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Size independence of the strength of snow
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The mechanical reliability of 600 randomly taken snow samples follows Weibull distributions: Ifsmax is the
maximum stress present in a specimen of given density, the fraction of specimens that fail at stresses below
smax is P512exp@2(smax/s0)

m#. The scale parameters0 evaluated by the maximum likelihood method
increases nearly quadratically with the densityr of snow, but, unlike predicted by the weakest link model, is
independent of size and shape of the specimen: there is no size dependence of the strength of snow. The
Weibull parameterm is independent of density, size, and shape of the snow sample,m51.560.5. This implies,
on the one hand, that the results of laboratory scale tests can be used for avalanche prediction, but on the other
hand, that these predictions remain contaminated with large statistical errors. Snow is a fragile, weak, and
unreliable material.

DOI: 10.1103/PhysRevE.69.011306 PACS number~s!: 45.70.2n, 62.20.Mk, 81.70.Bt, 83.80.Nb
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I. INTRODUCTION

Snow is a foam of ice@1,2#. Given the fact it is usually
observed within 10% of the melting point, solid ice~density
917 kg/m3) is a remarkably strong, tough, and reliable m
terial. The yield stress is about 10 MPa@3,4#, the fracture
toughnessKIc is about 115–250 kPa m1/2 @5,6#, and the
Weibull exponent is aboutm5461 for freshwater ice@7#.
The same cannot be said about snow, which is a remark
weak, brittle, and unreliable material. Snow of 18% dens
of the density of ice has a yield strength of about 100 k
@1,8,9#, a fracture toughness of aboutKIc5400 Pa m1/2 in
tension, andKIIc5400 Pa m1/2 in shear@10–12#. In prelimi-
nary experiments a Weibull modulus ofm52.1 has been
reported@13#. The disappointing properties of snow can
understood from the foam theory@14,15#, which predicts
spectacular deterioration of all mechanical properties
foams with decreasing density. In practice, the mechan
properties of snow are relevant for avalanche theories
risk assessment. Given that about 100 people die annual
USA, and about the same in Europe in slab avalanches
matter is worth pursuing. The shear strength is relevant
mechanical models of slabs that break under its own we
@16#, the toughness is the decisive parameter for slab a
lanches triggered by skiers@12#, and the low Weibull modu-
lus for the haphazardness of avalanches in general. The
ability is relevant insofar as, even if nominally the sno
cover should hold under a given stress, the statistics m
lead to unforeseeable avalanche risks that can be, and
are, mortal. In this paper we concentrate on the reliabi
aspect of snow. So far the Weibull modulusm52.1 has only
been measured once for snow of 140 kg/m3 density @13#.
This is an extraordinarily low value. The higher the value
m, the more deterministic is the failure; typical values a
m522 for reactor steel@17#, m53 –10 for freshwater, ice-
berg, and seawater ice@7#, about 12 for coal and rock@18#,
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and m510–25 for ceramics@19#. Recentlym58 has been
measured for an aluminum foam@20#. These measurement
so far the only ones on foams, indicate thatm for a foam is
less than for the solid it is made of. In other words, foams
not only weaker, but also less reliable than their solids
should be recalled that the lower the value ofm, the higher is
the probability that a specimen breaks under, say 10% of
nominal stress it is supposed to sustain. For snow, as a f
of ice, not only lower fracture strain, but also less reliabil
than ice is expected. We will prove this to be the case; a
for the worse, the statistical theory predicts that the lower
value of m, the stronger is the size dependence of stren
The physical explanation is that weakness is associated
defects in the material, and the larger the material volu
under examination, the greater is the probability to have fa
defects present. In the avalanche context the predicted
dependence is perturbing, the strength is predicted to v
like the power of21/m of the specimen volume. With ap
proximatelym52, this forebodes ill for the strength of sno
slabs in nature~tens to hundreds of cubic meters! with the
~already low! values of yield stress measured in the labo
tory size specimens~a few cubic decimeters!. In this paper
we will show that there is no size dependence, and extra
lation from laboratory to field size slabs is justified. Final
in fracture mechanics simulations of snow avalanches@21#
the statistical distribution of strengths plays a determin
role. First, the median and the width of the strength distrib
tion must be known, second, it must be known if the a
sumed distribution depends itself on the size of the specim
or not. Also in analytic fracture mechanics the question
for example, the shear mode fracture toughness depend
the snow slab thickness arises@22#.

II. STATISTICAL THEORY OF FAILURE

The statistical theory of random strength, proposed
Weibull @23–25#, is the mathematical formulation of two hy
potheses.

~1! The specimen fails as soon as one small volume
©2004 The American Physical Society06-1
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ment, wherever it is, attains the strength limit. This is co
monly referred to as the weakest link model.

~2! The strength limit is a random variable. It is assum
that the strength of the entire specimen is limited by
strength of the weakest link of small constituent pieces.

The two assumptions arise naturally from three phys
conditions:~a! defects control the strength, but do not inte
act, ~b! there is a relation between defect size and stren
~usually Griffith’s law!, and ~c! the number of defects fol
lows a power law in defect size. These assumptions are m
or less justified for various materials; the proof is in t
pudding: if the materials follow the~Weibull! statistics that
results, the hypothesis is justified. If at stresss the probabil-
ity of failure in a small volume isF(s), then the probability
distribution of the smallest strength, in a random sam
composed of such volumes, is

P~s!512exp@2nF~s!#. ~1!

For largen the function (12F)n can be approximated b
exp(2nF), and the probability of survival becomes

P~s!512@12F~s!#n. ~2!

With Weibull we assume as constitutive law of failure
power law without threshold stress,

F~s!5~s/S0!m. ~3!

The parameterS0 is a property of the material only, not o
the specimen or loading geometry. Alsom, the Weibull ex-
ponent, is a material property. With Eq.~3!, Eq. ~2! becomes
for any volume, which isn times a reference volumeV0 , n
5V/V0,

12P~s!5expF2
V

V0
S s

s0
D mG . ~4!

From Eq.~4! the volume dependence of the stresses for eq
probabilities of fracture is directly visible:

s1

s2
5S V2

V1
D 1/m

. ~5!

If the stress is not constant throughout the specimen, b
function of position@26#,

s~x,y,z!5smaxg~x,y,z!, ~6!

the probability of survival is

12P~s!5expF2
VE

V0
S smax

S0
D mG ~7!

with an effective volumeVE being defined as

VE5E
V

dV g~x,y,z!m5kV. ~8!

The proportionality constantk between the effective volum
VE and the real volumeV depends on specimen volum
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shape, and loading, andsmax being the maximum stres
within the specimen volumeV.

So far a constant specimen volumeV, in which the stress
s(x,y,z) stems from external loading, was assumed. This
the typical case of ceramic specimens loaded in three-po
bending arrangement. Only under such conditions the m
mum stress appears with the powerm, the Weibull exponent
in the fracture probability. If the body loading is present, f
example, beams bending under their own weight, as
specimens, the maximum stresssmax in the volumeV of the
sample is itself a function of specimen volume. For t
specimen used by us, beams of cantilever lengthL, width t,
and heighth, and thus of volumeLth as shown in Fig. 1, the
maximum stress occurs in the plane of support@27#,

smax53L2r/h53V2r/~ t2h3!. ~9!

According to beam theory the integral equation~9! is

VE5V/@~2m11!~m11!#. ~10!

For such situations it is advantageous to write the fundam
tal equation~7! in the form

ln@12P~s!#52~smax/s0!m11/2, ~11!

with the scale parameter

s05@V0S0
m31/2r1/2~2m11!~m11!/~ th3/2!#1/(m11/2).

~12!

It is important to notice that for such body loading the failu
probability is not proportional to the Weibull parameter

FIG. 1. Cantilever beam geometry used.
6-2
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SIZE INDEPENDENCE OF THE STRENGTH OF SNOW PHYSICAL REVIEW E69, 011306 ~2004!
the material,m, any more, but tom11/2! Moreover, the
simple geometry chosen allows us to examine if the sc
parameters0 does indeed scale with the densityr and the
geometric parameterst andh as predicted by Eq.~12! or not.

The most frequently used methods to evaluate Eq.~7! are
the linear regression and the maximum likelihood meth
we evaluated our data by both the methods, but the result
not differ considerably. In the following we restrict to th
method of maximum likelihood for the following reasons.

~1! For maximum likelihood, the fracture probabilities a
not arbitrarily chosen, but the fracture probability densit
are maximized for a certain set of measured fract
strengths with respect to the Weibull parameters.

~2! The standard deviations are available even in dep
dence on the number of tests, obtained by either analy
methods or computer simulations@28#.

~3! The maximum likelihood method has the lower sta
dard deviation and is thus mathematically more reliable@29#.
In the appropriate formulas for external loading@28#, we
must replacem by m11/2 for our case of body loading. Ifs j
is the j th measurement ofM measured values ofsmax, the
Weibull modulusmML is obtained by the root of the follow
ing equation, the index ML denoting the evaluation by ma
mum likelihood:

M

mML11/2
1(

j 51

M

ln s j2M

(
j 51

M

~s j !
mML11/2ln s j

(
j 51

M

~s j !
mML11/2

50

~13!

and the scale parametersML by

MsML
mML11/2

5(
j 51

M

~s j !
mML11/2. ~14!

Because the Weibull distribution is not symmetric, the~usu-
ally unknown! true values0 of the distribution is related to
sML by

sML5s0M 21/m

GS M1
1

m11/2D
G~M !

~15!

and the true value ofm to mML by

mML11/25~m11/2!~112.1M 21.1!. ~16!

The respective standard deviations are

~DsML!25s0
2 1.05M 22/(m11/2)H GS M1

2

m11/2D
G~M !

2F GS M1
1

m11/2D
G~M !

G 2J ~17!
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~DmML11/2!25~m11/2!~0.04212.34M 20.88!. ~18!

The true values0 can only be obtained in the limitM→` or
m→`. But, as the number of tested specimensM is large in
our case andsML>s0 andmML>m, we use, for the sake o
simplicity, here the following notation:

sML5s0 , mML5m, justified for largeM . ~19!

Equation~7! has several consequences.
~1! Only the scale parameter in the combinati

S0(V0 /VE)1/m appears; neither the effective volumeVE nor
the reference stressS0 can be measured separately.

~2! Neither specimen shape nor size appears explicitly
the final expression, shape and size enter only through
integral, Eq.~8!, into the effective volume. Two specimens
different shape and size under different loadings are p
dicted to have the same failure probability as long as th
effective volumesVE according to Eq.~8! and the maximum
stress within them,smax, are the same.

~3! If true, the predictive power of Eq.~7! would be large,
because data obtained for one set of specimen geom
could be transferred to other sets of specimen geomet
With a value ofm measured once for one set, the effecti
volume VE can be calculated for any specimen size a
shape and loading geometry, and failure probabilities can
predicted.

~4! For different specimen volumes, the same probabi
of failure is predicted to occur for the same value
VEsmax

m , irrespective of the loading system or specimen g
ometry. This is a very strong statement and the most crit
test for assessing if the weakest link model is applicable
other words, the weakest link hypothesis implies that
scale parameters0 should depend on shape, size, and loa
ing mode of the specimen. For given specimen geometry
size, VE is constant, and the Weibull distribution, Eq.~7!,
merely predicts a sigmoidal variation of 12P with smax and
a bell shaped curve fordP/dsmax as a function ofsmax. The
position of the bell shaped curve is fitted to a stress and
width to a value ofm. Another fit would be a normal distri-
bution, which also has two parameters. Such a normal di
bution, however, has no interpretation in terms of weak
links. It is clear that fitting an experimental distribution to th
Weibull one is not a very stringent test of the weakest li
hypothesis. A more stringent test is that if one and the sa
Weibull distribution fits two different specimen shapes w
the sameVE , which, according to the integral, Eq.~8!, can
be obtained from different loadings. The strictest test, ho
ever, is the verification of the volume and shape depende
The physical interpretation is clear: weakness is associ
with the presence of defects, and the larger the specim
volume, the greater is the likelihood of defects being pres
According to Weibull, larger specimens must be weaker th
small ones, and the size variation is a proportionality
stress with the power 1/m of the specimen volume. Experi
mentally it is not easy to produce specimens of differe
sizes to the same quality specifications and to test them
der identical conditions~for example, the stiffness of the
6-3
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KIRCHNER, PETERLIK, AND MICHOT PHYSICAL REVIEW E69, 011306 ~2004!
testing machine must remain constant relative to the sp
men, deformation rates must be the same, etc.!. It is not
surprising, therefore, that more often than not the 1/m power
law is not confirmed, even though a good fit withm is pos-
sible at constant volume@7,30#.

III. EXPERIMENTAL SETUP

In order to be of any applicability for field work, a simpl
specimen shape must be chosen. Following Perla@31#, we
used cantilever beams of rectangular or quadratic cross
tion, which break under their own weight. The geometry
shown in Fig. 1. In practice, the beam is pushed forw
until it breaks, the lengthL of the cantilever at fracture an
the density of the broken off piece are measured, and
maximum stresssmax is calculated according to Eq.~9!. The
Weibull parameters can then be evaluated either by the
propriate method, e.g., linear regression or maximum lik
hood.

IV. DENSITY DEPENDENCE OF RELIABILITY

Perla @31# let 276 cantilever beam specimens of vario
density break under its own weight. He did not specify t
temperature at which the mechanical tests were conduc
but it must have been a few degrees below freezing.
chose a height ofh55 cm and a width oft530 cm. Thirty-
five years ago snow was still considered as a material so
how peculiar, and not yet identified as foam of ice. Perla
not identify stresses, failure probability, and the like, but e
pressed his results in terms of ‘‘beam numbers.’’ From
data it is easy to determine the maximum stress present in
samples, and Fig. 2 shows the strength valuessmax obtained
as a function of snow density. At that time the fact that t
strength of snow increased with density was already con
ered as an important result on its own, and no statist
analysis was attempted. Today a more sophisticated ana
is possible. Even today, however, no theory that would all
us to consider Weibull statistics as a function of one conti

FIG. 2. Perla’s@31# strength data, obtained on 276 cantilev
beams ofh55 cm height, andt530 cm width.
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ous parameter~in our case the density! is available. There-
fore, we grouped the data of Fig. 2 according to density i
276/M batches ofM members each, and applied the ma
mum likelihood analysis to the groups. The choice of ba
size is not obvious: in each batch there is a variation
density, which increases with batch size, but on the ot
hand the errors Eq.~17! and Eq.~18! decrease with batch
size@28,29#. As example of our data, Fig. 3 shows the pro
ability of failure for division of the 276 measurements in
three groups of densities: 32,r,115, 115,r,168, and
168,r,265 kg/m3. First, we determinedm from Eq. ~13!
ands0 from Eq. ~14! and the errorsDs0 andDm from Eq.
~17! and Eq.~18!, respectively. Figure 4 shows the variatio
of the shape parameters0 and of the Weibull exponentm
with density, Fig. 4~a! for the three batches of 92 samples
Fig. 3, Fig. 4~b! for nine batches of 30 samples~one batch 36
samples! each, and Fig. 4~c! for 23 batches of 12 member
each. Apparently, the scale parameters0 is rather insensitive
to the method of analysis and increases nearly quadratic
with density~with an exponent in a power law between 1
and 1.9 for the respective batches!. The increase must be du
to the known genuine increase of strength with density@8,9#.
It does not vary with the powerr1/(2m11)51/4 as predicted
by Eq. ~12!. The Weibull modulus, on the other hand,
associated with a large statistical error. It is independen
the batch size choice and of the density, extraordinarily lo
about m51.560.5. All densities of snow, between 3

FIG. 3. Probability of failure as a function of the maximu
stresssmax in Perla’s samples, both in linear and logarithmic sca
~a! Densities between 32 and 115 kg/m3, ~b! densities between 115
and 168 kg/m3, and~c! densities between 168 and 250 kg/m3.
6-4
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FIG. 4. Weibull analysis of Perla’s@31# data.
The scale parameters0 and the Weibull modulus
m as a function of density. For the 270 specime
~a! divided into three density groups,~b! divided
into nine density groups, and~c! divided into 23
density groups. Values and error bars accord
to Eqs.~13!–~18!.
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and 260 kg/m3, are equally unreliable and their mechanic
behavior unpredictable.

V. SHAPE DEPENDENCE OF RELIABILITY

We tested 180 cantilever beams of snow of density 1
610 kg/m3 of widths t510 cm, 60 of height 3 cm, 5 cm
and 10 cm, respectively. Tests were conducted at25
62 °C. The mean cantilever lengths at which they bro
under their own weight were 9, 13.5, and 17.6 cm, wh
amounts to three sets of volumes in the proportion 1:2.5:
From Eq.~9! the maximum stresssmax in the cantilevers~at
the upper surface, above the support! was calculated. Figure
5 shows the three Weibull sets of data in linear and logar
mic coordinates, respectively. Weibull analysis gives
scale parameters as 1120670, 1221657, and 1156
671 Pa, and the modulim11/252.0860.22,2.7760.29,
and 2.0960.22 for the heights 3, 5, and 10 cm, respective
These results are shown in Fig. 6 with their error bars. T
values are very sensitive to the number of data points u
leaving out two or three for any~experimentally always jus
tifiable! reason changes them values by 0.5. We thus con
clude that for all three volumess051120650 Pa andm
51.860.3, the Weibull modulus coinciding with Perla’s da
within the error. From the cumulative curves in Fig. 5 it
obvious that the horizontal shift with height~and volume! is
negligible. It is far below the one predicted by Eq.~12! for
01130
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the dependence ont, which is s0(h53)/s0(h510)
5(10/3)3/(2m11)5(10/3)3/4.2.5. Unlike predicted by
Weibull, there is no shape effect in the probability of failur

VI. SIZE DEPENDENCE OF RELIABILITY

In order to check any variation of reliability with size, w
tested 168 cantilever beams of snow of 222643 kg/m3 den-
sity, all of quadratic cross section. Fifty-nine of these had
profile h5t510.1 cm, 60 a profileh5t55 cm, and 49 only
h5t52.5 cm. Tests were conducted at2562 °C. The cu-
mulative failure probabilities as a function of stress a
shown in Fig. 7, in linear and logarithmic coordinates, r
spectively. Evaluation of these curves according to the ma
mum likelihood method gives values ofs0552216205 Pa
andm11/253.3360.35 for the largest,s0552886300 Pa
and m11/252.2760.24 for the medium, ands053673
6205 Pa andm11/252.5560.30 for the smallest profile
These results are shown in Fig. 8. These values are
sensitive to the data used, for example, removing the th
strongest specimens of the largest cross section lowerss0 to
4880 Pa and increasesm to 2.75. According to the weakes
link hypothesis, the largest cross section should have
lowest scale parameters0 and the smallest cross section th
highest: the opposite is observed. According to Eq.~12!, s0
should scale for the extremal cross-sectional dimensi
tested in our work with the ratio (10/2.5)(5/2)/(m11/2)
t
f
e

-

FIG. 5. Weibull analysis of
180 cantilever beams of 107
610 kg/m3 density, all of width
t510 cm, the batches with heigh
h53, 5, and 10 cm consisting o
60 specimens each. Neither th
50% failure strength nor the
Weibull modulusm vary apprecia-
bly with the shape of the speci
mens.
6-5
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5(10/2.5)5/4.5.7. This is not observed. Unlike predicted b
Weibull, there is no size effect in the probability of failure

VII. SUMMARY OF EXPERIMENTS

From test on about 600 specimens on snow we conc
the following.

~1! Strength of snow increases with increasing dens

FIG. 6. Scale parameterss0 and Weibull modulim for three
beam heightsh53,5, and 10 cm, all of widtht510 cm.
01130
e

,

from a yield stress of about 400 Pa for 70 kg/m3 to 10 000 Pa
for 250 kg/m3. The Weibull modulus remains constant atm
51.560.5 for that range of density.

~2! This density dependence is in agreement with str
tural models of snow that identify it as a foam of ice.

~3! The experimental data confirm that snow density is
controlling parameter for mechanical properties. Of cou
snows of different microstructure, but of the same dens

FIG. 8. Scale parameterss0 and Weibull modulim for three
beam cross sections.
.
FIG. 7. Weibull analysis of 168 cantilever beams of quadratic cross sections, about a third withh5t510.1,5, and 2.5 cm, respectively
Snow density was 222643 kg/m3. Neither the 50% failure strength nor the Weibull modulusm varies significantly with specimen size.
6-6
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SIZE INDEPENDENCE OF THE STRENGTH OF SNOW PHYSICAL REVIEW E69, 011306 ~2004!
might behave differently, but these structural effects seem
be overridden by density.

~4! Unlike predicted by the weakest link hypothesis, the
is neither a size nor a shape dependence of the streng
snow samples in the statistical sense.

~5! The weakest link model underlying the Weibull a
sumption is not confirmed. The Weibull distribution can on
be accepted phenomenologically; it merely describes a t
parameter strength distribution, the mean of which increa
and its relative width decreases with increasing density.

~6! The size and shape independence of the mechan
behavior allows the use of experimental data acquired
small, laboratory size specimens for large size snow slab

VIII. CONSEQUENCES FOR AVALANCHE RISK

The extraordinarily low values of the Weibull moduli fo
powder snow (m51.560.5 for 70–250 kg/m3) explain the
haphazard and truly random nature of powder snow a
lanches. Withm51.5 ands05300 Pa for 70 kg/m3 there is
a 50% probability of failure for a stresssmax5235 Pa, a
10% probability atsmax567 Pa, and still a 1% probability
at smax514 Pa. This means that even for very low stres
indeed there is an appreciably finite failure probability th
the snow cover fails. As has been known to mountain gui
for a long time, freshly fallen powder snow is very unpr
dictable. Avalanches can go off spontaneously anywhere.
snow of higher density, still unreliable withm51.5, the situ-
ation gets better, because under its own weight the stress
the snow cover increase proportional to the density, while
resisting strength~the scale parameters0) increases qua
dratically.

The distribution of defects present in our samples, a
responsible for the low value of the Weibull modulus,
necessarily smaller than the size of our largest specim
well below 1 m. Defects and inhomogeneities larger th
that, for example, crevasses, cracks, and density fluctuat
are encountered in the field. Such defects provide stress
centrations and are relevant for avalanches, which occu
the scale of 10 m or more. At that scale, we suspect that t
is a transition to a Griffith-type abrupt rupture, predicted
systems with decreasing disorder@32#, and the existence o
crevasses of a few meters size in the snow cover shoul
treated with conventional mechanics. Slab avalanches
gered by skiers should fall in the domain of convention
linear elastic fracture mechanics. The stress intensity fa
is induced by the weight of the skier and the notch len
from the length of the skis. One concludes that conventio
mechanics can be applied to these problems, which are p
on a length scale larger than our specimens. The mat
parameters that enter are those measured by us on the
meter or meter scale. Our experimental results furnish
input to macroscopic avalanche and fracture mechanic
snow. The size independence of these parameters up to
cm found by us is quite encouraging.

IX. DISCUSSION

The absence of size effects has shown the weakest
hypothesis in the Weibull sense to be inapplicable, eve
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the Weibull modulus is very low. We did not observe a d
tinct scaling relation of the strength, which could be e
pected for granular disordered media@32,33#. Two possible
explanations are suggested for this surprising behavior.

~1! Our bending tests cover a length scale of about o
and a half orders of magnitude, thus a scaling law could
masked by the limited range of the experimentally access
specimen dimensions.

~2! We are approaching an asymptotic strength, wh
was proposed for large structural dimensions in compari
to the characteristic length of the microstructure in a mu
fractal scaling law model@34#. Tests towards small scale
would clarify this question, but these experiments would
very challenging.

It would be desirable to measure the temperature dep
dence of the Weibull modulus and the scale parameter. Th
is no doubt that snow in Arctic or Antarctic conditions,
2100 °C ~two-thirds of the melting temperature!, might
show significantly different behavior from the one measu
by us ~at 98% of the melting point!. On the other hand, it
seems unlikely to say that at, say220 °C, the values of the
Weibull modulus and the strength parameter would fall o
side our confidence limits. An investigation of temperatu
effects would really have to address the behavior at extre
conditions, and not at temperatures that in Europe wo
justly be called cold.

Because it is notoriously difficult@35# to distinguish be-
tween different reliability distributions based on failure st
tistics alone, we have subjected our data to only a Weib
type analysis, although other hypotheses, for exam
Gumbel’s one@36#, cannot be excluded. At present the m
crostructure of snow is characterized by average den
only. No information on spatial variation of density, dens
of defects, presence of microcracks, or distribution of por
ity is available to us, nor to snow researchers in general. T
is the reason why we judged futile the attempt to distingu
between different failure statistics.

In idealized models it is, in principle, possible to fin
correlations between microstructure and failure statist
each microstructure leads to a characteristic reliability dis
bution, but since the former is largely unknown, and t
latter is difficult to identify, we have not attempted to do s

X. CONCLUSION

Inhomogeneously stressed specimens of snow
,density,300 kg/m3) break at the point of maximum stres
smax, independent of size and shape, with a probability

P(smax)512expF2S smax

s0
D mG . ~20!

The stress parameter varies nearly quadratically with
density of snow,s0'r1.85, wherer is the density in kg/m3.
The exponentm51.560.5 is independent of density. Al
though formally identical to a Weibull distribution, the fai
ure law, Eqs.~11! and ~12!, as outlined in Sec. II, does no
hold. The original idea is that in a homogeneously load
specimen a distribution of defects is present, and the m
6-7
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dangerous ones control failure. The theory then adjusts
inhomogeneous stresses by defining an effective volume
cording to Eq.~8!. This implies that occasionally inhomoge
neously loaded specimens should not fail at the point
g.
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maximum stresssmax, but somewhere else, albeit with
smaller probability; and that shape and size of specim
matter. For snow it has been verified that these effects do
exist. Failure occurs where the stress is maximum.
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