™  E2¢M gq, let deformation can be considered as a first-order phase tran-
T= 8 dy ) W 17 sition [25]. When the inclusion deformation reaches

y1(L{"™) on increasing the electric field and/or the volume
The droplet deformation dependence fois determined by V a direct transformation occurs from weakly eIonggted to
the behavior of this force as a function of the volume frac-Strongly elont%ated stable stgte. The reverse transition hap-
tion. In the analysis above we considefets a parameter. It P€NS aty,(L{"™) on decreasing and/or V. Tth"f‘* for the
is convenient now to viewas an independent variable along S-shaped curve there are two threshdi§®> L™ bound-
with y and introduce the function(y,f)=dq,/dy. Lety be  Ing the instability area wheréy(L)/dL<0 (Fig. 1.
fixed. If r (v,f) is a decreasing function éfthenL increases The thresholds correspond to extremaldgfy). To esti-
whenf increasegsee Eq.(13)], i.e., the curvey(L) is dis- mateL§™ andy, we use Eq(18) ands(y)ey™* for y>1.
placed toward largek. It means that for a giveh the de-  These approximations give
formation decreases if the value df increases and

ar(y,f)19f<0. Y2 VP(1+fp)Z(y2), (23
From the practical point of view the most interesting situ-

ation corresponds tp>1 and stable strongly elongated in- LEMap = (1+fp)Z(y,) 1M (24)

clusions. For the casg>1 the depolarization coefficient can ) o ) .

be estimated as An analytical estimation fol_{"" is not possible because

sufficiently accurate approximations sfy) andn,(y) are
1 not available fory~2-3, the range where, is located.
nA(y)~—Z(y), Z(y)=In(2y)—-1. (18  These thresholds move towards higheralues iff increases
Y but towards lower_-values if p increasedFig. 1 and Eq.
(24)]. For a givenp disappearance of the instability region
Equation(18) is already valid fory>4 within a 10% accu- (transition from the S shape to a monotonic cireecurs
racy.Z(y) is a slowly varying function and in a first approxi- when the volume fraction of inclusions exceeds a critical
mation can be considered as a constant. Taking into accoumglue f . (p). Similarly, for a givenf the same transition
that for f<1y,~y(1+fp) 2 we obtain takes place ifp becomes smaller thap.(f). This two-
parameter condition of droplet instability can be considered
d as a dependence of the critical rafig, on the volume frac-
i (vH)=0 for y>yo=N(1+fp)pZ(yo), (19  tion. We have determined the functiqn,(f) numerically.
Figure 3 can be considered as a “phase diagram” which
9 shows how the behavior of the system changes with change
—r(y,£)<0 for y<y,. (200  of parameters. In the argathe deformation increases mono-
af tonically with increase oL. The areaB located above the
curvep,,(f) corresponds to the S-shaped curvey(if) and,
Thus, in the regiony>1 for a finite f =f;, the curvey(L)  consequently, to the existence of the thermodynamically un-
is shifted towards highek with respect to the curve fof  stable states. IA one minimum of the free-energy exists for
—0 if y<yo(fsin) and to lower values of if y>1yo(frin)  a set of parametersa(V,G), while in B two equilibrium
[Fig. 1(@]. In accordance with Eq19), a rise off;, results  states are present. Those states correspond to a weak
in an increase ofyy(ffj,). These results mean that for a (y<+y,;) and a strong > ,) droplet deformation, respec-
given L and the volume fraction increase the deformationtively (Fig. 1). One should notél) lim f_)(y;,cr(f)wzo corre-
t

decreases ify<+yy(fsin) and increases ify> yo(fsin)- sponds to the Garton-Krasuki result) the dependence
Differentiating Eq.(13) with respect ta. and taking into  p¢(f) is relatively strong forf <0.10 and weak in the vol-
account that ume fraction interval 0.18 f<0.25; and(3) for a large ratio
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35] p mined by the normal stresses. In that case the elongated
ellipsoid approximation is still valid and the present model

B can be used. In a real system the conductivity ratio can
change in a very wide range, and systems with the ratio as
high as>200 were experimentally investigatéske, for ex-
ample, [13,34)). Such experiments have shown
[12,13,28,29,33,34&hat for systems witliR>p droplet elon-

251 A gation in a direction parallel to the electric field is observed,

in agreement with the leaky dielectric theor £0).

f The free energy of a composite system with weakly con-

20 : : : : ducting components is given by E€L0), with €™ deter-

0.0 0.1 0.2 03 0.4 mined within, for example, the Maxwell-Wagner approach

FIG. 3. Graphical representation of the two-parameter conditi0|{26’2ﬂ' Taking into account a macroscopic anisotropy this

of droplet stability/instability. The curve represents parameters foPPProach results in expressions similar to E@.and (9),
which transition occurs between the area where only(@jer two ~ Where all dielectric constants are replaced by the complex
(B) stable states are possible. conductivitieso* = o +iwe. The real and imaginary parts of

o(®* determines®™ and e, respectively. Those com-
p> 40 the |nstab|||ty regime can be observed at any Vo|um@|icated equations are Slmpllfled (iﬁ the electric field satis-

30+

fraction, if the MGA is satisfactory. fies the low-frequency condition, E¢25), and the limitw
For real heterogeneous dielectrics the electric field distri—0 can be assumedij) R>p; and i) n(y;) o™= o™,
bution at low frequencies, In this case the equations fef®™ are reduced to Eq¢8)

and(9) with the replacement of all the dielectric constants by

oM+ (oM — (M)n () corresponding real conductivities on the right side. Thus, for
< : , (25  conductive systems, which satisfy the conditidns(iii ), the

€M+ (M —eMyn () : .
Y main results for the dependence of the droplet deformation

and instability thresholds on the volume fraction are still

is defined by a small but finite components’ conductivity \ 5iq with the replacement gf by R. One should note that
o™ (M [26,27). In contrast to the case of perfect dielectric

. > the conditions above imply that) ' and o(¢™ are fre-
systems, charge accumulation at the “droplet-host mterfacc—huency independentii) charge accumulation is more impor-
results in a nonzero tangential component of the Maxwell;nt than the polarization effect; arii ) the condition(iii)

stress tensor and related liquid motions both inside and OUpgtricts a droplet elongation to guarantee that the field inside
side droplets. This effect must be taken into account to dez

) ) S €longated inclusions remains small.
scribe droplet deformatiof28,29. In general, combination As applied to conductive systems the present model de-

of the tangential stress and the hydrodynamic motion makeg;yihes the competition between the surface energy and the
analytical description of the droplet shape very complicatedg|gctric energy related with a charge accumulation at the in-

except for the case of small deformatiofslose 0 the iortace and is valid only for areas where this competition is
spherical shapeln particular, in conductive systems droplet ¢, raple for existence of stable elongated droplets. In the

elongation perpendicular to the electric field is also possible.gse of an S-shaped curve, and the parameters corresponding
According to the leaky dielectric theof28] the type of de-

9 i , X to the instability area¢;<y<'1y,), perturbations connected
formation is determined by the sign of the functién with the tangential electric stress and hydrodynamic forces

(2M~1+3) can break up _deformed droplets, pr(_)hibitir_lg their direct
d=p YR2+1)-2+3(p 'R-1)———, (26)  transformation into strongly elongated inclusidis]. That
(5M~1+5) situation is different from magnetic suspensions under mag-
netic field, which are analogous to perfect dielectrics and
whereM = M/ (M R=g(M/x(Mare the viscosity and the where the phase transition described above is immediately
conductivity ratios. Fokb>0 elongation is parallel and for observed18,25.
® <0 it is perpendicular to the electric field. Taking into It is known that composite polymer systems whsp
account conductivity such type of droplet deformation can belemonstrate on experiment stable columns oriented along the
qualitatively considered within the free-energy minimizationelectric field[12,13. Within the present theory such columns
method[30]. The approach neglects the hydrodynamic ascan be considered as a limiting case corresponding to the
pects and generally is not suitable for quantitative descripupper branch of equilibrium states> v, (Fig. 1). Their for-
tion of the effect of droplets elongation in the direction per-mation is due to fusion of smaller individual dropléts3],
pendicular to the electric field. It is therefore important towhich previously formed chains along the field under the
know the domain where the hydrodynamic contribution isinfluence of interparticle interactions by the same way as
small and the present model is still applicable for quantita-dispersed particles in electrorheological fluifd32]. This
tive description of conductive systems. alignment increases the efficiency of the fusion process,
Numerical simulations showd@®1] that if the conductiv- which in the absence of external forces is remarkable only
ity ratio R>30>p, the contribution of the tangential com- for a high volume fraction of embedded partic[@2]. Both
ponent is small and droplet deformation is mainly deter-the appearance of the strongly elongated staté&®nE in-
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creasep and their destructiofwhen E decreasesdemon- A limitation of the present approach is connected with the
strate a threshold dependence on the magnitude of the elegeint-dipole approximation. Although its use for description
tric field [12,13,34. The existence of the destruction of electrorheological fluids containing solid ellipsoidal par-
threshold corresponds to the arBa(Fig. 3), where both ticles gives reasonable resul&S], a more rigorous consid-
strong and weak deformation states of inclusions are separation is required for strongly elongated inclusions, because
rated by the thermodynamically unstable area. When due tgf deviation of the particle from the ellipsoidal shape and a

the instability a column breaks down into a set of smallcontripution of high multipole moments to the polarization
droplets the chain arises again as the preferable energetig,ces.

state. The inverse process of a column formation is not con-
nected to the inclusion instability and is determined by fu-
sion of droplets, when the space between inclusions vanishes
as a result of an individual droplet elongatifi8].

In general, the deformation magnitude depends on all we have considered a two-component system built from
physical parameters included in the droplet equation of statggentical dielectric or conducting liquid droplets immersed
Eq. (13). For example, the surface tension can change duringhto a liquid dielectric or conducting matrix subject to a low-
phase separation, so that the valuexois not well defined.  frequency external electric field. It was shown, for the first
This effect will give the same tendency in the change of thajme to our best knowledge, how the droplets’ deformation
droplet deformation as the interparticle interaction. Recentlydepends on their volume fraction, when the electric interac-
for polystyrene-polymethyl methacrylatetoluene mixture tjon petween droplets in a liquid composite system is taken
(p~1,R<10) an effect of the relatively small droplet defor- jnto account. The expressions describing this dependence
mation in late stages of phase separation in comparison witljere derived in a self-consistent way based on the Maxwell-
earlier stages was observed and qualitatively ascribed to aarmett approximation. The model predicts a deformation
increase ofw [13]. decrease for weakly elongated and an elongation increase for

However, in systems corresponding to the dBe&ig. 3)  extremely elongated columnlike inclusions on increase of the
the instability thresholds of the deformationy,(y2) do not  groplet volume fraction. Within the model, the main physical
depend on the surface tension. Therefore, for such systemgechanism responsible for the experimentally observed de-
contributions of a surface tension change and the interpagendence of droplets’ deformation on the volume fraction
ticle interaction can be separated by measuring the instabilityas found to be the formation of an effective anisotropic
threshold dependence on the volume fraction. medium. The droplet instability condition on the volume

The approach developed here is exact in the case of n@faction was determined numerically. The instability thresh-
very dense random distribution of droplets in a liquid host oro|ds increase when the inclusion volume fraction increases.
their simple-cubic arrangement. Probably, further progresshanks to this effect, it is possible to distinguish the influ-
could be obtained on the basis of the microscopic mean-fieldnce of a surface tension change and the electric interaction
approacti24], which takes into account anisotropic structure petween droplets on the deformation.
via construction of a pair distribution function of hard
spheres with identical rigid dipoles. To apply this approach

IV. CONCLUSION

to the problem of deformanon_ this .d|str.|but|on functlon_ ACKNOWLEDGMENT
should be generalized for identical ellipsoidal particles ori-
ented along the field direction. The authors thank Dr. A. Efremov for fruitful discussions.
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