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Nature of double critical points in binary solutions

A. I. Fisenko
Ontario Center for Ecology, 625 Evans Avenue, Suite 907, Toronto, Ontario, Canada M8W 2W5

V. L. Kulinskii* and N. P. Malomuzh
Department of Theoretical Physics, Odessa National University, 2 Dvoryanskaya Street 65026 Odessa, Ukraine
(Received 1 July 2003; published 26 January 2004

The nature of the reentrant demixing transition in binary solutions with H bonds is studied in the framework
of an Ising-like Hamiltonian with effective spin-spin interaction constant. It is taken into account that the
internal variables describing the H-bond network are characterized by the spatial time scales essentially shorter
than those for the spin variables. Due to this the contribution of H bonds to the effective spin-spin interaction
constant is described by thermodynamic methods. With the help of the catastrophe theory the classification of
possible types of phase diagrams leading to the double critical point is given. The influence of small quantities
of third componentelectrolytes, water, and molecules similar to @dt discussed.
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INTRODUCTION works [6,16], where the decorated models of binary solu-

tions, isomorphic to the standard Ising model, are con-

The nature of the double critical poifDCP) and the structed. Here the transformation to the standard Ising
properties of a system near it were the subject of numeroug@miltonian is accompanied by the appearance of the gener-

investigationgsee Refs[1—3]). Main attention was paid to alized temperature, leading to the upper and lower critical

inary and quasiemary solutons in whic the appearance 1 1 15 P e ooy o Borcs B o e
a the DCP is connected with the formation of a strong. !

H-bond network. As an example we can give the “guayacol-m't'al models can be justified only at switching on strongly

| in” solutionl41. A it s 10 elucidate th anisotropic interactions, in particular H bonds.
glycerin solution[4]. Among many attempts to elucidate the Unfortunately, in all such approaches the cooperative

role of H bonds we notel) quasichemical approadbl; (2)  character of H-bond network was not manifested explicitly.
the modeling Qf the mterpa_rtlcle interactions with the help _of In this paper we focus our attention on the quasithermo-
decorated lattice models isomorphic to the standard Isingynamic nature of the temperature dependence of the effec-
model [6-8]; and (3) the description of H bonds in the tjye “spin-spin” interaction constant in the Hamiltonians of
framework of the Hamiltonian formalisii®]. Walker-Vause type intended to describe the phase transition
In Ref. [5] the original qualitative arguments of in binary and quasiternary solutions with strong H bonds
Hirschfelderet al. [10] about the role of H bond were sub- between molecules of different kinds. The H-bond network is
jected to quantitative analysis within the quasichemical apeonsidered as a subsystem, the behavior of which can be
proximation. It was shown that the competition of the effec-described in the thermodynamic terms. In particular, the ex-
tive intermolecular repulsion with the attraction initiated by istence of smeared phase transition in it may give rise to the
the formation of H bonds can lead to the demixing diagramnonmonotonic temperature dependence of the effective spin-
with upper and lower critical points. In Reff9] the forma-  spin interaction constant.
tion of H bonds is modeled with the help of Potts variables. The work is organized as follows. In Sec. | the quasit-
The application of the renormalization procedure in Refshermodynamic description of the H-bond network in the sys-
[11-13 allowed to achieve the adequate description of flucfems with the Hamiltonian of Walker-Vause type is given.
tuation phenomena near the upper and lower critical pointd "€ analysis of possible types of the phase diagrams is pre-
as well as near the DCP. Besides, it was shown that, in prins€nted in Sec. Il. The modeling of the effective spin-spin
ciple, the proposed Hamiltonian is able to reproduce mamlpteractlon constant within such a description of H-bond sub-

characteristic features of phase diagrams of binary solutiondyStem is carr_ied out in Sec. ”.I' The inf!uence of small quan-
[14], including the DCP. In Ref(15] a rather more simple tities of the third components is the object of Sec. IV. In the

version of the Walker-Vause Hamiltoni4@] had been ana- APPendixes we considefl) the mean-field approximation

lyzed within the mean-field approximation and all conclu- for the fr(_ae e“”efgy O.f Eh_e Ising.model and the defir]ition of
sions made in Ref14] about the structure of phase diagramsthe effective SpIN-spin lnf[eractlon(Z) the electrqstatlc en-
were confirmed. It was shown that the internal Potts vari-cr9Y Of an admixture particle, an@) the fluctuation multi-

ables lead to the temperature dependence of the effectiP!€ interaction of the admixture particles.

Sp'lr"st?]'” 'r:teraCt{OP Confrff"mt'. X . tested in - TEMPERATURE DEPENDENCE OF THE EFFECTIVE
n the clearest Torm this circumstance IS manitested N\ e AcTION CONSTANT IN THE GENERALIZED

ISING MODEL
*Electronic address: koul@paco.net The Ising magnet is the simplest model system, in which
"Electronic address: npm@normaplus.com the critical point takes place. For the Hamiltonian
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N q
Hi=2 J(1-SS)-2hs, 3>0. (@ 8,0, 24 9oy k0o,

where S; are random variables taking the valuesl, the both these models can be considered as different limiting
summation is carried out only on the nearest neighbors. Theases of the anisotropic model:
equation of statéEOS in the mean-field approximation has

q
the structure

q
I=3i(0)=3+34 2 P k0o 2 P=1, ()

) (2 where the parametgy, can be considered as the weight of
kth H-bond forming state of a molecule. The consthistthe
where isotropic part of the interaction of van der Waals type. We
assume thad>0, which corresponds to the following rela-
j:j(q)|q:0:Z J, tion between the constants of intermolecular interadtici:

()=t 2()h

1

J(q) is the Fourier image of the spin-spin interaction on a Jag=2(Jaat Jee):
lattice, z is the number of the nearest' neighbors, and the\gte that in accordance with E€f) only the “residual’ part
Boltzmann constaritg=1. From Eq.(2) it follows that the  of the interaction between the moleculesfond B species
critical point of the Ising magnet is determined by the equasg taken into account. In other words, the influence of the H
tion bonds between the molecules of the same type on the demix-
ing is ignored. To get the reentrant behavior in models of
type Eq.(1) the interaction constadt; should take the nega-
tive values. We expect thatl,|/T,=1, whereT,, is the
thermal energy at the melting point, although for H bond
In such a system only one critical point is possible. Theitself JﬁAle:4—5_ Analogously, the corresponding contri-
system is ordered only at<T. ((S)#0) and completely bution to the entropy, per H bond satisfies the inequality
disordered (S)=0) atT>T..

As is well known(see, e.qg., Ref17]), the demixing tran- sy=1. 8

sition in a binary mixture is isomorphic to ferromagnetic- _ _ ) L .
paramagnetic one for the Ising model. However, because df thiS case in mean-field approximation the excessive inter-
more complex interparticle interaction the corresponding@! €nergy of a binary mixture can be written in the form
“spin-spin” interaction depends on the temperature, pres- B o ~

sure, and difference of the chemical potentials for the com- E=NC(1=C)Jerr,  Jerr=0, ©)

ponents. As a result more than one critical point can be eXyparec is the concentration of one of the components.
pected. If the effective spin-spin interaction constant of the |, ihe mean-field approximation with respect to spin vari-

cqr_respondin_g Ising mpdel depends on_the temperature, tl?oles& all such models based on the introduction of the
critical point is determined by the equation internal o variables lead to the EOS:

=1. 3

o—|| ol

Te=Jer(To). (4) inH 3
ff . (sinH BJ(o)x+ B h]), 10

The temperature dependendg; appears in models more (cosi I(a)x+Bh]),

complex in comparison with Eq1). The models developed wherex=(S;) andJ() is the energy of “spin-spin,” which

in Refs.[9] and[15;| can serve as characteristic examples Ofexplicitly depends on the “internal“(Potts-like variables
such an approach:

like in Eq. (7). The angular brackets

J=3ij(0) =31+ 4 85, o, 5 5
> exi—BI(0)]
[9] and ()= o
3=3ij(0)=3+Iu8, 16,1 6) ; exf — BI(a)]
[15]. The variablesr; are the internal Potts variables and for denote the average over internal degrees of freedom, which
each sitei can assignmy valuesn=1, ... q independently. are considered independent §f. Here we assume that the
They are used to modej internal degrees of freedom of a introduction of the mean-field approximation for the spin
molecule. variablesS; does not change the part of interaction connected
It is easy to see that the mod@) corresponds to the with ¢ variables.

isotropic H bond, while Eq(6) singles out one of thédirec- The situation here is rather similar to that in spin glasses,
tional) states. Because of the trivial identity where the interaction energ;; is considered as a random
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variable over the configuration spaldE]. So, the influence The closed loop coexistence curves appear when the solution
of the H-bond network cannot be neglected in considerationf Eq. (4) bifurcates. Namely, besides the Ising-like solution
of glassy states of liquids such as water, glycerin,[88].  with small y(®~1/q,T'=1q>1, either one or two others
However, unlike the spin glasses, the characteristic spatial")(T)=y{")(T) appear, thus giving rise to the reentrant be-
time scales for variables describing the H-bond network irhavior. Sure, the mean-field bifurcation of state for the inter-
binary solutions are much shorter in comparison with thosenal degrees of freedom described above in termg/(df)

for spin variables. It means thaj the averaging on internal should be corrected via taking into account the fluctuations.
variables can be performed independently. This circumstanddevertheless, we will suppose that the topology of the phase
allows us to introduce by the definition the effective “spin- diagram remains unchanged. Besides, as has been said

spin” interaction energﬁeff (see also Appendix B above, the dependence of the interaction conslam the
internal variablesr regardless of the specific model leads to
Jei(T)=G(0)) g =2 I+ 24(T) Iy, (11)  the temperature dependencelaf;. The general condition

on this dependence for the appearance of the reentrant be-
where z(T) is the average number of H bonds per mol- havior will be derived below.

ecule: As follows from above, the H-bond network can be
treated as a subsystem, which is described by thermody-
B Eq: namic methods. As a result, the change of H-bond ordering
(M= =t PO, KOk, o <z. 12 in some solutions can be considered as a smeared phase tran-

sition or a succession of such transitions. A similar situation
is characteristic for magnetic media. There the interaction of
spins with the translational degrees of freedom is often neg-

we use the mean-field approximation for ihevariables also ligibly sma_II and thergfore_ a s.harp paramagneUc-
(see, e.g., Ref21]). ferromagnetic phase transition is possible. As it follows from

If the mean-field approximation for the internal variables@bove, the continuity ode«(T) with respect to the tempera-
o is used for Eq(12), we can write ture is the natural physical demand imposed on it.

The existence of high- and low-density supercooled water
q with different character of H-bond ordering in such meta-
zH(T)=zE pkyﬁ, (13 stable phases is a clear demonstration of the smeared phase
k=1 transition in the subsystem of H bonds. Besides, the anoma-
lies of density and compressibility in normal water are also
the results of macroscopic transformations of H-bond net-
V= (8s)=1. (14) work. Thus we can introduce the effective mean field, with
’ the energyl. ;s depending on the temperatuigee Appendix
It is clear that Eq(13) is equivalent to neglecting the corre- B). This reflects the smeared character of the phase transition

lations between the different internal states of the moleculedn the H-bond system.
To guarantee the isomorphism with the standard Ising

The residual energy and the entropy come from the inter
nal degrees of freedomr;. To reduce analytical difficulties

where

model the value of4«(T) should be positive. In principle, Il. POSSIBLE TYPES OF PHASE DIAGRAMS
this does not exclude the possibilityy|>J for the bare
constant of H-bond interaction. From the general point of viewlg(T), introduced

From the definition it is clear that, is nothing but the above, should have natural low- and high-temperature
probability for the molecule to be ikth internal state. Note asymptotes:
that according to its definition Eq11), in the mean-field

approximationJ,¢; can be treated as the internal energy for 1

the subsystem of H bonds. Bjeff(T)oc— if T—0 or T—oo, (16)
In general, the variablex andy are determined by the T

system of two nonlinear equations. To get the qualitative

picture we will consider the vicinity of the critical points i.e., the onlya priori physical constraint imposed Gy, is

wherex=0 andh=0. There we denote the values yjf as its boundedness. In accordance with our arguments, the no-

(0) i i
Vi’ . In such a state all thermodynamic variables depend on ~
the whole se{y(ko)}, ticeable temperature dependence Jgf; takes place only

near the points of smeared phase transition in the subsystem
of H-bonds. For the simplicity we assume that there is only

> S, xexd — BI T {y O] one point of such a transition. In such a case more than one
y©@=" critical point may appear if the valud,; changes signifi-
Z, cantly enough with the temperature due to the reconstruction

of order in the subsystem of H bonds. If there is an additional
parameter of stata, e.g., pressure or concentration of the

admixture, the value dl,¢; depends on this parameter too.

Z,=2, exd—BI(a; 1y, (15)
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—0.51 T0 Tl Tu o FIlG. 2. The temperature behavior &f(T), corresponding to
ig. 1.
FIG. 1. Phase diagram for the system with closed loop binodal
and corresponding temperature behaviopdt point (hour-glass form of the phase equilibrium lineb-
_ o ~ served in binary gases such as-H¥e, Net+ Xe, etc.[1]
Let T, andT, be the points of local minimum and maxi- |t is possible that because of the specific thermodynamic
mum of the function properties one or both of the left and right pointg, @ndT,

~ in Fig. 1) are out of the stability region of the considered
- Jer(TIN) equilibrium phases so that the corresponding part of the
(TN = T 17 phase diagram with corresponding phases is inaccessible.
Within the general framework of singularity thedr2—
at some fixed\ (see Fig. 1, where\ stands for the set of 24] the described situations correspond to the statement that
additional parameters of stafpressure, chemical potential, in a one-parameter family of functioni$7) only A5 catastro-
etc). phe, with respect to the variable is possible(see Fig. L
From Fig. 1 and the condition given by E@) it is clear  This is equivalent to the condition that the equation
that there exist different types of phase diagrams, with and
without closed loop. Depending on the number of roots ~ ~
(=<3) of Eq.(4), the phase diagram is the “superposition” of i(ﬁ) _ or Td Jetf ~3.(T)=0 (19)
the closed immiscibility curve with upper and lower critical dT\ T a1 “eff
points and a curve with upper critical point only.

There are the following characteristic situations: has no more than two solutions.

From a simple geometric interpretation of E49) and

J(Ta;M)>1 or j(Tp;M)<1, _ ~
natural constraint of boundednessJX; it follows that the

H(TaN)<1<j(TyiN), (18  criterion for two roots of Eq(19) to appear is the existence
of the inflection pointT;,; for Jo¢{(T). There can be three
i(TasN)=1 or j(Tp;h)=1. types for the temperature behavior nf(T) , which lead

qualitatively to the samg(T;\). They are shown in Fig. 2

In the first case only one root of E(d) exists. This is the gpg Fig. 3. Note that the behavior fag(T) shown in Fig.

only (*upper”) critical point of a system. In the second case js a consistent with the natural assumption thfT) is a

Eg. (4) has three solutions: monotonically decreasing function of the temperature, when
other effects important for the H-bond network structure
such as thermal expansion are not taken into account. The
. . change in structure leading to the appearance of the reentrant
corresponding to two uppéf, T, and one lowe, critical  opayior should be attributed to the increase in the average

points. The coexistence curve of a system cor]s_ists of_ tWQLumber of H bonds,,(T) with decrease in temperatufie
parts: the closed loop with upper and lower critical POINtS 1+ This is exactly in agreement with the picture where

T<T, and the separated curve with the upper critical IOOintthe upper critical point is identified with that of van der
atT, (see Fig. 1 Namgly, thi? type Qf phase diagram corre- Waals type, while the lower critical point, whem(T,)
sponds _to the models investigated in R¢lS, 16. . <z4(T)), is due to H-bond network formation because of
- Merging the rootsT;, T, of Eq. (4) at Ty, the equality anisotropic interactions. The types Il and 11l shown in Fig. 3
Jet(Tp)/Ty=1 means that the closed loop disappears an¢orrespond to the nonmonotonous temperature behavior of
the DCP appears. The degeneracy of the rogisT, atTa,  z,(T). It is interesting to develop the models in which such
whenJq(T,)/T,=1, leads to the so called critical double possibilities are realized.

To<T|<T,
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Type III
FIG. 3. Two other types of
temperature behavior 08.¢(T)
ion-point leading to qualitatively same be-
havior j(T;\) shown in Fig. 1.
0.6 03 1 12 14
T
It is instructive to consider the behavior of the excessive AN
~ e
entropy, corresponding ti, ¢ depending on the temperature. p= aT (20
The schematic temperature dependence of the entropy is de-
picted on Fig. 4. Note the characteristic S-shaped temperdn this representation Eq19) takes the form
ture dependence of the excess entropy, i.e., starting from up- =)
per critical point the immiscible phase is more ordered than Jeit(P)=0, (21)

the miscible one, until order parameter reaches its maximuquhere

Here the situation resembles that in a superconductor-

conductor transition, where the equality of the_ entropies for I p)=pT—Tess (22

the normal and superconductor states takes its place at the 5

critical point itself and af =0 K, when the order parameter is the Legendre transforifsee, e.g., Ref26)]) of J.;;. Note
takes maximum valuésee, e.g., Ref25]). The analog of the that the existence of inflection points for the function results
point T=0 K in our case is the temperatufg, , which cor-  in existence of the cuspidéleturn points for the graph of its
responds to the maximum value of an order parameter, e.g-egendre transfornisee, e.g., Ref[26]). In such a sense
concentration of one of the components. In other words, imecessary and sufficient condition for the reentrant behavior
such a point the excess free energy is equal to the exce&@ occur is the existence of solutions of HQ1) with the
internal energy. cusp singularity. The special points of other types such as

Below the temperaturd,, the excess entropy becomes critical inﬂect_ion point (_CIP) or quadruple critical p_oint
positive, i.e., the immiscible state becomes relatively disor-(QCtlr? accotrdlng to.ttﬁrr?l?olotg){ of v;/rc])rl{ﬂ,ZdY] are _po?sztéle .
dered but is still stable because of the energetic effect of thIaOr € systems with at least two thermodynamic Tields, n

interaction. Further below, the entropy vanishes at the loweP2rticular in temary solutionf27]. The catastrophe theory
classification is as followsl) CIP corresponds to the germ

critical point. It is clear that such S-shape behavior of the L ;
excess entropy is in full agreement with the approach base%f A; catastrophe for thg(T;\); (2) QCP is the germ of4

) : . atastrophe for the(T;\).
on Landau-Ginzburg effective functionfl,21]. P ®(T:0)
The result obtained has more simple formulation in vari- || THE THERMODYNAMIC APPROACH FOR THE
able, which is Legendre conjugatedTp MODELING OF J

. In the preceding section we emphasized that the H-bond
P . network may be considered as an almost independent sub-
041 yd ™ system, the properties of which can be described by thermo-

/ dynamic methods. The corresponding thermodynamic vari-
/ \\ ables are naturally named by the structural functions. The
,,f" T \ simplest and the most important &® the average number
02 / M 3 of H-bonds per moleculezy(T,P) and the parameter
\ ty(T,P) describing the bending of H-bond network. In the
case of pure water this parameter is known as the tetrahe-
dricity parameter, which measures the deviation from the

JS N
.

0 \
° ?/8 R b ideal geometric H-bond network. These parameters can be
T found with the help of the numerical simulatiofsee Ref.
o) [28]) or within the special statistical methotsee, e.g., Refs.
[29,30).

The arbitrary thermodynamic functio@(T,P) of the
o ) ) H-bond network can be expanded in a series with respect to
FIG. 4. Qualitative temperature behavior of the excessive ensyryctural functionglike the Hilbert's principle in the theory
tropy S (solid curve of the mixture with the closed immiscibility of invariants[31]):
loop. The dashed curve is the schematic dependence of the order
parametex. Q(T,P)=N1zy(T,P)+ N\oty(T,P)+0(z4,ty). (23
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The successful application of such an approach for the deFhese perturbations include changing the external pressure
scription of the anomalous behavior of the density and th¢2], variance of isotopic compositid34], and small addition
dielectric permittivity of pure water was proposed in Ref. of the third componer|#], in particular, electrolyt¢35—37.
[32]. The formalism of structural functions allows to under- Experimentally it was noted that the shifts of the upper and
stand adequately the difference between low- and highlower critical points with variation of either pressure or third
density water observed under deep enough superco@esy component addition are almost the same at least qualitatively
Ref. [33]). [38]. Below we discuss the influence of these perturbations
From this point of view the contributiod,(T,P) of H  Within the approach presenteq in the p_revious sectic_)ns: _
bonds intoJ,(; can be represented in the form The thermodynamic potential of a binary system intrinsi-
cally depends on three parameters of state. Two of them are
Fu(T.P)=— sz + aotu+ - - -, @,>0. (24 “external fields® the temperatur& and pressur®, another
H(TP)=—aszyt agly @142 @9 field is the difference of the chemical potentials of the com-
The coefficienta is close to|Jy| used above in the simpli- PONentsu= ;- u, [39]. Then the Gibbs free energy is

fied lattice approach where the deformations of the lattice
were neglected. Obviously, the functions andt, have op-

posite temperature dependencies. wherex;=N; /N is the molar fraction of the components and

Near some temperatuiie, the structural functiorz,; can andw: are the specific entropy. the volume. and chemi-
diminish sharply enough, which corresponds to the smearegd U Ki pecitl Py, t ' .
al potentials correspondingly. We will use also the potential

phase transition in the subsystem of H bonds. As a result, th ) .
. ~ . L . ) , conjugated ta:
behavior of J.#(T) in the vicinity of T, is of sigmoidal
character(see Fig. 2 and can stimulate the demixing in bi- f(T,P,u)=9(T,P,X)— X1,
nary solution.
The formalism of structural functions allows also to es-which according to Gibbs-Duhem identity is the chemical
tablish the connection between the variations gf and the  potentialu, of another component.

dg=—-sdT+vd P+udx,, p=pui—u,, (26

dielectric permittivity e of a system. Indeed can be repre- Further we fix the type of the component chosen in Eq.
sented in the form (26) and will omit the subscript. The corresponding critical
points (T;,P.,X.) are determined by the conditiofi39]
e—1 47 1) 2)
etr2 ?n[(l_x)aeff_'—xaeff]! (25) 59 9
—| =0 — =0 (27
. . i i X ox

wheren is the density of molecules anef};, i=1,2 are the T.P TP

effective molecular polarizabilities of the components. In

general,aggf includes the electronic and dipole parts: The thermodynamic field§ and P drive the equilibrium

phase separation in the two phase region. From the thermo-
ag2f=ag)+ag). dynamic poir_1t Qf view the .c.onditio_nsz7) are analogou; to
that for the liquid-vapor critical point. This is the basis for
The first term is close to the electronic polarizability of anthe isomorphism between these systems and simple liquids.
isolated molecule and therefore its temperature and concede concentratiox serves as the initial order parameter for

tration dependence is weak. The second term has the struéle demixing transition. Its conjugated field s According
ture to the catastrophe theorf22—24 with the help of the

smooth transformatiom— i,
d?
af) == y=n+y1(P,T) nt y2(P,T) 7"+ -, (28)
3kgT
h where n=x—X., the Landau thermodynamic potentigl

in which the effective dipole momeut within our approac . o ;
P o PP near the critical point is reduced to the canonical form

should be represented as

A=A P12y ratt ). Gy Py =2 e B 1Py,
It means that the nonmonotonic behavior of the structural (29
functions should become apparent in corresponding pecu-
liarities of the dielectric permittivity. The explicit expressions fa; and y; can be easily obtained
(see, e.g., Ref23]). The treatment of the isomorphism prin-
IV. PERTURBATIONS OF THE BINARY MIXTURE ciple in terms of the canonical forms was developed in Ref.
PARAMETERS OF THE PHASE EQUILIBRIUM [21] for the specific case of the systems with the DCP. It

should be noted that the theory of singularities of smooth
In recent years a lot of studies have been carried out tonappings[24] admits reduction to the canonical for(@9)
analyze the influence of different kinds of perturbations ononly locally, in the vicinity of the critical point, where the
the phase diagram of the binary mixtures with H bonding.series(28) converges. The approach, developed in &),
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works directly with the Hamiltonian and allows to construct for the derivativesf/ 8Jo; we get:
the transformatiori28) nonperturbatively.

The dependence of the coefficiersts and a, of the ca- Sf 3 _ ~ _
nonical form(29) on the state variables determines the topol- =—= 5(1— Bleir) TO(BIess—1)<0, for Bei>1.
ogy of the phase diagram. Note that such a dependence ifers
general is nonlinear even in the mean-field approximation (36)

because of the nonlinearity of the transformation . Due Thus the sign o3, is opposite to that fow. Therefore in

to this transformation the isomorphism between Ising model . :
and the critical behavior of the binary mixture is establisheuaccord"’Ince with Eq4) (see also Fig. ithe change of the

[41]. In the vicinity of the critical pointa,; anda, can be phase equilibrium is determined by the following:
approximated by simple linear functions of the initial ther- ~ N
modynamic field§42]. BJettt 8derr) =1, (37)

The inclusion of fluctuation effects can be done with the g L .
help of the renormalization group method. and if 6J.¢>0 the closed immiscibility loop will expand or

The influence of small admixtures within the method of €V€n may appear at sufficiently big value &fe;, while if
effective “spin-spin“ interaction can be done with the help 8J¢¢<0 the loop will shrink or even may disappear.
of thermodynamic perturbation theof$9]. Within the ap-
proach proposed above, such perturbations modify the valug. Influence of electrolyte admixture on the phase equilibrium

of Jo¢¢ causing its dependence on the concentratiof the of the H-bond mixtures
admixture according to The influence of small addition of the electrolyte in
Debye-Huckel approximation can be described as

few(T,Pderi+ 6Jer) = few(T,P,Jer) + @(T,P,X,0),
(30) f(T,h,c)=few(T,h)+ @pu(T,P,C), (38

whereg is the excess thermodynamic potential caused by th@here
small addition of the third component. In other wordsjs
the part of the thermodynamic potentil of an admixture
P y P 47y, ez,
a

3_713 2__
(T*-T), T 6T,

( P T) 1/2
241

D(T,P,x,c)=D(T.,P¢,%:,C)+o(T,P,7,c), (31 eou(T,P,Cc)=

which depends on the order parameter. The first term in Eq. _ _ o _ _ _
(31) is included into regular part of the thermodynamic po- € i the dielectric permittivity of a binary mixture, is the

tential of the system. concentration of ions oéth kind, andz, is their valency.
The corresponding thermodynamic potential, of the ~ Note that due to symmetry with respect to the type of the
equivalent Ising model is as followsee Appendix B components the value qf does not change because of the
equal shifts ofu; and u,. It is clear also that due to conti-
- Jots 1 nuity of the thermodynamic potential the vallids the same
fow(T,hi Jerr) = — TXZJFT xarctanl(nx)+§In(1—x2) in both phases since it determines the thermodynamic poten-
tials for the electrolytg39].
—xh, (32 The differencd’(x) —T'., which depends on the concen-

N tration x through the dielectric permittivitysee Ref[43]),
where x(T,h;Je¢7) is determined by the Curie-Weiss EOS may be either of the same sign or has different ones in the
(B3) in which the conjugated field is the difference of the Vvicinity of the upper and lower critical points. In the first

chemical potentials of the phases. case, in accordance with Eq. 33 the coexistence loop either
Thus the change of the phase diagram of the binary mixshrinks or expands almost symmetrically with respect to the
ture is interpreted as the corresponding variatiod gf: upper and lower critical points. In the second case the upper

and lower critical points shift in the same direction, though

5 ® these displacements may be different.
5‘Jeff:?- (33)

5jeff

B. Influence of hydrophobic admixture molecules of type CGJ

The addition of CC] molecules to the guaiacol-glycerin
mixture leads to the appearance of the closed loop of immis-
cibility at very small concentrationg4]. It is naturally ex-
plained by the breaking of the H-bond network and as a

Note that due to the definitiow=0 in disordered phase,
wherex=0. Taking into account the equation for binodal

x?=3(Bers— 1) +0(BIeri— 1) (34)  sequence the increase df; so thatJe(Tp)>1 and the
closed loop appearsee Fig. 1
and the expansion for the excessive free energy: The same effect is observed if water molecules are added,
though their molar concentration is approximately four times
f=1(1— Blesp)X?+ Hx*+o(xY), (35 greater in comparison with the case of G{#].
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The admixture molecule Cgproduces significant distor- e1(X) ey (d?)
tions in H-bond network in its vicinity. The breaking of H ¢d=2wm T
bonds and their bending are connected with considerable en- ! 2 Ta
ergy. Therefore the solubility of such molecules is very :
small. Besides, the average energy per H bond diminishe;hz.azg:?t}'lgffn O;read?f[f)gzﬁt ?—%‘gguﬁ; Qgrigmg:gres of
which leads to noticeable variation of the phase diagram. Legud glycer ! ' P

us consider the influence of such an admixture in more der-2ond networks of these substances differ essentially. The

tail. sqlubility of CCl, in guaiacol _is greater. Due to fthis _the ad-
We assume that H bonds break and are strongly distorte'an'xtu.re molecules of CGlstimulate the demixing in the

only in the monomolecular layer around GCAs follows Solution discussed. o . .

from simulations[44] and the spectroscopy measurement More formally, theddem|xmghcan be descnbed n rt1he foll-

[45], a similar behavior of H-bond network is observed nea tpwmg% \t/ﬁay.tr:ndaccor ancetW|;[] our a;shsum?nonsl, the so u-f

the ions which is order breakéchaotropesin a dilute aque- 'r?n or the blr hcomyl)onen changes the internal energy o

ous electrolyte solution. Although comparatively, the influ—t e system by the value

ence of a molecule. Cg¢Hue to |ts. electroneutrallty is much AE=N.(J,— ), Ji=uqle, (44)

weaker. The breaking and bending of H bonds in the close

neighborhood of CGlgenerate the appearance of the sponwhereN, is the number of CGImolecules. The number of

taneous dipole moment, which can be attributed to an admixoroken H bonds in the neighborhood of an admixture particle
ture molecule. As a result the interaction between admixturgs

molecules renormalizes stronglyee Appendix €

(43

The increment of the free energy caused by the dissolving {=nzv X(1-X), (45)
of CCL, molecules can be represented as following: ]
wherev, is the volume of the monomolecular layer,
©=@o+ Cathy +5Cot - -, (39 5
v ~4mrirg,
wherec, is the concentration of the admixture moleculeg, ) ) ) )
correspond to the ideal solution approximation, rais the radius of an qdmlxtyre part_|cle, ands the average
radius of a molecule in a binary mixture. From HE§) and
Y=+ Py Egs.(44) and (45) it follows that the renormalized value of
j ff is
is the one-patrticle contribution, which consists of two terms. ‘
The first termys, corresponds to the breaking and bending of jgf)f:jeferana(Jl_JH)_ (46)

the H bond, the second onlg describes the formation of the
electric field around the admixture molecule. The pair condiet us estimate the relation betweén and Jy . Assuming
tribution coefficienty, for a dilute solution is equal to the that the dipole moments of molecules in a surface layer are
energy of the dipole-dipole interaction. The contributibn ~ not correlated, we may use the estimate
can be approximated as

(d3)~ &(fy,

P~ |Inl ¢, (40) . o .
wheredy is the variation of the dipole moment due to the
where { is the number of broken H bonds in the surfacebreaking or formation foa H bond. By order of magnitude
layer.

To estimate the value afy; we use the double layer ap- Idy|< d_w
proximation. The corresponding result is derived in Appen- HIZ 40
dix A:
whered,,=1.7D is the dipole moment of an isolated water
€1(X) €y 5 molecule[47].
hg=2 s e (¥ 6 m:%ﬂ ([ 72ml%), (41) To get the estimate fog, it seems to be justified to put

ra~5 A ande;, e,~1, which corresponds to the values of
the dielectric permittivity on the frequencywy~21/7,

where €,(x) is the dielectric permittivity of a binary solu-
€1(%) P Y vy where 7,~10" 12 s is the typical lifetime of H-bond47].

tion, €, is the effective dielectric permittivity of a cavity,

formed by the admixture molecule, angis the radius of a Then
cavity similar to Kirkwood's consideration of zwitterions Jy<keT, ¢
[46]. It is not difficult to see that d="B s
5 Since, in accordance with Sec|Jy|<kgT,, whereT, is
2 (| 71m|?) = (ds) (42) the room temperature, we obtain the estimate
m 4
Z0+1 M
Yat Py

therefore KgT =1-2¢. (47)
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The concentration of admixture molecules is determined byrhus the doubts about the role of H bonds stated in Rigf.
the formula[39]: are groundless. It was shown that the admixture of water
stimulates the demixing also because water molecules are H
__P oxd — bat P bonded mainly with the glycerin molecules. The greater
nkgT kgT quantity of water molecules than that in case of £Ci€lex-

) ) ) plained by more intensive breakage of H bonds by CCI
whereP is the pressure of gas Ctontacting the solution,

Ca

ng is density of the solution. In accordance with E45) ACKNOWLEDGMENT
{~3-6, ifr¢=3 andz=2-4. AtP=1 bar the concentration
of admixture molecule The authors cordially thank Professor M. A. Anisimov for

the discussion of obtained results.
C,<104-103
APPENDIX A: ELECTROSTATIC ENERGY OF A

agrees with experimental valugd] and shows the self- PARTICLE

consistency of our approach.

From here it follows thatl;—Jy>(>)1. Therefore the In accordance with our assumption, the dipole moment of
increase ofl.r; may lead to the phase separation of the ho-an admixture molecule is formed by the molecules of a sol-
mogeneous mixture. The physical mechanism of breakingent, which form a monomolecular layer around the admix-
the H-bond network under addition of water molecules dif-ture particle. Within the macroscopic electrodynamics the
fers from that for Cq The formation of g|ycerin_water as- thickness of such a layer vanishes. Thus we come to a double
sociates is energetically profitable. It means that the admixiayer with some powerr, which determines the work for
ture water molecules will stimulate the microdemixing in the Passing the double layer. Inside and outside a particle, the
system. From this point of view the influence of water ad-potential of the electric field satisfies the Laplace equation
mixture is analogous to that for C£li.e., the effective spin-
spin interaction constant of the binary solution becomes
greater, though because of difference in geometric param- Aor=0 r<r (A1)
eters to produce the same effect the concentration of water $2= % a
molecules is less than the corresponding concentration Qfnq the boundary conditions

A(P]_:O, I’>ra,

CCl,.
@1~ @p=4m(r),
DISCUSSION
; L . . dey p)
The main attention in this paper was paid to the nature of 1 T2 (A2)

the DCP in binary solutions with H-bonds. The influence of

H bonds is discussed in the framework of an lIsing-likeatr=r,.

Hamiltonian with the spin-spin interaction, the value of |t is not difficult to see that
which depends on the random internal variables characteriz-

ing the H-bond network. In particular the Potts variables may - le, ra)'tt
serve as the example. It is taken into account that the char- 901:47'_20 m T T,mY1,m(0,9),
acteristic relaxation times in a H-bond network are essen- - e
tially less in comparison with those for the spin subsystem. o (1+1) Y
Due to this the spin-spin interaction in the Ising-like Hamil- - _urdea (D
. . .. () 4w TI,mYI,m(ei(P)!
tonian should be determined by the averaged characteristics =o (I+1l)e1t+ el \ry
of the H-bond network. In other words the influence of H (A3)

bonds is described with the help of the Ising Hamiltonian . o
. . ~ . where 7, are spherical components of the distribution

with the effective constani.;; depending on the tempera- 0,8): '

ture, pressure, and other external parameters of state via tﬁg T

corresponding dependence of the structural functions of 1

H-bond network. To describe the properties of H-bond con- TI,m:EJ 7(0,$) Y[ m( 0, ¢)dQ,

tribution J4(T) into Jo¢; we apply the Hilbert's principle in

accordance with whicli(T) can be expanded in a series .

with respect to the structural functions which form the com- EJ Yim(0:@)Y1r m (6,0)dQ= 81/ Sy

plete basis for H-bond network mesoscopic description.

Within the conception of such an effective Hamiltonian the  The electrostatic energy of a particle is determined by

behavior of the binary solution with a small admixture of the the expression

third component is possible. It was shown that the neutral

admixture CCJ leads to the increase 8f;; for the guayacol- :i f 2 f 2

glycerin solution because of the decreasepf As a result w 877( \r|>ra61(vgo1) avs |r\<raez(v¢2) av)

the homogeneous solution becomes unstable and demixes. (A4)
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which can be rewritten in the form The introduction of other internal degrees of freedom bike
in the mean-field approximation leads only to the effective
W= _47_”261 é %rdﬂ. (A5) f[em_p_erature dependence df Thus the expressiofB2) is
ar justified.
o ] . The mean-field equation of state for the Ising-like models
Substituting Eq(A3) in Eq. (A5), we obtain of H-bond mixture was obtained in Sec[dee Eq.(10)].
e Note that any approximate approach to the EOS is based on
W= _t1%2 |Tl,m|2+ . (AB) the condition of self-consistency=p(x;T,h). In particular,

2@
i 2e,+ € m0+1 the explicit form ofp can be determined by E(L0). For the
Curie-Weiss EOS it is given by E¢B4). Though the func-

Explicit form of contributions of higher orders is also evi- tion p is determined within the specific model of typ&0),

dent. nevertheless there are the following natural demands im-
posed on it:(1) p(x=0;T,h=0)=0, (2) p(x;T,h)<1, (3
APPENDIX B: MEAN-FIELD APPROXIMATION FOR THE p(x;T,h) is the monotonic function o
FREE ENERGY OF THE ISING MODEL AND THE Because of these properties the relation between initial
EFFECTIVE “SPIN-SPIN” INTERACTION model and the corresponding Ising model with the effective

Here we derive the expressi@82) for the Helmholtz en- “spin-spin” interactionJe((T) can be defined as follows

ergy in the mean-field approximation. Le&t=(S) be the ~
magnetization. In the mean-field approximation the Hamil- (x:T.h)=tan Jeff(Tah);_i_ h B7)
tonian (1) is reduced to the following: pUX: T, T T)

Equation(B7) defines the “magnetizatioriX of correspond-

H=—(h+302X s, B o R -
i ing effective Ising model with somé.¢(T,h). The explicit
, , expression for thele(T,h) follows from the natural con-
and the free energy per particle of the system is straint

X(x=1;T,h)=1,
Xt (B2)

J h
Fmi(X;T,h)=—=TlIncosh =x+=

which according to Eq(B7) gives
The parametex is fixed by the self-consistency condition:

x=—dF¢/dh, which leads to the classical Curie-Weiss Jet#(T,h)=T arctanhp(1;T,h)]—h. (B8)
EOS
For the models described in Sec. Il this procedure gives the
X(T,h)=pcw(X;T,h), (B3) value ofJ¢(T,h) according to
where . ~ ~
(sinH £3(o)x+ ), :taw(Jeff(T,rn7+ b g
(cosh BI(a)x+h]), T T

Jerd(T) h) -

pCW(x;T,h):tan}‘(Tanf .

Note that because of vanishing BfT,h) at x=0 andh

The equivalent result may be obtained starting from the Lan=0 it is the excess part of the thermodynamic potential.
dau potentiaF | (T,h,x) completed by the extremum condi-

tion oF (T,h,X)/ x|z h=0. APPENDIX C: FLUCTUATION-MULTIPOLE
Equations(B3) and(B4) give INTERACTION BETWEEN ADMIXTURE MOLECULES
h=—Jx+ T arctantix), (B5) For the sake of simplicity we assume that the structure of

H-bond network is only violated in the monomolecular layer
which definesx(T,h) and leads to the following form of the adjoint to CC}. Such an assumption is verified by the results
Landau potential: of computer experiments for ions in wa{e4]. Due to this,

the spontaneous dipole momenf® of the complex-

J T admixture molecule and its nearest surroundings afé&ls
Fu(T,h,x)=— §X2+ Txarctaniix) + In(1—x%)—xh. Such an elementary complex may be polarized by the elec-
(B6) tric field of other elementary complexes and acquires the
induced dipole momend". As a result the interaction en-
The thermodynamic potentid (T,h) is simply expressed grgyu(r) of two elementary complexes can be represented
through the Landau potential: in a form

F(T,h)=F_(T,h,x(T,h)). U(r)=Uy(r)+Uqy(r),
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whereU,, is the potential of standard van der Waals interac-The contribution(U(r|d{",d%))) decays as~° and can be
tion [39] andU is the average value of the energy of dipole- omitted. Sincé&< (<)1, the interaction of spontaneous and

dipole interactions: induced dipole moments has the repulsive character. Besides,
the contributiongC2) and (C3) depend one andr , in dif-
Ua(r)=(U(r|dy,dy)). ferent ways. Ar=r, , where
The general expression faf(r|d;,d,)): ,
( <d(s) > ) 1/3
M= , (C9
(dy-r)(dy-1) * |\ 6ekgT

1
U(r|d11d2):$ di-d—3 2 ,
these contributions are reciprocally compensated. To get the

wheree is the dielectric permittivity of the medium. In ac- humerical estimate for, we write
cordance with the above,
(d9%)=d}e2, ()
U(r|dy.dp)=U(r|d df) + U(r|d(? df)
where d,, is the dipole moment of a water molecule. By
order of magnitude the dimensionless paramétsatisfies

caused by the spontaneous or induced constituents of dipof€ inequality
moments of two elementary complexes.

+U(r|d{"”,d), (Cy

To find (U(r|d{®,d$)) the distribution function (=&< (Ce)
g(r|d$®,d%) of spontaneous dipole moments can be ap-
proximated by the expression The lower limit in Eq.(47) corresponds to the case of uncor-
related dipole moments of these molecules, the upper one
g(r|d®,ds)=1-pU(r|d?,ds), corresponds to strong correlations between the dipole mo-

i i ments. From the geometrical reasoning it follows that
where B=1/kgT, kg is the Boltzmann constant. It is not

difficult to see that

ral?
2 B(dP’)? §~( rs) ’

U(r|df®,d))y=— C2
< ( | 1 2 )> 3 62r6 ( )

wherer is the average size of the solvent molecule. If a
In fact this contribution toUy has the same character and solvent is pure water and the admixture molecule is,CCl
origin asU,,. The difference between them is only con-Fs~1 A, r,~4-5 A, s0/~20. In this case, as follows from
nected with the separation of fluctuations of electromagneti&d. (C4) and Eq.(C5),
field on intramolecular and extramolecular ones, which char-
acteristic times differ from each other by a facto10
To calculate the induced dipole momett of an elemen-

tary complex we will model it by a cavity with the effective o . _ _
dielectric permittivity e.<e. In the constant electric field A similar estimate is also appropriate for other cases. Hence

r,~0.5x10 8/2® cm~(2-3)x 1078 cm.

such a cavity acquires the dipole moment for admixture molecules with,>r, the repulsive pair in-
teraction by spontaneous and induced dipole moments is
1-€ , dominant. In this case
d: — € - ran,
2+'€.
= - ; - i 202 1€, d3 [r,)\°®
whereé.= €./ e andr 4 is the radius of a cavity. Substituting U(r)=Uy(r)+— c _W(_a)
instead ofE, the electric field created by the spontaneous " € 2+47%, rg r
dipole moment of another molecule, we obtain
1-% 3 (d9 .1 The detailed analysis shows that ugRp~ 15—20 A the van
di)= €c r_a) d -3 2 rl der Waals contribution t&J(r) is small in comparison with
24€E N\ T r the dipole-dipole ondsee Ref[48]). Therefore we expect

o . _ that all essential peculiarities in the behavior of a solvent at
Restricting our analysis only by effects caused by the recipthe addition of impurities of type Cglare caused by the

rocal influence of two molecules only, we get potential
_ . 2 1-% (d®%
(U(r[d®,d9)=(u(r|d{,df))=— —— ~—=. 282 1-% d; [1,)°
62+EC r U(r):Udz——N—s —
(C3) € 2+%€. ry\f
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