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Validity of the Boltzmann equation to describe low-density granular systems
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The departure of a granular gas in the instable region of parameters from the initial homogeneous cooling
state is studied. Results from molecular dynamics and from direct Monte Carlo simulation of the Boltzmann
equation are compared. The results indicate that the Boltzmann equation accurately predicts the low-density
limit of the system. The relevant role played by the parallelization of the velocities as time proceeds and the
dependence of this effect on the density is analyzed in detail.
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[. INTRODUCTION dency of these systems to form density clusters. Since it is
only valid in the low-density limit, the Boltzmann equation

The study of granular systems has attracted much interes not suitable to describe the cluster evolution. This is not a
in the last years. The practical importance of these system$yndamental objection, and in fact it can also be raised
which are present in many situations in daily life, togetheragainst the applicability of the Boltzmann equation to mo-
with the richness and complexity of their behavjd, has lecular systems in inhomogeneous states. The value of the
motivated many researches trying to describe and understami&nsity limits indeed the applicability of the Boltzmann de-
the physical mechanisms governing granular flows. Ofscription, but both in the elastic and the inelastic case. On the
course, the variety of what we call “granular media” makes other hand, if we start from a homogeneous, low-density,
it necessary to use different theoretical descriptions dependhitial configuration of a granular gas, under conditions that
ing on the problem we wish to address. In the context ofclusters will develop eventually, it can be expected that the
rapid, low-density, granular flows, the application of the Boltzmann equation will be valid to describe the first stages
methods of the kinetic theory for molecul@lastig systems of the cluster formation, as long as regions with a too large
has proven to be a very useful tool. The starting point for thisdensity do not show up. A different objection concerns the
description has been in many cases the extension to inelasti@lidity of the molecular chaos hypothesis, which is on the
collisions of the Boltzmann equation, which is derived underbasis of the Boltzmann description. As collisions in granular
the same hypothesis as in elastic systems. From this kinetgystems tend to make the particle velocities more parallel,
equation, closed hydrodynamic equations with explicit ex-velocity correlations may develop from the early stages of
pression for the fluxes and the associated transport coeffthe evolution of a granular gas, making the molecular chaos
cients(up to second order in the gradienter inelastic hard  hypothesis invalid. This problem was directly addressed by
particles have been deriv¢d,3]. This hydrodynamic picture Sotoet al.[11,12], who studied the short-range velocity cor-
has been found to provide an accurate description of granulaelations in the HCS of a granular fluid, concluding that they
systems in very different situations, driven and not drivenwere not relevant in the low-density case. Pagonabarraga
The Boltzmann equation has also been used to study thet al. [13] also studied the validity of the molecular chaos
velocity distribution of a granular gas, modeled in most ofhypothesis in a homogeneous granular system, but in this
the cases as a system of inelastic hard particles. Of coursease driven by a random force. Again, it was found that, for
the shape of the distribution depends on the state of the syslilute systems, deviations from molecular chaos were not
tem. The simplest possibility is the so-called homogeneousignificant. To put this work in a proper context, it should be
cooling state(HCS), the state of a homogeneous, freely taken into account that the driving force introduced by the
evolving granular gaf4]. In that case, the Boltzmann equa- authors induced some velocity correlations, as pointed out by
tion is shown to admit a solution whose time dependence cathem.
be scaled out through its second moment. Deviations from The previous mentioned studies are restricted to homoge-
Gaussianity in the HCS have been quantified by computingieous states of a granular gas. They correspond to very spe-
the kurtosis of the distributiofb—7] and by establishing the cial situations, so the conclusions cannot be extrapolated to
existence of exponential velocity tail§,8,9]. The possible more general cases. A different situation was investigated
solutions of the Boltzmann equation in the case of a vibratedecently by Nakanishj14], who studied the time evolution
system in the absence of gravity have also been investigatedf the velocity distribution of a freely evolving granular fluid
and the conditions for the existence of a steady solutiorin conditions such that the HCS is unstable. He found that
whose space dependence is scaled out also through the sélee kurtosis of the distribution did not remain stationary, but
ond moment have been establish&@]. evolved towards the Gaussian value from the early stages of

In spite of its extended use and clear success in manthe evolution of the system, even before the clustering insta-
cases, the validity of the Boltzmann equation to describéility shows up. He argues that this is in contradiction with
granular flows has been questioned since the early develophe predictions of kinetic theories based on the Boltzmann
ments of the kinetic theory of granular systems. One of theequation, being a clear indication of the growth of velocity
first objections raised against its use was based on the teperrelations, which invalidates the molecular chaos hypoth-
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esis. He also found that the return to the Gaussian behavior . . .
became slower the more dilute the system, but as changing jB[faV|f(f,V,t)]=Ud_1J dVlJ dod(g-0)(9- o)
the density implies changing the “clustering time,” it was
not clear to the author how the Boltzmann behavior could be X (a 2b~t=1)f(r,v,t)f(r,vq,1).
recovered. (@)

The object of this work is to investigate the possible dif-
ferences in the behavior of the velocity distribution functionHere ¢ is the Heaviside step function afi * an operator
of an initially dilute, homogeneous, granular gas and the pretransforming velocities andv; to its right into their precol-
dictions of the Boltzmann equation when the system is undefisional values. As is the case with elastic particles, the deri-
conditions such that the HCS is unstable. We will compare,ation of this equation is based on the molecular chaos hy-

the results from molecular dynami¢dD) simulations at pothesis, i.e., the factorization of the two-particle distribution
different average densities with those from the direct simufynction in the precollisional sphere:f()(x;,x,,t)

lation Monte Carlo(DSMC) method, whjch is a method to  =f(x,,t)f(x,,t), wherex;={r;,v;}. If spatial and/or veloc-
solve numerically the Boltzmann equatiftb|. ity correlations are present between colliding particles, this

The plan of the paper is as follows. In Sec. Il the kineticfactorization does not hold and the assumption of molecular
theory predictions for the HCS are briefly discussed, whilechaos fails.

the details of the simulations and the properties to be studied When a System of inelastic partides such as the one de-

are given in Sec. Ill. The results for the DSMC and MD scribed evolves freely, its simplest possible state is the HCS.

simulations are presented in Secs. IV and V. Some final comt js a homogeneous state with no fluxes, whose temperature

ments and discussion are made in Sec. VI. T(t), defined as proportional to the average kinetic energy,
evolves according to Haff's laWl6],

II. KINETIC THEORY FOR THE HOMOGENEOUS

T(0)

COOLING STATE T(t)= o (5)
Let us consider a system &f smooth inelastic hard par- (1+ .
0

ticles, spheresd=3) or disks =2), of massn and diam-

etero. The loss of energy in collisions is characterized by awhereto is the time characterizing the energy decay.

constant coefficient of normal restitutiam, which implies The Boltzmann equation admits a solutitfv,t) describ-
that the velocities of two colliding particles j before and ing the HCS, which obeys the scaling |$W—7]’
after the collision are related by '

f(vh)=— ¢( ’ ) ®)
1+ A v,y = e
vi’=vi—Ta(g-o-)¢r, vo(t)? " 1vo(t)
whereny is the homogeneous density, ang the thermal
1+a . . velocity of the system, defined ag=/2kgT/m, with kg
Vi =v;+ T(g- o) o, (1)  the Boltzmann constant. Therefore, in the HCS all the time

dependence of the velocity distribution can be scaled out

through its second moment. The functignis determined
where the primes denote velocities after the collisigm,v; from the Boltzmann equation. Although its exact expression
—v; is the relative velocity, andr a unit vector joining the  is not known, it was found that it does not deviate much from
centers of particle$ andj at contact. Let us notice that 0 @ Gaussiarf7]. Then, it is sensible to expand it using the
<a<1, and that the value=1 corresponds to elastic col- Sonine polynomialsS'), whose explicit expression can be
lisions. The above rule implies that, in each collision, thefound in Ref.[17],

component of the relative velocity in the direction ofis 2

—C

reduced in a factow, _ € g (e2 _ v
$O=—5 ;0 a;8(c?), c= . (7)
g'-0=—a(g o). 2) Normalization and scaling implg,=1 anda;=0. The

coefficienta, is related to the kurtosis of the distribution
The Boltzmann equation describing the evolution of the
velocity distributionf(r,v,t) of a system of freely evolving 4

hard particles has the form 2= 4d+2)

(- d(d4+2)

: ()

and its value has been estimated from the Boltzmann equa-

£+V-V f(r,v,t)=Jglr,v|f(r,v,t)], (3)  tion up to linear order ira, [5,6]. In the above expression,
Jt the angular brackets denote averages with the velocity distri-
bution of the HCS. Both theoretical calculations and numeri-
where 7 is the(inelastig Boltzmann collision operator, cal simulations of the Boltzmann equatipf] show that, for
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not too inelastic systems, is very small. Deviations from Ill. COMPUTER SIMULATIONS

Gaussianity are important if we consider the tails of the dis- . -
tribution, which are exponential. Again, this has been veri- Given that we want to check the validity of the Boltzmann

fied from theoretical arguments based on the BoItzmanr‘?_qu""t'o_n to de_s‘?f,'be granular gases, we will cpmpare MD
equation[8,6] and from DSMC simulationf9]. simulations of initially homogeneous, low-density, granular
The timet, characterizing the kinetic energy decay in theSystems with the predictions of the Boltzmann equation.

HCS has also been computed by using the Boltzmann equaince the time-dependent analytical solution of the latter is
tion [2], and its expression is not known, we will use the DSMC method developed by

Bird [15] to construct numerical solutions of the Boltzmann
0)| 22 equation under the desired conditions. It must be remem-
) nyo@=1, (9 bered that this method mimics the dynamics behind the Bolt-
zmann equation by uncoupling the free flow of particles and
collisions during a small enough time interval. Besides, col-
where {* («) is a function that depends only on the coeffi- lisions are always treated as if there were no correlations
cient of restitutiona, and that, for not too inelastic systems petween colliding particles. In practice, this implies that

L 4=z (kBT(
o =) G m a2 | m

reads[2,3] space is divided in cells of size smaller than the mean free
path, and particles within a cell collide with a probability
2+d proportional to their relative velocity. Technical details about

§*(a)zﬁ(1—a2)- (100 the DSMC method have been extensively discussed in the

literature[15,22. The only point we want to stress is that,
o . when using this method, the simulated systetmyislefinition
In terms of the average number of collisions per particle, in the low-density limit, where the Boltzmann equation is

Haff's law takes the form supposed to apply, no matter how many simulated particles
there are in a given space region.
T(7)=T(0)e 2", (12) The simulations we will present in the following corre-

spond to a two-dimensional system of freely evolving hard
. o . _ disks in a square box of side larger than the critical size,
i.e., the kinetic energy decays exponentially with the numbebiven by Eq.(12). Periodic boundary conditions will be con-

of co_llisions." K | hat the h sidered in all the cases. In the MD simulations, the event
It is a well known resul{18,19 that the homogeneous e algorithm[23] will be used. For our purposes, it is

cooling state of a granular gas is unstable against long waves, o rant to study the effect of lowering the density on the
length perturbations. In practice, this implies that if the sys-o, o\ tion of the system. For that reason, two different, low

teml sizde is Ilarger th.a'? a rc]:ritical valug, it V‘;]i" spolntanef- Jalues, of the density will be studied in the MD simulations,
ously develop spatial inhomogeneities. The value of theamei v —0.05,~2 andn,—0.01252. Nevertheless, it

critical size has also been determined from the Boltzmanrrinust be noticed that, for a givem, changing the density

equation[3,20], and one obtains implies changing the critical size of the system, as follows
from Eqg. (12). As a consequence, if the systems have the
Cy(2+d)'(d/2) [ n* 12 same sizd., the characteristic time governing the growth of
C:W o Ay (12)  instabilities will be also changed, and the departure from the
m ¢ HCS will be faster in the denser system. Therefore, if we
want to have the same “distance to stability” in systems with
Here, \y=1/(Cqnyo'@~Y) is the homogeneous mean free different densities, their sizes must be changed correspond-
path,Cd:Z\/E ford=2 andcd:q-r\/i for d=3, and»* is ingly, so L/\y, and, thereforelL/L., remain unchanged.
a function of o related to the viscosity of a granular gas, The same value of this scaled size should be considered in
whose expression can be found in Réfl. Both MD[18,19  the DSMC simulations, again to expect the same character-
and DSMC [21] simulations of freely evolving granular istic time governing the departure from the HCS.
gases show that, in the development of inhomogeneities, first Moreover, we have used a fixed value of the restitution
velocity vortices appear in the system and then the densitgoefficient,a=0.9, which is not too inelastic, but lies out-
becomes also very inhomogeneous. Of course, once the iside of what can be considered the quasielastic region. For
stability has set in, the velocity distribution of the systemthis value ofe, Eq.(12) leads toL,=23.36\,. As we want
will no longer be the one of the HCS. Therefore, one expectthe system to be well inside the unstable region, we have
the scaling to fail anda, to become time dependent. The chosen the system size to He=80\y. Then, for ny
question is whether the Boltzmann equation is valid to de=0.05 "2 the number of particles in the system in the MD
scribe how a low-density granular system departs from theimulations wasN=16 000, while forn,=0.012%2, N
HCS. It might happen that, as pointed out by Nakan(igHi, =64000. In the DSMC simulationd\=2.048< 10° par-
the development of velocity correlations are very importanticles were considered, but it must be reminded that this
from the early stages of this departure, and then the Boltzaumber has only a statistical meaning. In all the cases, we
mann equation fails. This is the main point we want to clarifystarted with the particles homogeneously distributed in the
in this work. system and with a Gaussian velocity distribution. This situ-
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ation was let to evolve with elastic collisions during severalwith gq the equilibrium elastic pair distribution function at
collisions per particle, until the system was equilibrated.contact, which in the two dimensional case is accurately
Then, the inelasticity was switched on, and this time is takemgiven by[25]
as the origin,t=0, of our simulations. The initial elastic
period ensures that the structure of the fluictat0 is the
o m(25—4nm)n
equilibrium one. JoloT)=14+ —————. (15)
4(4—nmr)?
Studied properties

As the aim of the paper is to investigate the departure of [N our simulations, time will be discretized so the average
the velocity distribution of the system from the HCS form, 0ver collisions in Eq(13) will be done not over the whole
this will be one of the properties to be studied in the simu-Simulation time, but over collisions occurring in a given in-
lations. To be more precise, we will compute the secarfd  terval. In this way, we can study the evolution of the colli-

and fourth(v*) velocity moments of the total velocity distri- Sional averages and, in particular, of +the pair distribution
bution, and from them we will compute also, given by function at. contact. Needle;s to s;g,(,a 1) will only be _
Eq. (8). As far as the system stays in the HGS, will be compu.ted.m the MD simulations, as in the DSMC method its
constant. It is important to notice that, as in Rif4], we value is given. o
will study the global velocity distribution of the system, even Another test of the validity of the molecular chaos hy-
if innomogeneities are present, causing local averages of tHFthesis will be provided by the probability distribution of
physical quantities to be quite different from their global the impact parameteh=(o/2)siny, wherex is the angle
values. formed by the impact relative velocity and the unit vector
The growth of inhomogeneities will be controlled by fol- o.Ina system of hard disks, and if there are no correlations,
lowing the evolution of the densityi(r,t), and velocity the impact parameter is uniformly distributed. In the HCS
u(r,t), fields. To compute them, the system is divided intothis distribution has also been measuf#tl, 26 by computer
30%x 30 square cells of sizé.~2.7\;, and properties are simulations, and no deviations from uniformity have been
averaged in each cell. Again, while the system remains in théound in the low-density limit. Here, we will consider the
HCS, n(r,t) should be constant ana(r,t)=0 (aside from same discretization discussed above to construct the distribu-
statistical noisg Once the instability develops, vortices and tion of impact parameters in each time interval, and study its
also density inhomogeneities will show up. The question repossible time dependence. Again, the impact parameter dis-
mains of how the departure of the velocity distribution from tribution will be studied only in the MD simulations, as the
the HCS one is related to the development of these inhomd?SMC method assumes its uniformity.
geneities. The possible velocity correlations will also be studied. A
The possible failure of the molecular chaos hypothesiﬂuantity that has been used to study them is the collisional
will be investigated by the study of several collisional aver-averagel'(t) defined as
ages, i.e., averages over colliding pairs of particles. These
averages contain information about the two-particle distribu- c
tion of' coI.I|d|ng partlcl'es, which is the function Whose_fac— (t)= 7 _o(— o9, (16)
torization is assumed in the molecular chaos hypothesis. The y veAt |g G
first of the collisional averages we will consider is the pair
distribution function at contacy(c ™). In an elastic system,
if there are no correlations between colliding particles, as i
is in fact assumed by the Boltzmann equatiofy*)=1. In
the case of a system of inelastic disks, the pair distributio
function at contact can be easily computed by udigg]
(notice that there is a missprint in the expressiondgts*)
provided in the cited referenge

with V, the number of collisions in the intervalt, andi, |
the particles involved in collisiory. If there is neither mac-
roscopic velocity field nor velocity correlations in the sys-
Rem, it isT'=0. Therefore, in the HCS, nonzero valueslof
are a clear signal of the presence of velocity correlations in
the system. When the system leaves the HCS, there is an-
other possible reason for these nonzero values. The buildup
of velocity vortices implies that(r,t) is different from zero,
l+a 1 1 1 R . . . .
glo t)=—— — - 6(—o-g,), and then, even if there are no velocity correlatidnsyill be
a Nnymo At /S o g, 7 different from zero. Let us notice that(t) can be measured
(13 both in molecular dynamics and DSMC simulations.

Finally, the distribution of the angleb formed by the
where we are summing over all collisionstaking place in  velocities v;, v, of colliding particles will also be com-
the intervalAt, and the# function Implles that we are USing puted_ We are not aware of any ana|ytic expression for this
the precollisional values of the quantities in the sum. Wheryyantity in the elastic case, and, therefore, we will use the
the system is in the HCS, it has been four##,11 that jnjtjal, elastic part, of the simulations to obtain the elastic
gucs(o ") does not depend on time, and takes the value gistribution of the¢ angle. The parallelization mechanism

inherent to inelastic collisions may cause deviations from
)= 1ta + (14) this behavior, even in the HCS. In any case, this distribution
Oneslo )= 2a Golo™), shows if there is a predominance of collisions between par-
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107 -0.01 |
-0.03
107 ' : '
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T
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FIG. 1. Evolution of the average kinetic energy for the simula- 0 5 10 15
tions discussed in the text. The units are chosen such that the initial T
value is equal to 1. Also shown is the theoretical prediction for the (b)
HCS, i.e., Haff's law. Time is measured in average number of col-
lisions per particle. 0.03 .
a, —— DSMC
-2
ticles moving more or less parallel in the system. Again, this o ::gg;iﬁ"
distribution will be measured both in MD and DSMC simu- 0.01 |
lations.
It is important to realize the different physical information
behind the distribution$(b,t) and P(¢,t). The former is -0.01

related to the spatial distribution of the incident flux over
colliding particles, while the latter contains only information
about the relative direction of the velocities of colliding par- -0.03
ticles. In particular, it is easy to see that all the valuegpof
are compatible with any given value bf

-0.05 0
IV. RESULTS T

The results we will present correspond, as we have al- FIG. 2. Time evolution of the dimensionless coefficiegtfor
ready stated, to MD and DSMC simulations of a freelythe simulations discussed in the main text. The short time behavior
evolving system of hard disks with=0.9 andL =80\, (@ and the complete evolutiotb) are displayed in different plots
i.e., in conditions such that the HCS is well inside the un-for the sake of clarity.
stable region. In the following, the mass of the particles
will be used as the unit of mass, and the initial kinetic energysooner in the case of larger density. Therefore, it seems that,
per particle as the unit of energy. The results we will presengélthough there are quantitative differences between the be-
have been averaged over several trajectories in all the casbavior of a finite density granular gas and the predictions of
in order to improve the statistics. Besides, the time evolutiorihe Boltzmann equation, they are smaller the smaller the
of the system will be expressed in terms of the number oflensity, being similar the shape of the curves. Then, it seems
collisions per particle,;r. As the system is prepared in an sensible to expect that the Boltzmann equation predictions
initially homogeneous situation, we expect it to stay in theprovide indeed the correct picture in the analytic low-density
HCS for a transient period, until the instability sets in. Fromlimit, n—0.
that moment, the different physical properties will depart The evolution ofa, is plotted in Fig. 2. In Fig. @), the
from their HCS values. initial evolution of this quantity is shown: there is an initial,

In Fig. 1 we have plotted the evolution of the averagevery fast, decay from the initial Gaussia,= 0, value to the
kinetic energy per particldp?)/2, in the system. This quan- HCS one, followed by a steady period for which the velocity
tity is proportional to the granular temperature as far as therdistribution of the system seems to remain with the HCS
is no macroscopic velocity field, i.e., while=0. Also plot-  form. The complete time evolution of the system is given in
ted is Haff’'s law, Eq.(11), describing the evolution of this Fig. 2(b). Again, in all the cases we observe a similar behav-
property in the HCS. In all the cases there is an initial periodor. After the initial steady perioda, grows, reaches a maxi-
in which the energy follows Haff’s law and, after that, the mum, and afterwards it decays in time. The approximate du-
average kinetic energy of the system decays slower than iration of the steady periodrg, is 75~15 for ny
the HCS. The departure form Haff's law occurs sooner in the=0.05 "2, 74~ 30 for n,=0.0125% "2, and 75,~50 in the
MD simulations than in the DSMC one, but it is important to DSMC simulation. The position* of the maximum ofa, is
notice that, if we compare the two MD simulations, it occurs 7* ~40 for n,=0.05 "2, 7 ~50 for ny=0.0125% "2, and
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7 ~70 in the DSMC simulation. The height of the maxi- &6 4

mum is also larger the larger the density. A first conclusion o

that can be extracted from Fig. 2 is that the qualitative be-

havior ofa, that follows from the Boltzmann equation is the

same found in the MD simulations. Besides, the differences

between the MD simulations and the DSMC one are smaller

the smaller the density in the former, showing again a ten-

dency to the Boltzmann behavior in the limit of very low

density. 1
Comparison of Figs. 1 and 2 is interesting in order to

determine the sensitivity of Haff’s law to the exact shape of

the velocity distribution function as measured by its fourth 0 . ‘ .

moment. It is found that, forr=r7, whena, begins to 0 20 40 60 80

depart from the steady value, the temperature takes the value T

predicted by Haff’s law in all the cases, as is expected. What FiG. 3. Evolution of the average value of the density fluctua-

might be surprising is that, at the maximurfi, the devia-  tions, scaled with their value in the elastic case, for the simulations

tions from the Haff value are relatively small, the tempera-discussed in the main text.

ture being at most 1.3 times the Haff's value. This is in

agreement with simulations of homogeneous systems of instate,n,, is a measure of the statistical noise. Let us remem-

elastic hard disks, which show that the evolution of the temper that the systems were divided in>380 cells to compute

perature follows quite approximately Haff’s law, unless thethe hydrodynamics fields: as the number of particles is

fourth moment of the velocity distribution is very large as smaller in the denser system, the noise in the fields will be

compared with the second ofi27]. larger, and that is the reason why, in the homogeneous part of
Once the validity of the Boltzmann description as a limit the evolution,ny, /ny is larger the larger the density. It must

to the behavior of a granular gas for vanishing density hage also pointed out that, once the clustering begins, there is a

been shown to be consistent with the simulation res@its time interval in which the growth ofiy can be fitted to an
least with regards to the behavior of the second and fourtxponential,

moments of the velocity distributigna natural emerging

question is which is the mechanism taking the velocity dis- Ny~ N+ Cesn(7= ), (17)
tribution out of the HCS shape. With that purpose, the evo-

lutions of the density and velocity fields have been studied. It,nerec and 7, are constants whose value is not relevant for

must be noticed that, as we expect them to be inhomoggye present discussion, arg}~0.13 for n=0.05"2, s
neous, and their spatial distribution changes from one real- 4 153 for n=0 0125712 ands.~0.167 in the DéMnC
. . 1 n .

ization to another, these fields cannot be averaged over difs, iation. Again, the discrepancies between the Boltzmann
ferent runs. behavior and the one at finite density are smaller as we lower

Let us consider first the evolution of the density field. In o density, the growth rate being almost the same for the
all the cases we observe that the system remains homog%—wer densi,ty case and the DSMC simulation.

neous during what we have called the steady perigd In a freely evolving granular system, it has been shown

Betweenrg; and * small density inhomogeneities begin 10 1yt \when using as the time variable, the growth rate of the
show up, but they are not very significant. The situationg.ajed transversal velocity mode is

changes fromr* on: there is a very fast growth of density

inhomogeneities, and in all the cases, elongated clusters of 10 i
particles are formed, similar to those observed in previous /
studies of freely evolving granular systems. This behavior of ny/ny

the density field is quantified in Figs. 3 and 4. In the first of 871

them, the evolution of the dispersion of the density fluctua-

tions, 8= \([n(r,t)—ny]?) is plotted. Let us notice that this 6t

guantity is nonzero even in a homogeneous state, due to
statistical noise, and its value in the homogeneous state de-

L #
pends on the number of particles per cell, which is different * A
in each of the simulations. For that reas®has been scaled A )
with its value in the elastic part of the simulatiofy, . It is 25
observed in the figures that, in all the casésas not in- SRS “
creased much over its elastic valuerat 7*, but from then 0

on there is a very sharp growth of the density fluctuations as 0 20 40 60 80
a consequence of the formation of clusters in the system. A
similar behavior is exhibited by the maximum value of the FIG. 4. Evolution of the maximum value of the scaled density
density,ny,, which is plotted in Fig. 4, scaled with the ho- for the simulations discussed in the main text. The symbols are
mogeneous density. While the system is in a homogeneoufgom the simulations, and the dotted line is just a guide to the eye.
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FIG. 5. Evolution of the fluctuations of the velocity field, scaled FIG. 6. Evolution of the pair distribution function at contact,

with its value in the elastic case, for the simulations discussed in th%(f) obtained in the two MD simulations discussed in the main

main text. text. The horizontal lines are the theoretical prediction for this func-

7 tion in the HCS ah=0.0125"2 andn=0.05"2, from bottom to
s =0 7k2, (18)  top.

=5. Properties are averaged over collisions taking place in

where k is a nondimensional wave vector defined las  each interval. Also, all the results have been averaged over
=27/(\mnyal), with | the wavelength of the perturbation. several runs.

In a simulation, the maximum allowed wavelength, which is |, Fig. 6 we have plotted the evolution of the pair corre-

the one that grows faster, is-L, due to the boundary con- 444 function at contacg(a "), from the MD simulations.

ditions. For the values of the parameters used in this work - : : TR
the theoretical prediction is, —8.64x 10 2. It has been ar- Also included is the theoretical prediction in the HCS for the

e . _two values of the density displayed in the figure, calculated
gued[ls,za_ that the growth of dgnsny inhomogeneities in aftrom Eq.(14). In both cases it is found that, when the veloc-
freely evolving granular system is a consequence of the non:

linear coupling between the transversal velocity mode anc'jty distribution begins to depart from the HCS one, i.e., at
the other hydrodynamic fields, in particular, the density. [§7= Tst the pair correlation function takes still the HCS value

that is indeed the case, the growth rate of the density, at Iea_{1 d*’ 'thzc,:h;e;ﬂ?r'g?: ;r\(/)enrw |fta§tr iengrlé';esesg?iﬂ)ed\/j;g t
in its first stages, should bes2. Here, 5, ~0.173, whichis T ' y

ey lose o 10 value cf foun i the DSWC and e '8 XD of e e syte, Treree, e 1
MD lowest density simulation, confirming once again the 2 9. P

picture described above. This agreement indicates the hydr(ﬁ-os't'onaI correlations of colliding particles. These correla-

. ) . . ons do appear, but at rather later times. We have also stud-
dynamical character of the density fluctuations in the cluster: : . o
ing regime. ied the evolution of the impact parameter distributi®fb,t)

I and found that in none of the MD simulations discussed in
The growth of the scaled velocity field has also been fOI'this work it deviated significantly from uniformity for the

lowed in our simulations, and we found that vortices begin totimes shown in this paper

develop quite soon in the system. To quantify this, we intro- . > paper. .

duce &,, the scaled average value of2, as & _ Velocity c_:orrel_atlons were mvestlgate_d throggh the b_ehav-
v ) u ior of I' defined in Eq(16), and of the distribution function

=(n(r,t)u?(r,t)). Again, due to statistical noisé, will be L .- :
difgfesent) fro(m ?ero svhen computed from a simlrlation evenOf the angle formed by the velocities of colliding particles,
' ¢. In Fig. 7, the evolution of” for the three simulations is

If there are no fluxes. For that reason, in Fig. 5 we haveshown It must be noticed that, in a finite system, even if
plotted &, scaled with its value in the elastic part of the : . o Y '
simulation, 5¢'. All the simulations show that the velocity there are no correlat|or_|§, takes a f|r}|te \_/alue that depends
! U ; on the number of particles, which is different in the three
field grows from the very early stages of the evolution. In

f h is 4 fi f th hof /5¢ which cases. So, even in the elastic part of the simulatioris
act, t, ere Is a first Pa” of the growth &, u s WHICh Can  yigtarent in each case, being larger in the denser system, as it
be quite well approximated by an exponential, which is com

Il the simulati After th h ! " has less particles. Besides, the valud’ois different in an
mon to all the simulations. After that, there Is a saturationg| ;e system and in an inelastic one in the same conditions.

effect that translates into deviations from the exponentiaﬁherefore when the inelasticity is switched ortat0, there
growth for larger times, occurring sooner the larger the deniS a very f;;\st increase af to its HCS value. Then tﬁere is a
sity. In fact, the saturation occurs for times of the order Ofperiod over whichl' does not change too muc’h, and that
7, which is the time when the clustering is triggered. lasts longer the lower the density, followed by an almost
exponential increase df. It is found that the growth rate in
this period depends on the density, becoming largen as
The evolution of the collisional averages in the systemdecreases. Finally, there is a slowing down in the increase of
has been computed by discretizing the time in interndats I', and it seems that it saturates in the end to a value which

V. COLLISIONAL AVERAGES
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FIG. 7. Evolution ofl” for the simulations discussed in the main  F|G. 8. Probability distribution of the angles of the velocities
text. between colliding particle®(¢) from the MD simulation withn
=0.01257"2.

is larger the larger the density. Also the slowing down begins
sooner the larger the density. In any case, we find again that

by lowering the density in the MD simulations, the behaviorthe angle distribution begins precisely at the time when the
of the system approaches the one predicted by the Boltzmarkurtosis of the total velocity distribution begins to depart
equation. One could be tempted to conclude that the increageom the HCS value. It seems sensible to conclude then that
of T is due to the development of correlations between vethe behavior of the velocity distribution of the system is a
locities of colliding particles, this happening from the early consequence of the parallelization mechanism, which is in-
stages of the evolution of the system. But one must be calherent to inelastic collisions, and which, when the system is
tious when interpreting this result. Let us remember that irunstable, induces a collective behavior of the velocities of
our system a velocity field is also being built up from the particles, which translates into a departure of the velocity
beginning of the evolution, as was shown in Fig. 5, and thigistribution from the HCS one.

leads to an increase in the valueldfthat has nothing to do The qualitative behavior ofP(¢) discussed forn

with the failure of the factorization of the two-particle distri- =0.01257~2 also holds for the larger density MD simulation
bution function of colliding particles, i.e., with a violation of and for the DSMC one. Of course, the deviation from the
the molecular chaos hypothesis. In fact, the behaviol of €lastic distribution occurs sooner the larger the density, but it
displayed in Fig. 7 is quite reminiscent of the one of theis also present in the Boltzmann description. To have a clear
fluctuations of the velocity field. Also, in the DSMC simula- picture of the parallelization of the velocities of colliding
tion, it must be taken into account that the molecular chaogarticles in the three cases, in Fig. 9 we have plotted the
hypothesis is assumed in the very basis of the algorithm, sevolution of (¢) in the three simulations. The value of
the increase of in that case cannot be due to the presencéhis quantity in an equilibrium, elastic fluid, ig¢)

of precollisional velocity correlations. We conclude then that=0.597(~107°). In the three cases, the system remains
the growth ofl" displayed in Fig. 7 is due to the instability of with the elastic value of¢) during what we have called the
the scaled transversal velocity mode, which leads to the forsteady period, and afterwards it decreases with time, indicat-
mation of vortices and, as a consequence, the velocities of

colliding particles become more and more parallel. 120

The existence of the parallelization mechanism is investi-

gated also by studying the evolution of the distribution of the <¢>
angle formed by the velocities of colliding particld®(¢). 110 |
In Fig. 8 this distribution is plotted at different times for the s T e = S
MD simulation withn=0.0125r"2. We have included the N L"\
distribution at~=0, which is constructed from the elastic 100 | hY \ *
part of the simulation. While the system remains in the HCS, N ' *
the distribution of the angle is indistinguishable from the AN »
elastic one, so there are no apparent angle correlations in this 90 | ‘-\_‘ \ Yo
part of the evolution of the system. The situation changes at 3 A
7~ 75t (751~ 30 in this casg when deviations from the elas- Voot *
tic distribution begin to show up. The relative number of 80 ‘ 1 3 ‘

0 20 40 60 80

collisions with larger relative angles of the velocity begin to
decrease with respect to the elastic case. As time proceeds,
this tendency becomes stronger, and for the final times con- FIG. 9. Evolution of the average value of the angle between the
sidered in the simulation, most of the collisions correspondselocities of colliding particles{¢), for the simulations discussed
to particles that are moving almost parallel. The distortion ofin the main text.

T
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ing that there is a tendency to have more collisions with The role of the spatial correlations between colliding par-
velocities that form a small angle. It must be also rememdicles has been investigated in this work by studying the pair
bered that, in the MD simulations, we have observed that thdistribution at contact and the probability distribution of im-
impact parameter distribution did not show deviations frompact parameters. The former only deviates from the HCS
uniformity for the times considered in this work. value when density inhomogeneities are already developed
in the system, while the latter remains always uniform. This
implies that, in a low-density granular gas, the development

) ) _ ~ of spatial correlations does not play a significant role in the
The simulation of a system on freely evolving hard disksearly departure from the HCS.

in conditions such that the HCS is unstable shows that the The above results seem to indicate that, when trying to
Boltzmann description seems to provide a valid picture fofeytend the inelastic Boltzmann equation to finite higher den-
the behavior of a low-density granular gas, contrary to thesjty the effect of velocity correlations between colliding par-

statement made in Ref14]. This has been established by ticles must be incorporated. At least, in the physical situation
showing that there are no qualitative differences between thggnsidered in this paper, velocity correlations become impor-
results obtained in low-density MD simulations and thoseiant quite before the system develops significant spatial cor-
that follow by using the DSMC method. It has been shownye|ations, as measured by the pair distribution function at
that, when the density is lowered in the suitable way in thegontact. It is sensible to expect that this effect increases as
MD simulations, i.e., leaving the characteristic time for thene inelasticity of the system increases. If this picture were

development of instabilities unchanged, the behavior of thgjgnt, kinetic equations for inelastic dense gases should not
system tends to the Boltzmann one. Nevertheless, it is alsge pased on Enskog-like equations, taking into account only
true that the deviations from the Boltzmann behavior arepatial correlations, but new approximations incorporating

larger in a system in these conditions of instability than in ahe effect of velocity correlations in the precollisional sphere

stable one, for the same values of the density and restitutiogye needed. This implies a rather strong departure from the

coefficient. In other words, it could be said that the range ofragitional methods of kinetic theory for elastic systems.
densities for which the Boltzmann equation holds depends

rather strongly on the state of the system, and it cannot be
given a general rule. In the situation considered here, the
reason for this seems to be that, when the HCS in unstable,
there is a parallelization of velocities of colliding particles We acknowledge partial support from the Ministerio de
that is more efficient the higher the density, although it isCiencia y Tecnolog (Spain through Grant No. BFM2002-
also present in the Boltzmann description. 00303(partially financed by FEDER fungls

VI. DISCUSSION
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