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Dynamics in colloidal liquids near a crossing of glass- and gel-transition lines
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Within the mode-coupling theory for ideal glass transitions, the mean-squared displacement and the corre-
lation function for density fluctuations are evaluated for a colloidal liquid of particles interacting with a
square-well potential for states near the crossing of the line for transitions to a gel with the line for transitions
to a glass. It is demonstrated how the dynamics is ruled by the interplay of the mechanisms of arrest due to
hard-core repulsion and due to attraction-induced bond formation as well as by a nearby higher-order glass-
transition singularity. Application of the universal relaxation laws for the slow dynamics near glass-transition
singularities explains the qualitative features of the calculated time dependence of the mean-squared displace-
ment, which are in accord with the findings obtained in molecular-dynamics simulation studies by Zaccarelli
et al. [Phys. Rev. B66, 041402(2002]. Correlation functions found by photon-correlation spectroscopy in a
micellar system by Mallamacet al. [Phys. Rev. Lett84, 5431(2000] can be interpreted qualitatively as a
crossover from gel to glass dynamics.
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I. INTRODUCTION logarithmic decay laws occur in some glass-forming liquids
[13-18. Generically, one has to vary two or three control
The mode-coupling theory for ideal glass transitionsparameters, respectively, in order to approach these higher-
(MCT) is based on closed equations of motion for the correorder singularities. It was discovered only recently that the
lation functions of the density fluctuatiopg of wave vector MCT equatlion.s for simple systems imply the existence of an
a, ¢q(t):<P§(t)Pa>/<|P& ), q:|a| [1,2]. The static struc- Az singularity if a hard-sphere repulsion is complemented by

ture factorS, enters these equations as input; it is assumed 8 short-ranged attraction sh¢ll9,20. The A; is the end

. . -~ point of a line of A, singularities describing glass-to-glass
be a smooth function of the _control parameters .I'lfe dprpsny transitions in the parameter plane spanned by the packing
or temperaturel. The equations of motion exhibit bifurca-

tions for the longtime limit of the correlatorsf fraction ¢ and the eﬁgqtive attraction strendth At this line

. . "9 _ there occurs a transition from a glass caused by the cage
=lim, . #q(1). which are referred to as glass-transition sin- oot que to the strong repulsion to a glass caused by bond
gularities. Only bifurcations of the cuspoid family can occurformation due to the dominant role played by the attraction.
in the MCT equation$2,3], i.e., singularities of the clagy , This transition line extends to low packing fraction and it
=2, which are equivalent to the bifurcations in the realwas argued to be related to the gel transition tH&@).
roots of real polynomials of orddr[4]. The generic singu- Therefore, this line shall be referred to gsl line in the
larity when changing a single control parameter is #  following for the sake of brevity. There is a second transition
also called fold. In the most important situations, it dealsline that extends to the known transition of the HSJ if
with the transition from a liquid, characterized by=0, to  tends to zero. For brevity, this line shall be referred to as
an idealized glass, characterizedfy>0. The quantityf;is  glassline in the following. The glass line terminates trans-
the Debye-Waller factor for the arrested amorphous strucversally at the gel line forming a line crossing in the glass-
ture. For parameters near a glass-transition singularity, slowansition diagram. The liquid dynamics close to this cross-
dynamics emerges with subtle dependence on time and comg shall be studied in this paper.
trol parameters. This dynamics is proposed by MCT as the The existence of a crossing point depends on the attrac-
explanation for the structural relaxation in glass-forming lig-tion to be sufficiently short ranged. If the rangeof the
uids. The universal laws for this dynamics can be obtainedttractive potential increases above a critical value, the glass-
by asymptotic expansion of the equations of motion as waglass transition line and th&; singularity vanish. This hap-
demonstrated comprehensively for the hard-sphere systepens in anA, singularity as was demonstrated first for the
(HSS [5,6]. The glass transition for the HSS has been studsimple system of particles interacting via a square-well po-
ied experimentally by dynamic light scattering for sterically tential [21]. The topological singularitiesd; are robust
stabilized hard-sphere colloidg—9]. The successful analy- against parameter variation. It was shown explicitly for a
sis of the data within the MCT frame provides strong supportvariety of cases that various interaction potentials or approxi-
for the theory[10]. mation schemes for the static structure factor yield the same

It is known from studies of so-called schematic modelsqualitative result§21—24. In this paper, the square-well sys-
that there may emerge also higher-order singularities fromem (SWS shall be used as model for the quantitative work.
MCT such asA; andA, [11]. The most significant feature of Systems with short-ranged attraction can be realized in
the dynamics near aA, with |=3 are logarithmic decay colloid-polymer mixtures, where the polymer induces a
laws, where detailed properties have also been worked out idepletion attractio25]. Such systems are well under con-
full generality[12]. There are a variety of data indicating that trol experimentally and have established thermodynamic
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phase behaviof26]. Logically disconnected from the ap- the system. The initial condition i$,(0)=1. The kernel is
pearance of higher-order singularities, MCT predicts a subtle  bilinear  functional of the correlators, my(t)
reentry phenomenon for the glass transitions in such systems 7 [V, ¢,(t)], with
[19] which can be related to the variation of the static struc-
ture factor[21]. Starting in the glassy state of the HSS and 10 d%k
increasing the attraction, the glass is melted for a sufficiently Folfl= Ef (2m)3
small range of the attraction. Upon further increasing the
attraction, the system arrests again. This reentry phenomenamd the verteX/ specified by
is now firmly established by experiments in colloidal sys- oL L
tems[27,28 and by molecular-dynamics simulatipb5,28— V= SeSSg-«peld-ke+q-(q— k)c‘d,g]zlq“. (10
30]. . . . . .

]The scenario suggested by MCT for thg singularity has The dlrect.correla.tlon fun_ctlonq is connected withS, by
been applied successfully to analyze experiments and resulfd® Ornstein-Zernike relatiorg,=111-pc,] [42].
of computer simulationg31]. It was also applied to systems ~_1he long-time limit of the correlation functionf,
where both glass and gel transitions odci#,15,3Q. For the ~ — M. #q(t), can be calculated from an algebraic equa-
dynamics near higher-order singularities, detailed predictionsion,
for logarithmic decay and subdiffusive power law in the
mean-squared displacemeiSD) have been worked out fq/(1—1fq)=Fq[f], )

for the SWS[32]. Indications of logarithmic decay were re- \icp gisplays glass-transition singularities when control pa-
ported[14] which are compatible with MCT predictions, and ., meters greyvgrieﬁﬂ]. g P

a recent study identifies both logarithmic decay in the corre- For the dynamics of the tagged particle densjiff(t)

lation functions and a subdiffusive power law in the MSD .- , . .
which is consistent with MCT16]. It is the main objective =exfiq-r{t)], one obtguns S|Sm|Iar equations for the correla-
of the present paper to discuss scenarios in the SWS neartign function 3(t)=(pZ" (t)p¢) [1,6],
crossing point where the dynamics is influenced by different .
A, smgularltles anq higher-order singularities at once. There Téﬁt¢§(t)+¢3(t)+f mg(t—t’)atrgba(t’)dt’:O. (3a)
are signs of crossing phenomena connected to higher-order 0
singularities in recent experiments with photon correlation .
spectroscopy in a micellar systdiiB,17,18, a suspension of Here rg(t) denotes the tagged particle positiory
poly(methylmethacrylate (PMMA) colloidal particles =1/(D3g?) with the short-time diffusion coefficient for a
[28,33, a system of microgel colloid®7,34], and computer  single particle, denoted bRg5. We setDg=D, in the fol-
simulation studie$15,28. For polymers, dielectric measure- |owing. The kememg(t):f§[¢(t),¢3(t)] is given by the
ments could be fitted with scenarios f8g, A, and a line  mode-coupling functional for the tagged particle motion,
crossing[35-39.

The paper proceeds as follows. Section Il introduces the S1F Ty P op = g% s
equations of motion of MCT. A comparison of the theoretical fq[f'f ]_f (2m)3 Sk_4ck (ak) fkfld—E\- (3b)
glass-transition diagram with the simulation of REE5] in q
Sec. Il motivates the asymptotic analysis which is outlinedFor a tagged particle of the same sort as the constituents of
in Sec. IV and applied to the MSD in Sec. V and to thethe host fluid we can s@é:cq.
corrglatlon function In Sec. VI. Sect|or.1.VII pres_ents acon- The MSD of a tagged particle,&rz(t)=(|Fs(t)
clusion. The Appendix addresses specific questions arising in - 2
the numerical determination of the glass-transition singulari-_rS(O)| ), obeys[6]
ties.

Vo ififjg-k» (1b)

3

t
5r2(t)+D8f m©O(t—t")ér3(t’)dt’=6D5t. (4
0
Il EQUATIONS OF MOTION The functional m(t)=lim__ mS(t) = Fiusdl 4(1), 6%1)]
All equations of MCT are based on the equations of Mo+q, the MSD reads
tion for the normalized density correlatorspg(t)

=<p§(t)pa>/<|pa 2y for wave vectorq and its modulugy

=|q|. When Brownian dynamics for the motion in colloids
is assumed, these equations réa@®,5,40,41

~ dk ~
JTMSD[f,fS]zf —Zpsl((ci)z?kfi (4b)
(677)

The inverse of this functional determines a characteristic lo-
calization lengthr ¢ by r§= 1/Fusol f,f%]. The long-time dif-

t ; e s ; ; 2
Tqat¢q(t)+¢q(t)+f Mg(t—t')dy g(t')dt =0, (13) fusion coefficientD® can be defined by Ilmmﬁr (t)/t

0 =6D* and yields[6]

S o]
Here, qusq/_(DOqZ), with DQ denoting the short-time dif- %: 1+ Déf m©(t)dt. (5)
fusion coefficientS,=(|pg|?) is the static structure factor of s 0
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FIG. 1. Glass-transition diagram for the SWS using the structure FIG. 2. Glass-transition diagram for the SWSa&#t 0.03 (full
factor within MSA. Five cuts through the three-dimensional dia- lines together with isodiffusivity lines forD$/DS=10°,107,10'
gram are shown for constant well widtidsas curves for attraction (dashed lines, from left to righbased on the structure factor using
strengthl” vs packing fractionp. All curves start at the limit of the  MSA. TheA; singularity is indicated by a circlel) and a crossing
HSS forI'=0 as indicated by the arrow. Fér=0.117 and 0.06 the point by a diamond ¢ ). On the isodiffusivity lines, states are
curves ¢%(I") vary smoothly adl’ is increased. The line&s= &* marked forl'=1.67 (+), 5.50@), and 6.33@). The dotted lines
=0.043 81 hits the?, singularity (*). Curves for6<5* exhibita  with the shaded circle as end point show the glass-transition singu-
crossing point ) and anA; end point singularity ©) as dem- larities for 5=0.03 based on the structure factor using PYA rescaled
onstrated for §5=0.03 and §=0.02, where part of the glass- in T by a factor 5.88 to match the crossing point.
transition line has been erased to avoid cluttering the figure.

rating glass transitions fof <I'“ from gel transitions for
I'=T"°. The line of gel transitions extends beyond the cross-
ing point into the arrested state as glass-glass-transition line
and terminates at th&; singularity. For5> &*, glass- and
egel—transition lines join smoothly as seen f6=0.06 and
0.117. Ford< dieenuythe lines of glass transitions display the
reentry phenomenon discussed above SAtJeenyry this re-
entry disappear24]. When using the analytical result f&

in MSA we getdjion~=0.117, while for the PYA one finds

the larger valuesi,o,=0.145. To assure that the smaller
value for the MSA is not caused by the expansioinsed

=d3pw/6, the attraction strengt’=u,/(kgT), and the ) . ) )
relative well widthd=A/d. The unit of length is chosen to for the calculation ofS,, we determinedreenyy agagh,ﬂst/fgls

be d=1. The unit of time is chosen so th&t,= 1/160. ti_me solving the MSA numerically. This yieldeeniy
Wave-vector space shall be discretizedvtarid points with =0.112. Therefore the deviation between the MSA and PYA

spacingAq=0.4 and a cutofig™ large enough to assert results has to be _understood as a difference in th_e way the
convergence of the integral in E¢Lb) for the long-time closure relations incorporate the subtle changesSjrthat
limit. The procedures for the numerical solution of E¢g.  '€ad to the reentry as explained earfi2d].

to (5) have been outlined previousl$2,43,44. Asymptotic For the discussion of the crossing we choose the&ut

laws close to the singularities are presented in the Appendi ?9'03 from Eig. 1 yvhic? is shown in Fig. 2 as fuI'I Iine..The
which allow for accurate and fast determination of bagh ~ ratio of the diffusivity D® compared to the short-time diffu-

For the equations above, the static structure fagfprs
required as input, which can be calculated from the interac
tion potential after some closure relation is invokdd]. For
SWS, we use an approximate analytical solution of th
mean-spherical approximatidMSA) and a numerical solu-
tion to the Percus-Yevick approximatioi?YA) [21]. The
SWS consists ofN particles in a volumeV at densityp
=N/V with hard-core diameted and an attractive well of
depthuy and widthA. We describe the SWS by three dimen-
sionless control parameters: the packing fractian

end points and glass-glass transition points. sion coefficientD can be used to characterize the distance
of a chosen state to the liquid-glass-transition line. The
IIl. GLASS-TRANSITION DIAGRAMS dashed lines in Fig. 2 show states for cons@jtD* with

D? defined in Eq.(5). These lines are plotted for the cat

The three-dimensional control-parameter space for the=0.03 also using the MSA for the evaluation of the structure
SWS can be examined by considering cuts through the set ¢&ctor. These isodiffusivity lines can be interpreted as ap-
glass-transition singularities for constahtin each plane the proximations of the liquid-glass-transition line. They also
transition points are calculated by finding the bifurcationdisplay the reentry phenomenon as discussed above. The
points of Eq.(2). Figure 1 displays the singularities for sev- liquid-glass-transition line follows closely the isodiffusivity
eral cuts. The glass-transition diagram is organized aroundurves but is separated further from them around the crossing
the A, singularity (* in Fig. 9 at (¢*,I'*,6*)MSA  point. This indicates the influence of more than one singular-
=(0.5277,4.476,0.04381). From there emerge ot 5* ity on the dynamics in that region. If the PYA instead of the
both the line ofA; end points, O in Fig. 1) [ ¢°(6),I'° ()], MSA is used to calculate the structure factor input, the dotted
and the line crossings in Fig. 1) [¢ ?(8),I' “(8)], sepa- lines of liquid-glass- and glass-glass-transition curves are
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FIG. 3. End points Q) and crossing points¢ ) for the SWS in 4

PYA for §=6*, 0.04, 0.035, 0.03, 0.025. The crossing points _ .
based on the MSA can be scaled on top of the PYA result by a F_|G' 4 R_e_sults for the SWS fqﬁ— 0'0.3' 'I_'rlanglesA) mark
s-dependent prefactolr A=y (8)TMSA with y(5)~0.1+2.345 the isodiffusivity curves from the simulation in RéfL5] from left
: : : H S S_ H
Crossing points and end points based on the MSA are shown bg right forDO/D ,_2,><102’ 2X10°, 2X1Q4’ 2X10°, r.espgc.tlvely.
filed symbols. The inset shows the differencegrbetween cross- pen trianglesA indicate the extrapolation of the dlfiuswlty data
H H RV S__
ing points and end points for increasiag— 5. Results for the PYA [16](.)2Crosses ((,) shoyv the |sod|ffu3|V|.ty curve foD,/D°=2.4
and the MSA are shown by open and filled symbols, respectively.>_<1 from t_he simulation of the monodisperse sy_sl[ém]._Dotted
The dashed curve displays the dit — ¢ © = 45(5* — 5)2. lines are guides to the eye for the data from MD simulation. Dashed
lines indicate the data for melting, freezing, and solid-solid binodal
found. The result for both closure relations can be matcheéPgether with the solid-solid triple poin#() and critical point @)
reasonably at the crossing point by only rescallhgy a from Ref.[45]. Full lines are theoretical calculations using the PYA
factor of 5.88. The agreement for the almost horizontal ge|_structure factor for liquid-glass transitions, the glass-glass transition
transition lines is less satisfactory but the gIass—transitiorg';[/hDes'rldz'io';éztAg>£?()),)a‘2'";<j ;gf zrislpgct;ve 'SIO?I'T“S!V';V The for
lines almost fall on top of each other. As noted in the pre-"°~ o e (from left to right. The ar-
ceding paragraph, the reentry is more pronounced for throw labeled HSS indicates the limit of the hard-sphere system from

. . _NRef.[15]. The MCT results are based on the PYA and the control
result using the PYA than for the MSA. The different packing parar[negequoPYA and TP are transformed bypMP=2 25,P"

fractions at the crossing arepysa=0.5364 and ¢pys 05747 and™MP=2.85""" to match the isodiffusivity curves
=0.5362, while the difference in the location of thg Sin-  from the simulation.
gularities is slightly larger, pysa=0.5449 and @Sy,
=0.5456. . :
Figure 3 shows theA; singularities and the crossing 1215] and tTe thgo'retgila\qata cr?lculztet()d uks |ng'the ﬁtructulze
points when using, in PYA (empty symbols Matching the a_ctor ceva uated in IS achieved by keeping t_ e we
crossing points from the result using the MSA, cf. Fig. 1,Width fixed at 5?8'03 andpica“”g the axis of the inverse
again by multiplications ifl", yields good agreement in® temperature by "~ =2.89""", This preserves th(_a limiting
for all values of8. After the transformation, thé, singu-  Case of the HSS as done above for the comparison of PYA
larities for a givens differ in T by 5% and less, while the and MSA, cf. Fig. 2. Trying to match reasonably at least the
deviations ing are comparable to those found for the cross-two curves with the highest ratio &f/D¥, the packing frac-
ings. It should be noted that all end points are found ation has to be takerp"P=2.25 ¢P**—0.5747 in order to
roughly the same attraction strength=~0.9, whereas the keep a value for HSS af;,ss=0.586. This is consistent with
crossing points move to highdt as the well width is de- the diffusivity data and experiments done in collo[@9].
creased. At theA, singularity, the end point absorbs the The prefactor of 2.25 seems somewhat large and it is already
crossing point, and the differenge’ — ¢ © approaches zero seen in Fig. 4 that this overestimates the differences in
in a minimum. Therefore, crossing point and end point sepafurther from the singularities. But taking the diffusivity data
rate from each other quadratically when close toAQesin-  for granted, this large prefactor is required. A modification of
gularity. This is demonstrated in the inset of Fig. 3 for thethe third coupling parametef was not necessary in the fit.
results using both MSA and PYA as input, respectively. Figure 4 demonstrates a reasonable fit between theory and
One cannot expect a theory for a singularity to predictdata starting from the HSS and extending up to the crossing
accurate numbers for the control parameters of the singularpoint. For the gel transitions, there are not enough data avail-
ties. For that reason the distance from the singularity shouldble to make a definite statement. For this high valuE d@f
be used for a comparison of the theoretical results with dat& also difficult to obtain accurate values forf with good
from experiments or computer simulation. The isodiffusivity statistics from the simulatiofiL5]. These points are only fit-
curves in Fig. 2 motivate a comparison between MCT anded qualitatively in Fig. 4. An extrapolation of the diffusivity
computer simulation based on the rafig/D® [15]. Figure 4  data was used in Ref16] to determine the open triangles
shows that an acceptable fit of data for the diffusivity in Ref.that represent a different estimate for the liquid-glass transi-
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tion line. These points agree well with the transformed the-be applied with the separation from the respective singularity
oretical curves but tend to deviate closer to the crossing. As small parameter. The separations fronAaror A singu-
comparison of the fit in Fig. 4, which uses the PYA for the larity shall be denoted by ande, respectively. The expan-
theoretical curves, with Fig. 2 indicates that using MSA forsions forA, singularities which are valid for glass-, gel- and
the structure factor would also properly fit the data from theglass-glass-transition points are taken from RES6], the
HSS limit up to the crossing but would be worse than PYAexpansions for thé; singularity are found in Ref§12,32.

for the gel line. The indication of th&; singularity in Fig. 4 Only those formulas which are needed below are compiled in
has to be understood as an extrapolation of the transformahe following. For bothA, andA; singularities the expansion
tion scheme outlined above. A slight reservation has to beor the density correlation function can be stated in the gen-
made since the simulation data refer to a binary mixtureesral form

while the present theory deals with a monodisperse system.

However, comparing the data from the simulation of the b)) =S+ T, +h (G +[H(1) +K G2},  (6)
monodisperse cade9] indicated by crosses in Fig. 4 with a a 9 a
the ones for the mixture, the isodiffusivity f@g/D%=2.4

X 10? seems to fit nicely into the picture. Data for lower
Dg/D* from Ref.[29] have the same trend i but appar-

ently do not occur at control parameter values for the SaME,mnrises the factorization theorem of M3, stating that
diffusivity as extrapolated from the mixture. The MD studies e C fantar ;
were performed using Newtonian dynamics where an approt-he deviation of,(t) from the plateauf, factorizes into

priate definition ofD} is impossible; the valud kg T/m is t|me-depehder?t fu.nct|.oG(t) gnd a critical a.lmphtudehg.
taken instead obg as reference which introduces a reason-ThIS factorization is ;"O'fﬂed n next-to'-leadlng Qrder fy
able microscopic time scalgl5,29. This problem in the anq the termK,G(t)” with the correction amplitudé,.
definition of the analog obj introduces less deviations for While the gengral formulas f_d'fl’ hq_ ‘_':deq are the same
larger ratios of the diffusivityD$/D*® since only the order of for the expansions at both singularitiés(t), H(t), andf,
magnitude is important for the definition of the isodiffusivity &€ SPecific for the particular expansion. Ataasingularity
curves. A deviation in lo@5 would stay the same for both th€ leading-order result is given by tigecorrelation func-
large and small differences in I@f—logD*® and the result tion [2],

can be more accurate the larger the r&ggD*® is. Therefore,
putting emphasis on the data with high ratios§/D* is
justified.

The fit in Fig. 4 shows that, in general, MCT overesti-
mates the trend to freezing when coupling parameters al
increased. This was already found for the H®$ and a
binary Lennard-Jones mixtufd6]. Yet, for a Lennard-Jones
potential the mechanism of arrest is still dominated by repul- _ a _ 2a
sion, so the control parameter is effectively only density also GH=(t/V% Hb=r(@)(t/D)™, ®
in that system. For the SWS near the line crossing, necessayf- ;
ily both mechanisms of arrest have to be of the same impo?—XIIth a functionx(x),
tance and the approximation inherent to MCT has to preserve _ 3
the relative imp%l?tance of both mechanisms. In thepcase of w()=[T(1=30) — LT (A=X)7YF(1-0T(1-2%)
the SWS, MCT has apparently the same tendency in the error —A(1-3x)]. 9)
for the treatment of couplings ip andI'. The mapping of
the theoretical results tbigher experimental values of both Here,T'(x) denotes the Gamma function akds the expo-
packing fraction and attraction strength is also in agreementent parametei, =I"(1—a)%/I'(1—2a). For anA, singu-
with a recent experimental analysis of a colloid-polymerlarity, 0.5<\<1, while A\=1 specifies amA; singularity.
mixture with the theoretical results for the Asakura-OosawaFormulas for the parametegsand/ are found in Ref[5].
potential [47]. For the latter work, a qualitatively similar For the MSD, the analog of E@6) reads[6,32]
mapping could be suggested to match experiments and the-
oretical predictions. By comparison with the data for the Sr2(1)/6=12—12—hyusp{G(t) +[H(t) + KuspG (1) 2]},
phase transitiong45] in Fig. 4, we recognize that the cross- (10)
ing of lines and theA; singularity are located in the meta-
stable region with resp;act' to the solid-solid binodal. e\ here only the plateau correctiad is again specific to the
singularity differs by 4% ine and by a factor of 4.5 1" gyhansion considered. Inserting B8) into Eq. (10) yields
from the solid-solid critical point. the following form for the description of the MSD at tie
transition point 6],

where the plateau correctioﬁ] and the terms in square
brackets are of next-to-leading-order. Neglecting these terms
leaves the leading order resul;bq(t)=fg+ hqG(t), which

G(t)=V|olg; (tlt,), t,=to/|a|V?, o=0, (7)

where the lower signs refer to the weak coupling side of the
rtransition. The overall time scalg is used as fit parameter.
Eor o=0, the above formula simplifies to a power law as
does the correction,

IV. ASYMPTOTIC EXPANSIONS

For the description of the dynamics at the crossing, 5r2(t)/6=rgz—hMSD(to/t)a{lJr[KMSDJr r(a)](to/t)3}.
asymptotic expansions at the two different singularities shall (11
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The increase of the MSD above the plateéﬁ is given by
the von Schweidler law,

Sr2(1)/6=r2+ hysp(t/t,)P{1—[Kysp+ x(—b)](t/t))°},
(12

with T'(1+b)?/T'(1+2b)=N\. The time scald’ obeys an-

other power-law scaling, t. =to/(B*®|o|”),y=1/(2a)

+1/(2b), where the numbeB is tabulated in Ref[48].
The leading-order result for afy; singularity is given by

B=\[—6¢,/7?],

where the time scale is used to match the asymptotic de-
scription with the solution. The corrections in Ed¢6) and
(10) are completed by specifying

logloﬁrz(t)

G(t)=—BIn(t/7), (13

AE g 1 1

oo

4 6
log, .t
(14 FIG. 5. MSD for the SWS at the crossing. Full curves are the

results for states on the isodiffusivity lines foDg/D®
. PR _ _ =10°,107,10'° marked in Fig. 2. The curves with labelrefer to
The definitions forf, rg at theA_3 singularity and the_pa- the transition points for the value &findicated. Respective values
rametersB, B;, ande; are found in Ref[12]. The solutl_on for the plateaus K2 are marked by the symbols, ®, and W

for the MSD at anAz singularity can be represented in an iniroduced in Fig. 2. In the lower two panels, the plateau forAe
alternative form as a power laj82], singularity is shown as horizontal line. Dotted curves show the
leading solution to the critical lawt{/t)2, dashed curves the next-

4
H(t)=2l BiIn'(t/7).

Sr3(t)/6= r§2(t/ 7%, (153 to-leading order for thé, singularities, Eq(11). Open square&’)
) denote the time where the solution deviates by 20% from the
with exponent asymptotic result in Eq(11). An effective power law for exponent
2 %=0.27 appearing d&f=6.63 is shown by the dash-dotted lifs=e
X=NyspB/r". (15D text). Here and in the following figures the unit of length is the hard

. _— . [ =1.
The next-to-leading-order result implies a correction to the™®"® diameted

exponent The exponent parametar*=0.750 is still close to the one
X' =hysp(B—B)/r&2. (16  for the HSS\=0.735. But the time scalg)=1.95 differs
considerably from the valug,=0.425 for the HSS. This is
and reads due to a slowing down of the dynamics for times where

8r2(t) is smaller tharrg2 caused by the attractive forces on
smaller length scale. The exponent for the critical relaxation
is a=0.305. The point where the description by Ejl) and

the numerical solution deviate by 20% of the critical plateau
value &¢% is marked by a square &= 18~9t,.

Figure 8b) shows the scenario for an approach tofgn
singularity on the path closer to thfe; singularity. The ex-
ponent parameter is increased\fo=0.857 corresponding to
a decrease of the critical exponentae 0.243. The increas-
ing importance of the attraction is seen in a decrease of the

Three paths are marked in Fig. 2 for the discussion of théTitical localization length representing the plateaus for the
dynamics. The first path fof = 1.67 is relatively far from MSD from 6r=0.0318 [labeled by + in Fig. 5a)] to
the crossing point and is connected to a glass transition. Ther $*=0.0245[marked by® in Fig. 5b)]. However, the ma-
path forI'=5.50 is close to but below the crossing point andjor new phenomenon is the drastic increase of the time scale
close to theA; singularity. The third path is connected to a t, to t5=4x10°. The critical decay for thé\, singularity
gel transition beyond the crossing point. All paths end at arsets in only for times arount~1CP as indicated by the
A, singularity given by the respectidé. The changes in the square in Fig. ). There is an additional relaxation process
MSD when approaching the different liquid-glass-transitionoutside the transient ruling the dynamics within the window

Sr2(t)/6=(t/7)* {rS =12+ b,r &in(t/ 7)2+ agln(t/7)°

+ayln(t/7)*. (16b)

Here b,=(2r%a,—a?)/(2r¢*), a;=hysp(B—B,;), a,=
—huso(B2+ KuspB?), and a,=
_hMSDB4'

az= —hyspBs,

V. RESULTS FOR THE MEAN-SQUARED DISPLACEMENT

points shall be analyzed using the asymptotic laws forthe
singularity in the following. The asymptotic laws for the
critical relaxation atA, singularities from Eq(11) are com-
pared with the full MCT result in Fig. 5. Fdr=1.67[Fig.
5(a)] the description is similar to that found for the HES.

0= log;o(t)<4.5. The critical localization length of the
nearby gel transition yieldssr?~10 3. Therefore, the
anomalous decay process is not the one related to the gel
transition. Rather, it is the decay around the plateau of the
close-byA; singularity which appears as a subdiffusive re-
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gime with almost power-law-like variation. This later phe- LI N B B B I
nomenon shall be explained in detail below. 0.06 - r° A
In Fig. 5c) for I'=6.33, the gel plateau is approached 0,03} hy, _
with t,=6x10"2 and the critical relaxation fok©=0.873 P
anda=0.232 is described with similar accuracy as discussed
in Fig. 5(a). The deviation of 20% is at=0.048=8t, and
again indicated by a square. The comparably large value of
causes the leading asymptotic approximatidatted curve
to deviate further from the next-to-leading order result. The
amplitude[ Ky spt «(2)] in Eq. (11) is around—1 in Figs.
5(a) and Fc). In this sense, one concludes that the critical
dynamics for the gel transition is quite similar to the one
observed for the glass transition.

The dynamics for theér2(t) exceeding the respective pla- < 5 o
teaus is quite different for the glass transition shown in Fig. & | _
5(a) from the gel transition in Fig.[®). Let us, as usual, refer e #xa&v
to the process withsr?(t)>6r? as ana process. Thex '50_' '1 ' '2 ' ; ' "‘ ' g é : ; . 2'3 : é 0
process shown in Fig.(8 is similar to the one in the HSS. r

The crossing of the plateau is followed by a von Schweidler
relaxation and a crossover to long-time diffusi@j. A res-
caling of the time can condense the curves on top of eac
other, a property known as scaling. For the dynamics at the
gel transition shown in Fig.(6), the lower plateaull) de-
fines the onset of thea process. The shape of the
log &r%-versus-log curve differs qualitatively from the one
shown in Fig. %a). The relaxation around th&; singularity

plateau causes effective power-law behavior with0.27 as
shown by the dash-dotted line. It is the same phenomenon _ . . _
observed above in Fig.(5). On approaching the gel transi- ?f'\isgi A%I?r?éAanginozlatrri]te Eel ITF"_ it6£1eagi]:cseMS;v;a
tion, this subdiffusive regime scales as part of thprocess. rorﬁ c}ossin an3d hi gher-oéerhg?r?_ulari.tiasé ) is alwa sy
This holds if the distances to neither the nearby glass transf— 9 9 9 A y

tion nor theA; singularity are seriously altered as we furtherglc());?ng;derg ’ tt?fa Z%rﬁﬁﬂgg to ﬂ:/sh(i:c”r?(i:slnlswaltinvgglzésof
approach the gel transition. Under this condition, Aaesin- Y b MSD 9

gularity and the glass-transition singularity influence only theorder unity there. For this reason, including the correction to

shape of thex-relaxation curves. On the other hand, if the E:T)enscirclité?glb:avivnIZO%g.a?islgzrfgiﬁz It:ae dqﬁngae Oroi?nﬁlé\?c%t:“%
distance between the glass transition andAlsingularity is y P g app '

changed on the path taken, the form of thgrocess is also hlgher-o_rder smgulgrmes};—&, andx(a) d_|verges. This is .
I ) . o . . responsible for the increase of the corrections at the crossing.
modified. In this case, thA; singularity is manifested in a

violation of thea scaling for the gel transition as found in a These corrections change sign whef@) starts to increase.

recent simulation studj14]. If the separation from thé, For the case Of‘.s 0.03, th'so happegs only on the glass
; . . . - e glass-transition line betwedn® andI" .
singularity and the glass-transition singularity is sufficiently ; . . . .
L 7 Figure &c) points out the difference in the time scdle
large, which is true for smallp, the dynamics is affected ) . o ;
only by the gel plateau and directly crosses over from theWhen coming from small" in the HSS limit or from higH’,
y oy get p Y fespectively. In the first case, for the critical law at the

von Schweidler relaxation at the gel plateau to the long-time ” T : :
glass-transition plateau is increasing and eventually diverg-

diffusion. For this reason, the exp_onentof the effective ing when the gel transition at the crossing is approached.
power law approaches unity upon increaslng _ _This is because the glassy dynamics of the gel transition
~ Figure 6 shows the parameters for the asymptotic descriyetermines,. ForI'>T", t, is orders of magnitude smaller
tion via Eq.(11) as a function ofl” along the liquid-glass-  than in the HSS since the relevant localization for the gel is
transition lines for§=0.03. The localization lengthes in encountered much earlier in time. On this line of transitions,
Fig. 6(a) exhibit a jump at the crossing poiiit® reflecting ¢, is regular at the crossing but diverges at faesingularity.

the discontinuous change 6f. The values for the glass- This indicates that power laws are an inadequate description
glass transition are also shown down to fesingularity at  of the critical relaxation at a higher-order singularity.

I'°. The critical amplitudes,sp follow the same trend as Figure 7 displays the parameters quantifying the von Sch-
r¢, signaling that a change in the localization length also setaeidler approximation in Eq(12). Figure Ta) refers to
the amplitude for the relaxation around. Figure Gb) states on the isodiffusivity lin®§/D3= 10 in Fig. 2. The
shows the two quantities in the correction to the critical law.isodiffusivity lines bend away from the crossing and this
Kmsp shows only small deviations from the value in the translates into the separation parametetisbeing maximal
HSS, Kii23=—1.23. On the glass line at the crossing, there. On the same curve, the separation fromAthsingu-

FIG. 6. Parameters for the critical decay/gt singularities ac-
pording to Eq.(11); re (V) and hygp (A) in panel (3); «(a)
(X) from Eq.(9), Kysp (V), and«(a) +Kysp () in panel(b);
andt, (¢) in panel(c). The arrow labeled’® marks the value for
the A, singularity,I' ¢ the crossing point. Full and dotted lines are
guides to the eye to join points on different parts of the glass-
transition line for GT'<T'® and the gel-transition line foF°
<T", respectively.

011401-7



M. SPERL PHYSICAL REVIEW E 69, 011401 (2004

log,(-€))

X bZ
x’

s

w7

3

{ p 1 1 1 1 | |
0 2 4 6 8 10 12
log,t
LI N L FIG. 8. Asymptotic description of the MSD near tAg singu-
M © larity. The full lines are the MSD for states with=6.33 and in-
= 61 m creasinge. Three curves reproduce the results from Fi@) &nd
&4l [l"° the last one refers tp=0.5231. The long horizontal lines show the
W critical plateaus 622 for the gel transition af' =6.33, theA; sin-
2 N N T I I N R gularity and the glass transition at the crossing pointlfer5.88.
0O 1 2 3 4 5 6 7 8 9 10 The short horizontal lines indicate the corrected plateart?s(
r —Fﬁ) for the asymptotic laws associated with the respective relax-

ation. Theg-relaxation asymptote around the gel plateau, &j,

is drawn as a chain curve labelegl for the solution atD§/D*®
=10 (compare text The chain line labeled vS represents the von
Schweidler description for the state at=0.5231. ForDg/D*®
=10, 10/, and 18° dotted and dashed lines show the leading and
next-to-leading approximation near tidg plateau in Eq(10), re-
spectively. The straight full line labeledshows the approximation
by Eq.(153, x’ the corrected power lal6a, and the dashed line
labeledb, the approximation by Eq16h). The straight dash-dotted
lines show the asymptotic long-time diffusi@tt for the respective
curves.

FIG. 7. Parameters for the von Schweidler law description, Eq
(12), for 6=0.03. PanelA) shows the separation parameterfor
points on the isodiffusivity line forD§/DS=10° (O—0). The
separation of the same points from the singularity,e,, is shown
by the full line. The separatios, of points on the liquid-glass
transition for givenI” is shown by filled symbols ¢ - -- ¢), the
plus symbol marks, for the glass-glass transition fdr=>5.63.
panel (b) exhibits the amplitudes of the correction in Ed.2),
k(=b)+Kpsp (€) and k(—b) (X), cf. Eq.(9). The values for
Kusp are the same as shown in Fig. 6. pafelshows the time ™
where the respective criticdl, plateau is crossed by the MSD for
D§/D°=10". duces short-ranged bonding among the particles before the

. o i i particles experience the cage. Hence, for the same reason as
larity |e,| has a minimum around the crossing. This alsofor the increase df;, this bonding process shifts to higher
shows that distances in control-parameter space as appareyjues. When comparing the lower panels of Figs. 6 and 7
e.g., in Fig. 2 need not necessarily reflect the relevant sepave observe that for 8 '<5, the time scalet, andt™ run
ration parameters of the singularity for the asymptotic de-aimost parallel and define a window of six orders of magni-
scription. The difference in coordinates of the liquid-glass-tude in time where the cage effect dominates the dynamics.
transition point for '=5.50 from the A; is (A¢,AI')  For large couplingl =8, we observe a comparable window
=(0.085, 0.01) while for the crossing pointA¢,Al')  for the dynamics around the gel plateau, where bonding rules
=(0.084,—0.37). This would suggest that the former point the dynamics. Therefore, in both cases the stretching of the
is closer to theA; than the crossing point. The separationdynamics is the same as is corroborated by observing that
parameters, however, asg=—0.028 and—0.015, respec- X =0.8 in the mentioned regior&1]. In this sense, also the
tively, indicating that the influence of th&; singularity on  « processes of glass- and gel-transition singularities are
the crossing is stronger. Figurgby displays the correction similar if one is unaffected by the other. FosF' <7, or
amplitudes in Eq(12). Kysp is the same as in Fig. 6 and \=0.8, the dynamics is governed by the interference of both
k(—b) shows similar behavior ag(a) in Fig. 6. However, mechanisms and the emergence of Ahesingularity.

ask(—h) is larger thank(a) on the gel line it almost com- Figure 8 shows the asymptotic approximation of #ae
pensates the negative valueskqfisp andKysp+ «(—Db) is  process for states with=6.67 and increasing, cf. Fig. 2.
close to zero. Three plateaus organize the relaxation. First, the gel plateau

The timet™ for the onset of thex process, i.e., the time is encountered. Shown here as dash-dotted curve lageited
where the critical plateau is crossed, is shown in Fig).7 the first-order description by the fuB-correlation function
When the long-time diffusion is given by the rati®g/D%  from Eq. (7). It continues the description by the critical law
=10 the plateau in the localization is encountered by thediscussed in Fig. 5. The correction in Ed.2) for that A,
MSD for the HSS at~=3x1CP. This is the time when the singularity is close to zero as for almost all gel transitions for
cage around a tagged particle disintegrates and the partici®=0.03, cf. Fig. 7. This explains why the first-order descrip-
starts to diffuse. The increasing attraction #6r-0 intro-  tion is so successful in the regime after crossing the plateau.
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After the plateau, the curve for thé correlator cannot be I
discerned from the full solution. It extends, accidentally, also

beyond the region of applicability which is limited by tiAg 0.06
plateau. To demonstrate that upon closer approachingthe
singularity for the gel transition, thea scaling picture from 0.04
Fig. 5@ reemerges, we show an additional relaxation for
¢=0.5231. This has a similar separation parameter, 0.02

—10 4, as the curveDy/D5=10Y in Fig. 5a). This last
curve in Fig. 8 clearly displays the two-step relaxation and is
described well by the von Schweidler [ad2). 0.01E
The second plateau is associated with the logarithmic re- L]
laxation laws. The curvature of the léf-versus-log curve i
is positive around the plateau and therefore the leading ap- 0.001 -
proximation, Eq(13), which implies negative curvature, dis- £
agrees qualitatively. Including the corrections in Ed0) C
with H(t) given by Eq.(14), one gets the dashed lines. These —f | - | ' | ' | " d

describe two decades in time for all curves shown when re- 00s© e o ]
quiring 5% accuracy. The asymptotic laws for g singu- X L e - ]
larity describe approximately half of the relaxation between ohaerei” '. | . | . | .
the gel and the glass plateau. In particular, the onset of the 0 0.005 001 0015 0.02
effective power law discussed in Fig. 5 is captured by the 8-8

asymptotic approximation. However, the range of applicabil- FIG. 9. Variation with the well width. Panéh) shows the lo-

ity for the logarithmic laws is bound by the neighboring calization lengttr at the crossing point for the glasx§ and the

plateaus for gel and glass transitions. For this reason, th&el state (0 ) as a function ofs* — & together with the value at the

approximations for thé\; singularity do not extend beyond A, singularity (# ), 5 =0.04381. The value ofS in the HSS is

the range shown in the figure. In particular, the ef'feCtiveindicated by the arrow. Panéb) displays the separation parameter

power law with exponernt is explained only in the first part —¢, (¢) and the quadratic corrections to the logarithmic relax-

by the logarithmic laws and is continued by a crossover tation at the crossing point. Fér=*,0.03,0.02, the minimak,| is

the dynamics at the plateau of the glass transition. displayed @) which can be reached on the isodiffusivity line
To differentiate the effective power law from the power D3/DS=10'. Panel(c) displays the exponents (#), cf. Eq.

laws discussed for the MSD in RgB2], we show the latter (15b), and the fitx=3.05 (5* — 6) as dotted line.

for comparison as dotted line in Fig. 8. Let us note first that

for all states considered we firfthb>0. The approximation since the distance to this point is relatively large, the
by the leading-order power laWl53 describes one and a asymptotic laws are modified by rather large corrections as
half decades on the 5% level as seen for the cl§D®  indicated by the plateau correction for the curve labeled
=10 The exponents capture the diminishing slope upom$/Ds=10'. Despite the larger distance of the connected
approaching theA; singularity by decreasing from left to glass-transition singularity, the last relaxation still slows

right, x=0.331, 0.243, 0.181, 0.163. The corrected poweldown the dynamics by one decade before the final crossover
law, Eq. (163, yields an exponenk’=0.178 for the last to the long-time diffusion.

relaxation. This correction comes closer to the effective ex- To demonstrate how the crossing scenario in Fig. 8

ponenitx=0.27, but improves the description of the effective changes whens is varied, Fig. 9 exhibits the parameters
power law only little, as can be seen in the straight full linerelevant for the description of the relaxation. The three pla-
with label x”. When including the curvature,=0.0132 in  teaus in Fig. 8 are defined by the localization lengths
the approximation, cf. Eq(16b), we find the dashed curve Figure 9a) shows the variation of the localization lengths. At
b,, which describes the relaxation over three decades in timthe A, singularity, 5= 6*, all three plateaus join in a single
around theA; plateau. But again it covers only the onset of localization length. Ford<&*, the localization of a glass
the effective power law. In that sense the effective power lavstate at the crossing is larger than the localization of the gel
is the analog of the effective logarithmic decay discussed irstate. This difference is becoming more pronouncedsas
connection with Fig. 9 of Ref.12], where a crossover from decreases. For the gel the localization follosvand for the
A3 to A, dynamics could explain the observed decay. glass the localization approaches the value for the HSS. In
For D3/D%=10" we observe that the curves in Fig. 8 can between there is the plateau for tig singularity, which
be condensed onto a master curve after the gel plateau. Thitosely follows the localization for the gel. This limits the
holds for the solutions as well as for the asymptotic approxitegime for the von Schweidler relaxation after the gel pla-
mations since the distance to tAg singularity is no longer teau, as observed in connection with Fig. 8, if tgsingu-
changed significantly. The decay around the plateau is larity is close. Sufficiently far from higher-order singulari-
part of thea process for the gel transition. This process ties, the amplitude insr? delimited by the localization
contains also the relaxation around the third plateau in Fig. $&ngths of gel and glass transition exhibits the dynamics de-
that represents the glass transition at the crossing poinfined by a crossover of two differert, singularities. If the
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Az singularity is close by, as discussed in Fig. 8, logarithmic
laws influence the relaxation.

The influence of theA; singularity is quantified by the
separation parameter at the crossing %, shown for the
various crossing points in Fig(9). For smallers, the sepa-
ration increases and limits th&; dynamics visible in the
relaxation at the crossing. The quadratic correction as domi-
nant deviation from the logarithmic decay laws is governed
by the variation ofe{"***while the variation inK ygp is only
small as noted earligB2]. If in an experiment one is limited
to a dynamical window given by a diffusivity of, say,
Dg/D%=10' this implies further restrictions to the detec-
tion of the higher-order singularities. The minimal separation 0 2
on the isodiffusivity curveDg/DS=10" is shown ass° in
Fig. 9b). The exponent, cf. Eq. (15b), assumed at the FIG. 10. Logarithmic decay of the density correlation function
crossing point can be used as an estimate for the separatifor g=4.2 near the crossing point fé=0.03. The inset shows part
from the A5 singularity. Since the distance between crossingof the glass-transition diagram fa¥=0.03 including the lines;
point and end point varies quadratically & — &, cf. inset =0 (dashedl The full curves in the main panel display the solu-
of Fig. 3, the exponent at the crossing is linear ig* — 5,  tions for statem=1,23: (',¢)=(0.53,5.33), (5.33,0.5361), and
cf. Eq.(13). This is shown in Fig. &) where the exponents _(0.53,6) which are marke_d in the inset. Three rel_e_vant plateaus are
can be fitted by a linear function. When restricted to thelndicated by horizontal lines for the gel transitiddashe at
isodiffusivity curveDS/Ds= 101 the exponents are larger, (0.530,6.1) labeled,,, for the A; singularity(full line) labeledf®,

gel»
accordingly. Fors=0.02 we findx=0.169 and fors=0.03 and for the glass transition at (0.536,5.33hort full line) labeled
the minimal exponent ig=0.095.

gass The plateau values arg,=0.954, f°=0.899, andf g
=0.503. Short lines show the correctad plateau valueg® + &
for the three states specified. Broken curves show the next-to-
VI. RESULT FOR THE CORRELATION FUNCTION leading approximation for the logarithmic decay, dotted and dash-
dotted curves the leading and next-to-leading approximation for the
The preceding section showed that the dynamical laws atritical decay(8) in curve 2 atf e
a crossing of liquid-glass transition lines can be quite intrigu-
ing since upon variation of control parameters the separatio
to three different singularities is changed. For the discussio
of the density correlatorg(t), there enters the wave num-
ber as a further parameter. Allowing also for a variatiomin
combines the subtlg variation for the logarithmic decay, cf.
Ref. [32], with the g dependence of the decay A} singu-
larities. We shall select only a special case which was con
sidered in Ref[21] and found in an experiment 3,17 and

q=4.2

X0

4 6
log,,()

flons 1 and 2, the approximation by the next-to-leading order
1% valid fromt~10 tot~10° and 10, respectively. At the\,
singularity for the glass transition, the critical 14®) is ob-
served. The exponent parameter 0.847 implies an expo-
nenta=0.250. The leading™ 2 law (dotted describes curve

2 successfully fot=10° and adding the correctiofdash-
dotted improves that range by almost two decades. Curve 2
also in MD simulatior{15], demonstrates how different asymptotic expansions comple-

Figure 10 shows how the dynamics for the states specifie‘Tent one another: The logarithmic laws describe the decay

in the inset is described by the asymptotic laws for different rom abc;vif qtﬁlown tp ¢qf(t)20't7 a<n(;j 7E?(§[)happr?X|r:1atles
singularities. The interesting feature is the straight line piec<§ucceéSS ully the region fror,(t)=0.7 to the critical pla-
describing the decay for 0s8¢(t)=0.6 for states 1 and 2. teaufy,ss That the slope of the decay becomes smaller be-

This reflects the logarithmic decay caused by #hesingu-  low f; is a clear indication of a closer approach to a higher
larity. The appropriate plateau value connected withAe order singularity, as prefact@in Eq. (13) vanishes with the
singularity isf;=0.899, and close to the plateau for the gelSquare root of the distance from tAg singularity. _
transition f,. That the plateaus for gel transitions and for When taking another path from 1 to state 3, the distance
the A, singularity are close for any wave vector is also re-t0 the As singularity remains largely unaltered and we find
flected in the localization lengths in Fig(e9. Therefore the the counterpart of Fig. 8 for the MSD. The dynamics is ruled
logarithmic laws for theAs singularity have an asymmetric PY @n approach to the gel transition and the complete decay
range of applicability. The range is rather small for shortero€low g is part of thea process. This process for the gel
times since the gel transition interferes, and considerabljransition scales by a shift along the respective platkgu
larger for longer times as the critical decay due to the glas@ith only minor deviations due to changing separations to
transition has a more distant plateau. the glass-transition line and ti#g singularity. No clear two-
The evolution of the dynamics when moving from state 1Step process is observed for curve 3 for two reasons. First,
to state 2 is the analog of the dynamics seen in the MSD ithe A, dynamics belowf g, is limited by the logarithmic laws
Fig. 5(b). Only a minor part of the slowing down takes place for the Az singularity. Second, the complete decay seen in
at the gel plateau, the major part from=8 to t=10* is  curve 3 requires more than ten decades, but onlyt$ot0?
described by the logarithmic laws arouh. For the solu- the decay takes place above the platéau Hence, the de-
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cay onto the plateau is too close to the transient dynamics tas seen in Fig. ®). Only after having crossed this last pla-
exhibit a clear critical decay. Moreover, the exponent paramteau, the dynamics enters the long-time diffusion limit. Each
eter in the vicinity of theA; singularity is already rather of the relaxation steps discussed above can be more or less
high, \=0.89, so the critical lavt™ ? is stretched consider- pronounced depending on the separation from the related
ably. As in the MSD shown in Fig. 8 for the last curve, singularity in control-parameter space. It can be inferred
moving closer to the gel transition, the two-step process typifrom Figs. 6, 7, and 9 that in a certain region around the
cal for anA; singularity reemerges. higher-order singularities, the presence of the latter singulari-
ties introduces large corrections to the asymptotic laws at
gel- and glass-transition points. Outside this region, however,
VIl. CONCLUSIONS the use of the convention&, scenario is justified and the

The relaxation scenarios for line crossings near higher@Symptotic approximation varies only little there. Hence, the
order glass-transition singularities were presented in thiflynamics near any state on the entire surface of liquid-glass
work. Three different singularities influence the dynamics inand liquid-gel transitions can be characterized by the param-
that region of the glass-transition diagram, and asymptoti€ters of the asymptotic approximations.
expansions around each of these are necessary to successThe variation of the final long-time diffusion can be used
fully describe the complete relaxation patterns. Each singuto map the theoretical glass-transition diagram to the experi-
larity is associated with a characteristic plateau value asnental control-parameter space and thus locate higher-order
shown for the localization lengths for the MSD in FigaP  glass-transition singularities at least approximately. The
and for the Debye-Waller fact0|f§ for ¢4(t) in Fig. 10. The  mapping proposed in this work could be used to estimate the
position of the different plateau values arranges the succes$scation of anA; singularity in Ref[15] by extrapolation, cf.
sive steps for the relaxation in time. Fig. 4, and facilitated the identification of &y singularity

The plateau of the gel transition is encountered first. It iSn a recent computer simulation studi6]. Within the
approached by the relaxation with the critical law of the  Percus-Yevick approximation f&, , the A; singularities are
singularity, cf. Fig. %c). The dynamics after crossing the gel pehaving similar to the critical points of the fcc-fce binodal
plateau is described by the von Schweidler law related to thF45]_ Upon changing the well widté, MCT end points and
A singularity for the gel transition, cf. Fig. 8, before the ¢yitical points vary only little in the attraction strengfhas
logarithmic laws at theAs singularity become valid. The geen in Fig. 3. When using the structure factor in mean-
latter have been studied extensively and imply a SUbd'ﬁus'Vgpherical approximation, this behavior is different. But this

powe_:fr. law .Wt'th. expor:er;t(, Cf. eq' (15 for thhiz MSDE a  ifference is eliminated after identifying the glass-transition
SPeclic points in control-parameter space whizgsan £4. diagrams for both closure relations at the crossing points. For
(160 vanisheq32]. However, for a region near tkle CrossINg 5_ .03, the densities of end point and critical point are in
whereb,>0, an effective power law with exponexcan be 5.0 reasonably, while the higher value Fofixes theA;

fe;}:iﬁed in Fitg.t.t’qc()j. The Qnset of tf&ismbeh.aviolr i;tdesrfaibed singularity in the metastable region with respect to the isos-
y the asymptotic dynamics around tAg singularity while . <~ phase transition.

the extension to later times originates from a crossover to the Note added in proofFor an additional colloidal system,

critical dynamics at the plateau of the glass transition, Cf'the measured correlation functions could be interpreted as a
Fig. 8. Both the asymptotic power la\k6] and the crossover . ) T TPr
crossing scenario close to an end point singularity in a very

scenario[15] have been found for the MSD in recent com-
puter simulation studies. recent work{50].

A similar crossover which yields thg' relaxation in the
MSD is responsible for an effective logarithmic decay in the
correlation functions for wave vectors that are accessible in ACKNOWLEDGMENTS

typical light-scattering experiments. Again, the dynamics be- | thank W. Gaze for a valuable discussion. This work was

tween the plateau for tha; singularity and the plateau for sypported by the Deutsche Forschungsgemeinschaft Grant
the glass transition assumes a variation linear in &f. Fig.  No. Go154/13-1.

10. Most of this behavior is fitted satisfactorily by two dif-

ferent asymptotic laws and is therefore clearly differentiated

fro_m the a_sym_ptotic logarithmic decay at higher-order singu-  ,openDIX: CONSISTENCY OF THE NUMERICAL

larities which is expected only for large values of the wave SOLUTION

vector[32]. Nevertheless, also the effective logarithmic de-

cay can serve as a clear signature of a line crossing and Glass-glass-transition points and higher-order singulari-

hence for the existence of higher-order singularities. The deties were calculated for Figs. 1-3, and 9. The expeditious

cay analyzed in Fig. 10 has been identified as a typical sceand accurate identification of these singularities is also cru-

nario in systems with short-ranged attraction in experimential for the evaluation of the asymptotic approximations.

[13], theory[21], and computer simulatiofi5]. Therefore, some notes concerning the numerical solution of
The last relaxation step of the complete decay in the viEq. (2) shall be discussed in this appendix. For the determi-

cinity of the line crossing occurs at the plateau for the glassation of liquid-glass-transition points a robust method of

transition and is similar to the scenario known from the HSShested intervals can be applied anticipating the jump from
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FIG. 11. Eigenvalue& upon approaching a glass-glass transi- 5 es for liquid-glass transitions are shown as full lines, for glass-

tion for 6=0.02, I'=7.75, and<p°:0.c540 965015. The deviation 4544 transitions as filled circles. The dashed lines show the laws
f;on! szllltyd 17.Ei g ?hovg: forgo;]goth(open circles an|d f_orf; Mz"‘l(l"—l"*.)Z’3 for the A, singularity and,ulzoc.(l*—I”)z’3 for the

¢ (nflea circles together wi e square rooyjo—e A, singularity. The squares indicate a deviation between result and
(dashedl The corresponding eigenvalues for tAg singularity at approximation of 5%.
6=0.02, I'°=6.646, and¢°®°=0.5680321 are denoted by open
squares forp<¢° and by the filled squares fap>¢°. The full

line shows the power lap— ¢°|23 than unity and jump to a critical value only at the glass-glass-

transition points. For theA; singularity this discontinuity
vanishes and the eigenvalues show the variation with the

speciveA, singulariy. This procedure works also at g FEr (8 L0 L S0 ¥ e to the mcreas of he

singularity which is also a liquid-glass-transition point. For a'™ . .
glass-glass-transition point the discontinuity in the glass€ig9envalues at the liquid-glass transition @t 0.540 693.
form factors takes place between finite values and the jumIE)_eV'atlons close to thé; singularity on the other hand in-
in the f, becomes smaller when approaching fesingu- dicate the precision of five digits |n_th_e contrcol param_adzer
larity and observing a discontinuity in the glass-form factorsfor the determination of/°. The deviation of® from unity
becomes increasingly difficult. Therefore a different criterionS @ measure for thf accuracy of the critical points. In this
shall be used. To this end, coefficients from the expansion off0rk a value of I-E°*<10"~ was assured for all the transi-

the right-hand side of Eq2) are required, cf[12], tion points shown in this work. _
Despite being useful as an extrapolation scheme, the ge-

neric laws close to the singularities can also serve as consis-

zero to a finite value in the glass-form factdrsat the re-

1 tency check for the numerical results. This was already

ARS = (A= fO{a"FLVE Bty -ty ) shown in the inset of Fig. 3 for the distance of the crossing
| point from theAs singularity. There, the control parameters
x(l_fﬁl). . .(]__fﬁn)_ (A1) close to theA, singularity were related in a quadratic poly-

nomial. As another quantity we utilize the exponent param-

At a glass-transition singularity, E42) is no longer invert- eteri Whigh approgches unity a.t higher-order singularities.
ible which is signaled by the maximum eigenvalEef the “2:1:)‘('ch also given by coefficients from EGAL), uo
so-called stability matrixAEﬁ)c approaching unity from be- =1-a, Aqklkzaklakz' where summation over repeated indi-
low [3]. The evolution ofE in the vicinity of anA, singu-  ces is assumed ard anda, denote the left and right eigen-
larity is given by a square root in some control parameter vectors of the stability matri)Agl)c, respectively.
1—-Ex\v—0v°, for the strong-coupling side>uv°. Monitor- Figure 12 shows that close to higher-order glass-transition
ing the eigenvalues can be done with high precision angingularities the exponent parametars1— u, calculated
allows for an extrapolation in control parameters which camumerically obey the asymptotic approximation by the re-
reduce the numerical effort considerably. At Ag singular-  spective power laws with reasonable accuracy. ForAhe
ity, the eigenvalue is approaching unity from either side onsingularity the description works down %=0.85 and in-
generic paths in control-parameter space through the singa@ludes both glass-glass transitions and liquid-gel transitions.
larity. The variation is given by + Ex (v —v°)?3which fol-  The A, singularity is described by the asymptotic law for
lows from generic properties of the singulari9]. N=0.93 on the line of gel transitions and fae=0.9 on the

It is clearly seen in Fig. 11 that at a glass-glass transitiorine of glass transitions. The exponent parameters for differ-
only the eigenvalues for the strong coupling sige; ¢, go  ent potentials fall on top of each other close to th&ir
to unity and follow the square-root law. At a liquid-glass singularities[24]. That the asymptotic approximation is ap-
transition the eigenvalues fap<¢® would be zero, how- plicable for a similar range in control parameters underlines
ever, in the glass due to continuity they are finite, smalleithe universality of the, singularity.
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