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Size independence of the strength of snow
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The mechanical reliability of 600 randomly taken snow samples follows Weibull distributions;lfis the
maximum stress present in a specimen of given density, the fraction of specimens that fail at stresses below
Omax 1S P=1—exd —(omal0op)™]. The scale parameter, evaluated by the maximum likelihood method
increases nearly quadratically with the dengitpf snow, but, unlike predicted by the weakest link model, is
independent of size and shape of the specimen: there is no size dependence of the strength of snow. The
Weibull parametem is independent of density, size, and shape of the snow sampi&,5+0.5. This implies,
on the one hand, that the results of laboratory scale tests can be used for avalanche prediction, but on the other
hand, that these predictions remain contaminated with large statistical errors. Snow is a fragile, weak, and
unreliable material.
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I. INTRODUCTION and m=10-25 for ceramic$19]. Recentlym=8 has been
measured for an aluminum foaf0]. These measurements,

Snow is a foam of icg1,2]. Given the fact it is usually so far the only ones on foams, indicate thafor a foam is
observed within 10% of the melting point, solid iGdensity  less than for the solid it is made of. In other words, foams are
917 kg/n?) is a remarkably strong, tough, and reliable ma-not only weaker, but also less reliable than their solids. It
terial. The yield stress is about 10 MIP3,4], the fracture  should be recalled that the lower the valuawfthe higher is
toughnessK . is about 115-250 kPa¥f [5,6], and the the probability that a specimen breaks under, say 10% of the
Weibull exponent is abouin=4+1 for freshwater icq7]. nominal stress it is supposed to sustain. For snow, as a foam
The same cannot be said about snow, which is a remarkabbf ice, not only lower fracture strain, but also less reliability
weak, brittle, and unreliable material. Snow of 18% densitythan ice is expected. We will prove this to be the case; and,
of the density of ice has a yield strength of about 100 kPdor the worse, the statistical theory predicts that the lower the
[1,8,9, a fracture toughness of aboli.=400 Pam¥? in  value ofm, the stronger is the size dependence of strength.
tension, and,,. =400 Pan¥?in shea{10-12. In prelimi-  The physical explanation is that weakness is associated with
nary experiments a Weibull modulus ofi=2.1 has been defects in the material, and the larger the material volume
reported[13]. The disappointing properties of snow can beunder examination, the greater is the probability to have fatal
understood from the foam theoffyl4,15, which predicts defects present. In the avalanche context the predicted size
spectacular deterioration of all mechanical properties oflependence is perturbing, the strength is predicted to vary
foams with decreasing density. In practice, the mechanicdlke the power of—1/m of the specimen volume. With ap-
properties of snow are relevant for avalanche theories angroximatelym= 2, this forebodes ill for the strength of snow
risk assessment. Given that about 100 people die annually siabs in naturdtens to hundreds of cubic metgmsith the
USA, and about the same in Europe in slab avalanches, th@lready low values of yield stress measured in the labora-
matter is worth pursuing. The shear strength is relevant fotory size specimené few cubic decimeteysin this paper
mechanical models of slabs that break under its own weighive will show that there is no size dependence, and extrapo-
[16], the toughness is the decisive parameter for slab avdation from laboratory to field size slabs is justified. Finally,
lanches triggered by skief42], and the low Weibull modu- in fracture mechanics simulations of snow avalandiig
lus for the haphazardness of avalanches in general. The retire statistical distribution of strengths plays a determining
ability is relevant insofar as, even if nominally the snow role. First, the median and the width of the strength distribu-
cover should hold under a given stress, the statistics mighton must be known, second, it must be known if the as-
lead to unforeseeable avalanche risks that can be, and ofteamed distribution depends itself on the size of the specimen
are, mortal. In this paper we concentrate on the reliabilityor not. Also in analytic fracture mechanics the question if,
aspect of snow. So far the Weibull modulus=2.1 has only  for example, the shear mode fracture toughness depends on
been measured once for snow of 140 kyy/density[13].  the snow slab thickness arisgx2].
This is an extraordinarily low value. The higher the value of
m, the more deterministic is the failure; typical values are

. II. STATISTICAL THEORY OF FAILURE
m=22 for reactor steg]17], m=3-10 for freshwater, ice-

berg, and seawater i¢&], about 12 for coal and rockL8], The statistical theory of random strength, proposed by
Weibull [23-25, is the mathematical formulation of two hy-
potheses.
*Email address: herwig.peterlik@univie.ac.at (1) The specimen fails as soon as one small volume ele-
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ment, wherever it is, attains the strength limit. This is com- Gpmax = 3L?%p/h
monly referred to as the weakest link model.

(2) The strength limit is a random variable. It is assumed
that the strength of the entire specimen is limited by the
strength of the weakest link of small constituent pieces.

The two assumptions arise naturally from three physical
conditions:(a) defects control the strength, but do not inter-
act, (b) there is a relation between defect size and strength
(usually Griffith’s law), and (c) the number of defects fol-
lows a power law in defect size. These assumptions are more
or less justified for various materials; the proof is in the
pudding: if the materials follow théWeibull) statistics that
results, the hypothesis is justified. If at stresthe probabil-
ity of failure in a small volume i$-(o), then the probability
distribution of the smallest strength, in a random sample
composed of such volumes, is

P(o)=1—exd —nF(o)]. (1)

For largen the function (:-F)" can be approximated by
exp(—nF), and the probability of survival becomes

P(o)=1-[1-F(o)]" )

With Weibull we assume as constitutive law of failure a
power law without threshold stress,

F(a)=(alS)™. 3) FIG. 1. Cantilever beam geometry used.

The parametek., is a property of the material only, not of shape, and loading, and,y being the maximum stress
the specimen or loading geometry. Alag the Weibull ex- ~ Within the specimen volumg.

ponent, is a material property. With E@), Eq. (2) becomes So far a constant specimen voIgMein which the stress
for any volume, which i1 times a reference volumé,, n  o(x.y,z) stems from external loading, was assumed. This is
=V/V,, the typical case of ceramic specimens loaded in three-point-

bending arrangement. Only under such conditions the maxi-
V{ic\m mum stress appears with the powerthe Weibull exponent
1- P(U):ex% o V_o(ff_o) : (4) in the fracture probability. If the body loading is present, for
example, beams bending under their own weight, as our
From Eq.(4) the volume dependence of the stresses for equaipecimens, the maximum strasg,y in the volumeV of the
probabilities of fracture is directly visible: sample is itself a function of specimen volume. For the
specimen used by us, beams of cantilever lengtvidth t,

o1 _ ﬁ 1im 5 and heighh, and thus of volumé th as shown in Fig. 1, the
oy \Vy) ) maximum stress occurs in the plane of suppai],
If the stress is not constant throughout the specimen, but a Omax=3L2p/h=3V?p/(t?h?). )
function of position[26], i . L
According to beam theory the integral equati® is
U(vaaz)zomaxg(xayyz)a (6)

Ve=V/[(2m+1)(m+1)]. (10)

the probability of survival is ) ) L )
For such situations it is advantageous to write the fundamen-

Ve [ omax)™ tal equation(7) in the form
1-P(o)=ex VASS (7)
0 0 In[1-P(0)]=— (O'maxla'o)m+1/21 (11
with an effective volume/g being defined as with the scale parameter
vE=f dV g(x,y,2)™=kV. 8) oo=[Vo2g3"%p A 2m+1)(m+1)/(th¥?) | Vm+v2),
v (12)

The proportionality constark between the effective volume It is important to notice that for such body loading the failure
Ve and the real volume/ depends on specimen volume, probability is not proportional to the Weibull parameter of
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the material,m, any more, but tom+1/2! Moreover, the and
simple geometry chosen allows us to examine if the scale 5 o8
parametero, does indeed scale with the densjtyand the (Amy +1/2)%=(m+1/2)(0.042+ 2.3MM %), (18)

geometric parametetsandh as predicted by Eq12) or not. . : .
The most frequently used methods to evaluate(Epgare The true valuar, can only be obtained in the "m.'m — o or
the linear regression and the maximum likelihood method™ > But, as thf number of Easted speciméhss large in
we evaluated our data by both the methods, but the results dd'" ¢3¢ andry = oy, and My =M, WE USE, for the sake of
not differ considerably. In the following we restrict to the simplicity, here the following notation:
method of maximum likelihood for the following reasons. oML=00, My =M, justified for largeM. (19
(1) For maximum likelihood, the fracture probabilities are
not arbitrarily chosen, but the fracture probability densitiesEquation(7) has several consequences.
are maximized for a certain set of measured fracture (1) Only the scale parameter in the combination
strengths with respect to the Weibull parameters. 30(Vo/Vg) Y™ appears; neither the effective volurkig nor
(2) The standard deviations are available even in depenthe reference stress, can be measured separately.
dence on the number of tests, obtained by either analytical (2) Neither specimen shape nor size appears explicitly in
methods or computer simulatioh28]. the final expression, shape and size enter only through the
(3) The maximum likelihood method has the lower stan-integral, Eq.(8), into the effective volume. Two specimens of
dard deviation and is thus mathematically more relifBg. different shape and size under different loadings are pre-
In the appropriate formulas for external loadifig8], we  dicted to have the same failure probability as long as their
must replacen by m+ 1/2 for our case of body loading. #; effective volumes/g according to Eq(8) and the maximum
is the jth measurement dfl measured values af,.y, the  stress within themg,,,, are the same.

Weibull modulusmy,, is obtained by the root of the follow- (3) If true, the predictive power of Eq7) would be large,
ing equation, the index ML denoting the evaluation by maxi-because data obtained for one set of specimen geometry
mum likelihood: could be transferred to other sets of specimen geometries.

" With a value ofm measured once for one set, the effective
2 ML+ 172 volume Vg can_be calculated for any specime_n _size and
M M = (ay) no; shape and loading geometry, and failure probabilities can be
—————+> Inoj—-M—p =0 predicted.
My, +1/2 =1 E (o)Lt 12 (4) For different specimen volumes, the same probability
=1 7] of failure is predicted to occur for the same value of
(13)  Vgoma irrespective of the loading system or specimen ge-
ometry. This is a very strong statement and the most critical
and the scale parametef, by test for assessing if the weakest link model is applicable. In
other words, the weakest link hypothesis implies that the
scale parametear, should depend on shape, size, and load-
ing mode of the specimen. For given specimen geometry and
size, Vg is constant, and the Weibull distribution, E(),
Because the Weibull distribution is not symmetric, theu- ~ merely predicts a sigmoidal variation of-IP with o, and
ally unknown true valueo, of the distribution is related to a bell shaped curve faP/do . as a function ofry,,,. The
owL by position of the bell shaped curve is fitted to a stress and the
width to a value ofm. Another fit would be a normal distri-

M
MO_E,\CL+1/2:j§_:l (O_]_)mML+1/2_ (14)

1 bution, which also has two parameters. Such a normal distri-
I'\ M+ m+ 1/2 bution, however, has no interpretation in terms of weakest
ouL=0ooM M (M) (15  links. ltis clear that fitting an experimental distribution to the

Weibull one is not a very stringent test of the weakest link

hypothesis. A more stringent test is that if one and the same

Weibull distribution fits two different specimen shapes with
_ 1.1 the sameéVg, which, according to the integral, E(B), can

My +1/2=(m+1/2)(1+2.1M 7. (16 be obtained from different loadings. The strictest test, how-
ever, is the verification of the volume and shape dependence.
The physical interpretation is clear: weakness is associated

) with the presence of defects, and the larger the specimen

and the true value af to my, by

The respective standard deviations are

riMm+

Y volume, the greater is the likelihood of defects being present.
According to Weibull, larger specimens must be weaker than
I'(M) small ones, and the size variation is a proportionality of
2 stress with the power & of the specimen volume. Experi-
mentally it is not easy to produce specimens of different
(17) sizes to the same quality specifications and to test them un-
der identical conditiongfor example, the stiffness of the

(Ao )?=031.05M ~2/(m+12)

1
m+1/2
r'(m)

s
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FIG. 2. Perla’'s[31] strength data, obtained on 276 cantilever ‘
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IIl. EXPERIMENTAL SETUP FIG. 3. Probability of failure as a function of the maximum

In order to be of any applicability for field work, a simple SUESS(Tm.a.X in Perla’s samples, both in linear an.d. logarithmic scale.
specimen shape must be chosen. Following P13, we (a) Densities between 32 aryo_l 115 kgintb) densities between 115
used cantilever beams of rectangular or quadratic cross se@['d 168 kg/m, and(c) densities between 168 and 250 kg/m
tion, which break under their own weight. The geometry is
shown in Fig. 1. In practice, the beam is pushed forwardous paramete(in our case the densitys available. There-
until it breaks, the length of the cantilever at fracture and fore, we grouped the data of Fig. 2 according to density into
the density of the broken off piece are measured, and thg76M batches ofMl members each, and applied the maxi-
maximum stress . is calculated according to E(P). The  mum likelihood analysis to the groups. The choice of batch
Weibull parameters can then be evaluated either by the agize is not obvious: in each batch there is a variation of
propriate method, e.g., linear regression or maximum likeli-gensity, which increases with batch size, but on the other
hood. hand the errors Eq.17) and Eq.(18) decrease with batch

size[28,29. As example of our data, Fig. 3 shows the prob-
ability of failure for division of the 276 measurements into
V- DENSITY DEPENDENCE OF RELIABILITY three groups of densities: 3<115, 115<p<168, and

Perla[31] let 276 cantilever beam specimens of various168<p<265 kg/n¥. First, we determinean from Eq. (13)
density break under its own weight. He did not specify theand oy from Eq.(14) and the errord\ o, andAm from Eq.
temperature at which the mechanical tests were conductedl7) and Eq.(18), respectively. Figure 4 shows the variation
but it must have been a few degrees below freezing. Hef the shape parameter, and of the Weibull exponenn
chose a height di=5 cm and a width of=30 cm. Thirty-  with density, Fig. 4a) for the three batches of 92 samples of
five years ago snow was still considered as a material somé~ig. 3, Fig. 4b) for nine batches of 30 samplésne batch 36
how peculiar, and not yet identified as foam of ice. Perla didssampleg each, and Fig. @) for 23 batches of 12 members
not identify stresses, failure probability, and the like, but ex-each. Apparently, the scale paramatgris rather insensitive
pressed his results in terms of “beam numbers.” From histo the method of analysis and increases nearly quadratically
data it is easy to determine the maximum stress present in higith density (with an exponent in a power law between 1.8
samples, and Fig. 2 shows the strength valugg, obtained  and 1.9 for the respective batcheBhe increase must be due
as a function of snow density. At that time the fact that theto the known genuine increase of strength with der€itg].
strength of snow increased with density was already considt does not vary with the powes??™ "1 =1/4 as predicted
ered as an important result on its own, and no statisticaby Eq. (12). The Weibull modulus, on the other hand, is
analysis was attempted. Today a more sophisticated analysissociated with a large statistical error. It is independent of
is possible. Even today, however, no theory that would allowthe batch size choice and of the density, extraordinarily low,
us to consider Weibull statistics as a function of one continuabout m=1.5+0.5. All densities of snow, between 30
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. 00— 02415 FIG. 4. Weibull analysis of Perlaf31] data.
g ' The scale parameter, and the Weibull modulus

° m as a function of density. For the 270 specimens
o (a) divided into three density group#y) divided
T into nine density groups, an@) divided into 23
Y % H% density groups. Values and error bars according
: . . sTipt %% % to Eqs.(139-(18).
|
T e
S (a) (b) (c)
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and 260 kg/m, are equally unreliable and their mechanicalthe dependence ort, which is og(h=3)/0o(h=10)
behavior unpredictable. =(10/3)¥2m*+*D=(10/3)¥4=2.5. Unlike predicted by
Weibull, there is no shape effect in the probability of failure.

V. SHAPE DEPENDENCE OF RELIABILITY

) . VI. SIZE DEPENDENCE OF RELIABILITY
We tested 180 cantilever beams of snow of density 107

+10 kg/m?® of widthst=10 cm, 60 of height 3 cm, 5 cm, In order to check any variation of reliability with size, we
and 10 cm, respectively. Tests were conducted—&&  tested 168 cantilever beams of snow of 228 kg/n? den-
+2°C. The mean cantilever lengths at which they brokesity, all of quadratic cross section. Fifty-nine of these had a
under their own weight were 9, 13.5, and 17.6 cm, whichprofileh=t=10.1 cm, 60 a profila=t=5 cm, and 49 only
amounts to three sets of volumes in the proportion 1:2.5:6.7/h=t=2.5 cm. Tests were conducted-a6+2 °C. The cu-
From Eq.(9) the maximum stress .« in the cantilevergat ~ mulative failure probabilities as a function of stress are
the upper surface, above the suppevas calculated. Figure shown in Fig. 7, in linear and logarithmic coordinates, re-
5 shows the three Weibull sets of data in linear and logarithspectively. Evaluation of these curves according to the maxi-
mic coordinates, respectively. Weibull analysis gives themum likelihood method gives values of,=5221+ 205 Pa
scale parameters as 11200, 122157, and 1156 andm-+1/2=3.33+0.35 for the largestyy=5288+ 300 Pa
+71 Pa, and the modulin+1/2=2.08+0.22,2.772-0.29, and m+1/2=2.27+0.24 for the medium, andry=3673
and 2.09-0.22 for the heights 3, 5, and 10 cm, respectively.=205 Pa andn+ 1/2=2.55+0.30 for the smallest profile.
These results are shown in Fig. 6 with their error bars. Théhese results are shown in Fig. 8. These values are very
values are very sensitive to the number of data points usedensitive to the data used, for example, removing the three
leaving out two or three for angexperimentally always jus- strongest specimens of the largest cross section lowgte
tifiable) reason changes tha values by 0.5. We thus con- 4880 Pa and increasesto 2.75. According to the weakest
clude that for all three volumesy=1120+50 Pa andm link hypothesis, the largest cross section should have the
=1.8+0.3, the Weibull modulus coinciding with Perla’s data lowest scale parameter, and the smallest cross section the
within the error. From the cumulative curves in Fig. 5 it is highest: the opposite is observed. According to 84), o
obvious that the horizontal shift with heigteand voluméis  should scale for the extremal cross-sectional dimensions
negligible. It is far below the one predicted by HG2) for  tested in our work with the ratio (10/2.89)/M*+1/2)

FIG. 5. Weibull analysis of
180 cantilever beams of 107
+10 kg/n? density, all of width
t=10 cm, the batches with height
h=3, 5, and 10 cm consisting of
60 specimens each. Neither the
50% failure strength nor the
Weibull modulusm vary apprecia-
bly with the shape of the speci-
mens.
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FIG. 6. Scale parameters, and Weibull modulim for three FIG. 8. Scale parameteks, and Weibull modulim for three
beam height$i=3,5, and 10 cm, all of widtti=10 cm. beam cross sections.

=(10/2.5¥"=5.7. This is not observed. Unlike predicted by from a yield stress of about 400 Pa for 70 kd/m 10 000 Pa
Weibull, there is no size effect in the probability of failure. for 250 kg/nt. The Weibull modulus remains constantrat
=1.5+0.5 for that range of density.
VII. SUMMARY OF EXPERIMENTS (2) This density depeno_lence_ is_ in agreement yvith struc-
tural models of snow that identify it as a foam of ice.
From test on about 600 specimens on snow we conclude (3) The experimental data confirm that snow density is the
the following. controlling parameter for mechanical properties. Of course
(1) Strength of snow increases with increasing densitysnows of different microstructure, but of the same density,

0 2000 4000 6000 8000 10000 1000 2000 5000 10000

Omax [Pal Omax [Pal

FIG. 7. Weibull analysis of 168 cantilever beams of quadratic cross sections, about a thifd=with10.1,5, and 2.5 cm, respectively.
Snow density was 22243 kg/n?. Neither the 50% failure strength nor the Weibull modutnsaries significantly with specimen size.
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might behave differently, but these structural effects seem tthe Weibull modulus is very low. We did not observe a dis-
be overridden by density. tinct scaling relation of the strength, which could be ex-
(4) Unlike predicted by the weakest link hypothesis, therepected for granular disordered mediz2,33. Two possible
is neither a size nor a shape dependence of the strength ekplanations are suggested for this surprising behavior.
snow samples in the statistical sense. (1) Our bending tests cover a length scale of about one
(5) The weakest link model underlying the Weibull as- and a half orders of magnitude, thus a scaling law could be
sumption is not confirmed. The Weibull distribution can only masked by the limited range of the experimentally accessible
be accepted phenomenologically; it merely describes a twospecimen dimensions.
parameter strength distribution, the mean of which increases (2) We are approaching an asymptotic strength, which
and its relative width decreases with increasing density.  was proposed for large structural dimensions in comparison
(6) The size and shape independence of the mechanic&d the characteristic length of the microstructure in a multi-
behavior allows the use of experimental data acquired ofractal scaling law mode[34]. Tests towards small scales
small, laboratory size specimens for large size snow slabs.would clarify this question, but these experiments would be
very challenging.
VIll. CONSEQUENCES FOR AVALANCHE RISK It would be desirable to measure the temperature depen-
dence of the Weibull modulus and the scale parameter. There

. A ; is no doubt that snow in Arctic or Antarctic conditions, at
powder snow h=1.5+0.5 for 70-250 kg/m) explain the  _ 10g°¢ (two-thirds of the melting temperatyremight

haphazard and truly random nature of powd%r SNOW aVaghay significantly different behavior from the one measured
lanches. Wittm=1.5 andoy=300 Pa for 70 kg/mthere is ;5 (at 98% of the melting poift On the other hand, it
a 50% probability of failure for a stressya=235 Pa, @  ggems unlikely to say that at, say20 °C, the values of the
10% probability atoma,=67 Pa, and still a 1% probability \wejpyll modulus and the strength parameter would fall out-
at oma,= 14 Pa. This means that even for very low stressegjge our confidence limits. An investigation of temperature
indeed there is an appreciably finite failure probability thateffects would really have to address the behavior at extreme
the snow cover fails. As has been known to mountain guideggngitions, and not at temperatures that in Europe would
for a long time, freshly fallen powder snow is very unpre-jystly be called cold.
dictable. Avalanches_ can go off spontangously anywhgre. For gecause it is notoriously difficufi35] to distinguish be-
snow of higher density, still unreliable with=1.5, the situ-  yeen different reliability distributions based on failure sta-
ation gets better, because under its own weight the stresses{8tics alone, we have subjected our data to only a Weibull-
the snow cover increase proportional to the density, while th?ype analysis, although other hypotheses, for example,
resisting strengththe scale parametero) increases qua- Gumbel's one[36], cannot be excluded. At present the mi-
dratically. _ crostructure of snow is characterized by average density
The distribution of defects present in our samples, angynly. No information on spatial variation of density, density
responsible for the low value of the Weibull modulus, is of defects, presence of microcracks, or distribution of poros-
necessarily smaller than the size of our largest specimengy s available to us, nor to snow researchers in general. This

well below 1 m. Defects and inhomogeneities larger thang the reason why we judged futile the attempt to distinguish
that, for example, crevasses, cracks, and density fluctuationgetween different failure statistics.

are encountered in the field. Such defects provide stress con- | jgealized models it is, in principle, possible to find

centrations and are relevant for avalanches, which occur ogyyrelations between microstructure and failure statistics;
the scale of 10 m or more. At that scale, we suspect that thergach microstructure leads to a characteristic reliability distri-
is a transition to a Griffith-type abrupt rupture, predicted foryiion, but since the former is largely unknown, and the

systems with decreasing disord@2], and the existence of |atter js difficult to identify, we have not attempted to do so.
crevasses of a few meters size in the snow cover should be

treated with conventional mechanics. Slab avalanches trig-
gered by skiers should fall in the domain of conventional
linear elastic fracture mechanics. The stress intensity factor |nhomogeneously stressed specimens of snow (30

is induced by the weight of the skier and the notch length< gensity<300 kg/n?) break at the point of maximum stress
from the length of the skis. One concludes that conventiona);  independent of size and shape, with a probability
mechanics can be applied to these problems, which are posec?ln

on a length scale larger than our specimens. The material Trmax| ™
parameters that enter are those measured by us on the centi- P(oman = 1—ex;{ — (—) .
meter or meter scale. Our experimental results furnish the 70
input to macroscopic avalanche and fracture mechanics %t

snow. The size independence of these parameters up to 1 €s
cm found by us is quite encouraging.

The extraordinarily low values of the Weibull moduli for

X. CONCLUSION

(20

tress parameter varies nearly quadratically with the

density of snowg~p*8, wherep is the density in kg/m.

The exponentm=1.5+0.5 is independent of density. Al-

though formally identical to a Weibull distribution, the fail-

ure law, Egs(11) and(12), as outlined in Sec. Il, does not
The absence of size effects has shown the weakest linkold. The original idea is that in a homogeneously loaded

hypothesis in the Weibull sense to be inapplicable, even ispecimen a distribution of defects is present, and the most

IX. DISCUSSION

011306-7
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dangerous ones control failure. The theory then adjusts fomaximum stressr,.x, but somewhere else, albeit with a
inhomogeneous stresses by defining an effective volume asmaller probability; and that shape and size of specimens
cording to Eq.(8). This implies that occasionally inhomoge- matter. For snow it has been verified that these effects do not
neously loaded specimens should not fail at the point ofxist. Failure occurs where the stress is maximum.
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