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Residual aperiodic stochastic resonance in a bistable dynamic system transmitting
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Conventional stochastic resonance can be viewed as an amplitude effect, in which éabthllesholg
input signal receives assistance from noise to trigger a stronger response from a nonlinear system. We dem-
onstrate another mechanism of improvement by the noise, which is more of a temporal effect. An intrinsically
slow system has difficulty to respond to a fésiprathresholdnput, and the noise plays a constructive role by
spurring the system for a more efficient response. The possibility of this form of stochastic resonance is
established and studied here in a double-well bistable dynamic system, driven by a suprathreshold random
binary signal, with the noise accelerating the switching between wells.
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I. INTRODUCTION In this paper, an ASR phenomenon is observed to survive
in a singlebistable dynamic system subject to a suprathresh-
Stochastic resonand8R) is a phenomenon in which the old random binary signal. This form of suprathreshold ASR
response of a nonlinear system tosabthresholdperiodic  is distinct from the previous form of Ref12], in the input
input signal is optimized by a nonzero level of nojde-5]. signal, and in the measure of performance receiving im-
The phenomenon of SR can be extended to cases with approvement from the noise. We term this effect residual ASR
riodic broadband signals, that is, aperiodic stochastic resqsuprathreshold Generally, conventional ASRsubthresh-
nance(ASR) [6,7]. For the bistable dynamic system used asold) [6] is more like an amplitude effect, wherein a small
a prototype model of SR, the term of subthreshold denoteaperiodic input has an amplitude too small to trigger transi-
the condition where the input signal amplitude is less tharnions at the output, and it gets assistance from noise for that.
the critical value that just destroys the system bistabjfily  In contrast to conventional ASR, residual AS&uprathresh-
It is well known in these systems that feuprathreshold old) as we will show is a temporal effect, wherein a slow
signals, conventional SR usually disappd@s11]. This re-  dynamic system has difficulty to follow the variations im-
sult has been established in many situations, including composed by a fastsuprathresholdinput, and it gets spurred by
putational model§8,9], real neurophysiological studi¢$0],  the noise for that. Other types of action of the noise on the
arrays of noisy Hodgkin-Huxley neuroh$l]. Beyond, a re- response times of a bistable dynamic system have been ob-
sidual SR effect was observed by Apostoleal. [12] ina  served, for instance in Reff21], where it is shown that the
single bistable system subject to a suprathreshold sinusoidabrrelation duration of the noise associated to a sinusoidal
signal. This residual SR is related to a synchronization-losforcing can have an impact on the distribution of hysteretic
mechanismresonant trapping 12]. An observation of such transition times at the output. Here, we will demonstrate that
a resonant trapping effect was also obtained in noise actihe temporal action of the noise can lead to an enhancement
vated nonlinear dynamic sensors when measured by respf information transmission from a fast suprathreshold input
dence time distribution13]. Stocks and co-workefd4—17 by addition of noise. However, as we will see, the input
also introduced another form of SR, termed suprathresholdignal has to remain a little suprathreshold, but not too much,
SR, which occurs in a parallel array of threshold devices obtherwise the positive effect of noise tends to vanish, whence
neuronal models with a predominantly suprathreshold inputour term “residual.” Residual ASR effects may be significant
Suprathreshold SR is then suggested as a coding strategy fior bistable electronic or optical devices, where noise can be
sensory neurongl7]. This strategy is associated with recent utilized in a constructive way as an aid to suprathreshold
experimentg§18,19, which show that the coding of formant signal transmission. We also suggest that residual ASR ef-
information in cochlear implants can be improved by addingfects may be of importance to biological systems, especially
noise to some suprathreshold stimuli. Additionally, it is in-in situations where the system switching characteristic time
teresting to note that the intrinsic receptor noise can enhanasannot be neglected.
the encoding of small yet suprathreshold amplitude modula- The paper is organized as follows: Section Il introduces
tions by perturbing periodic phase locked pattef@8]. the bistable dynamic system under study. Considering the
These results indicate that, in addition to subthreshold signahput information-bearing binary signal, the measure of the
enhancement previously reporteld-11], noise can also play system performance is chosen as the bit error (BER). In
a constructive role to transmit suprathreshold signals througBec. 1, an essential parameter for the existence of the re-
nonlinear systemfgl2-24. sidual ASR, the system switching time, is introduced. It is
observed in numerical simulations that the bistable system
subject to a random binary suprathreshold signal presents a
*Electronic address: fabing.duan@univ-angers.fr (local) minimum in the BER at an optimal nonzero noise
TElectronic address: chapeau@univ-angers.fr intensity, this being the residual ASR effect. This effect is

1063-651X/2004/64)/01110910)/$22.50 69 011109-1 ©2004 The American Physical Society



DUAN, ROUSSEAU, AND CHAPEAU-BLONDEAU PHYSICAL REVIEW EB59, 011109 (2004

™ : : ' ' ' rametersr, and X, have the units of time and signal ampli-
__o5p'toottortiiotoooiiooo0iootono | tude, respectively, and define natural scales associated to the
F ol ’_‘ ( process of Eq(1).
We are interested in recovering the successive input digits
05 50 100 150 200 250 300 0 and 1, from the observation of the system sitg. Input

source digits represented by wave foren@) for i=1,2 are
emitted at a rate of one wave form every and last over a
durationT,. To obtain the decoded digits, the system state
x(t) is sampled at equispaced times=jT, for j
0 50 100 150 200 250 300 =1,2,...,resulting in a sequence of sampled valugs
4 © =X(t;). Then, eaclx; is compared to the decision threshold
e 5l 1008101111 010008100006100400 0] ¢ for decoding digit O or 1: Ix;>¢, the decoded digit is 1,
= otherwise it is 0, as depicted in Fig(cl. In this communi-
1 cation process, we assume that the intefyaht which input
5 0 00 150 200 20 300 d!g|ts are emitted, .and the transltlon times at which one
time t /r_ given pulse of duratiof, ends while the next pulse starts at
the emitter, are both known at the receiver. This is a case of
FIG. 1. Time evolution of the signals for the system of Eb. synchronized communication, as considered in R28§].
with 7,=1 and X,=1. (a) The random binary input signat)  The timest; of output readings are placed, as in R&f],
with A=0.4 andT,=10. The corresponding source digits are alsojyst at the end of one emitted pulse, just before the next pulse
inset; (b) the mixture of signas(t) plus noisez(t) with D=0.1(in  starts, this to maximize the time allowed for the stet8) to

units 7,X5); (c) The system stat&(t). According to the sampled approach the stable state associated to the digit being cur-
values ofx(t) att;=jT, for j=1,2,..., thereadout digits are rently transmitted.

given in the inset. The erroneous digits are denoted by arrows. The Now, this system of Eq(1) with input binary digits and

sampling time stept=0.01. output binary readings can be viewed as an information
channel transmitting binary data. It has been analyzed as a

discussed in detail by comparing the signal pulse duration tenemoryless symmetric binary channel in R¢5,26. An
the system switching time. In Sec. IV, the mechanism ofinformation measure, the BER, will be used to quantify the
residual ASR effect is theoretically analyzed. An approxi-performance of this nonlinear information channel. We as-
mate theory based on a nonstationary probability densitgume that the input binary digits occur with equal probabili-
model is proposed. Finally, the conclusions are drawn angies, i.e., P(0)=P(1)=1/2, and are statistically indepen-
some further research directions are suggested. dent. P(0) andP(1) represent the probabilities of digits 0
and 1 at the input, respectively. In the presence of noise,
P(0|1) is the probability of error for the decoded output to
be 0 when the input digit is 1, and conversely f(d/0).
Thus, the total probability of errdP, reads

In this paper, the input is a baseband binary pulse ampli-
tude modulation signdl22]. In such a random signal, wave Pe=P(0)P(1|0)+P(1)P(0[1). 2
form s, (t) = +A represents digit 1 and digit 0 is mapped into since each erroneous output digit will lose one bit of infor-
wave forms,(t) = —A, within a time interval off, . Here,A  matjon|[e.g., Fig. 1c)], P, is also called the BER in binary
is the pulse amplitude anf, is the pulse duratiof22]. This  yata transmission.
kind of random binary signai(t), depicted in Fig. (a), has In this paper, we numerically integrate the stochastic dif-
already been employed in both experimental evidences Ggrential equation of Eq(1) using a Euler-Maruyama dis-
binary ASR phenomenori23,24 and numerical studies cretization method with a small sampling time step<r,
[25,26. s(t) is then corrupted by an additive Gaussian white[27]. The block scheme for transmitting binary data by this
hoise 7(t) with autocorrelation(7(t)7(0))=2D4(t) and  nonlinear system of Eq(1) has been designed in Ré26],
zero meanD denotes the noise intensity. Next, the mixtureyherein the input signal is generated by a pseudorandom
of signal and noise is applied to a bistable dynamic systeminary signal generator. With this designed block scheme, the

II. BINARY SIGNAL TRANSMISSION
BY A BISTABLE SYSTEM

given as[25] BER can be automatically recorded in numerical simula-
tions.
dx(t) x3(t)
Ty =xX(t) — +s(t)+ (1), (1) IIl. RESIDUAL APERIODIC STOCHASTIC RESONANCE
dt NG

b In this section, the residual ASR effect is demonstrated in

numerical simulations. An essential parameter which con-
with system parameterg >0 andX,>0. 7, is related to the  trols the residual ASR is the switching time of the dynamic
system relaxation time. The dynamics of Ef) is derived system. Residual ASR will take place when this switching
from the symmetrical double-well potenti&y(x)=—x?/2 time is large in comparison to the repetition peribgof the
+x%/(4X2), having the two minima/o(*+ X,)=—X2/4. Pa-  input bit stream.
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FIG. 2. Evolution of the potential functiox(x) and the expla-
nation of the system switching. Stable positicmsand c are the
minima of the potential functions. Stateét) at positionsa andc
are the real roots of the cubic equatisr x3/X2FA=0. b is an

unstable positionr,=1, X,=1, A=1, andA;~0.38.

A. System switching time

The system switching time is the time taken by the system
to switch from one potential well to the other, when the input

signal switches from the amplitude A to +A (or con-
versely. In the absence of the noisgt), the minimal value
of the signal amplitud@ that destroys the system bistability
in Eq. (1), occurs when the cubic equationx3/XZ+A

PHYSICAL REVIEW 69, 011109 (2004
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FIG. 3. Plot of the reduced switching tinig /=, of Eq.(4) as a
function of the reduced input amplitud¥ X, . The decision thresh-
old €=0. Note thatT4/7, will tend to infinity asA/X,, approaches

Al X,=227.

Ty 0 dx X
_:f e culn
Ta x- X=X Xp+A Xy =X
+CyIn|— | cyin| —22 4
2 n Xl—X_ 3n XZ_X_ ’ ( )

wherex_ is the unique real root of equation—x3/X§—A

=0 (A>A,). Similarly, x, is the unique real root of equa-

tion x—x3/X§+A=O, with two corresponding conjugate
andx,. C;, C,, andCj; are integration

=0 ceases to have three real roots. The outcome is thgpmplex rootsx, an .
constants. Theoretical expressions xf, x,, X;, X,

bistability is destroyed whemA>A.=2X,/27~0.38,
[4,25].
In the absence of noise add>A., if the system is modu-
lated by the wave forns,(t)=—A for a sufficiently long
time, the current internal stat€t) resides at the stable po-
sition a, i.e., the minimum of potential functioiV(x)=
— X212+ x*(4X2)+ Ax (see Fig. 2 Next, when the wave
form s;(t)=+A is applied,x(t) will be located at an un-
stable positionb of the potential functionV(x)=—x?/2
+x4/(4X§)—Ax. Progressivelyx(t) will tend towards the
corresponding stable positianp as shown in Fig. 2.

In this transition process, the switching tinfig is defined
as the time for the system to evolve from the positido the
position defined by the decision threshdldAn appropriate

C1, C,, andCj; are developed in detail in Appendix A. This
case is for the input signal amplitude varying fromA

to +A, but thanks to the symmetry of the process, the
switching timeT is the same when the input changes from
+Ato —A.

In the present problems, can be taken as the unit of
time, andX, as the unit of signal amplitude. Parametegs
and X can be thought of as fixed and imposed by the trans-
mission channel. What is important then is to investigate the
influence of the parametei, and A attached to the input
signal, and attached to the noise. Our regime of interest for
Ahere isA>A.=2X, /27, i.e., a regime of suprathreshold
input. By contrast, previous studies have considered the case
of A<A, to show a form of stochastic resonance or a con-

choice for this threshold, which preserves the symmetrigtructive role of the noise in binary signal transmission
character of the information channel, and which is adopted i#25.26l. Equation(4) gives the switching tim& 4 in units of

the sequel, i€=0.
From Eg.(1) with no noisex(t), we have

dt dx
Ta Xx—XIXEEA

)

Therefore, the switching tim&, verifies

T4, and Ty is displayed in Fig. 3. We shall then study the
interplay between a largé, (slow system in relation to a

small T, (fast inpuj, and show that in such conditions, ad-
dition of noise via an increase &f can also play a construc-

tive role.

B. Residual ASR phenomenon

A numerical simulation of the system of E@.) has been
undertaken, with the evaluation of the BER. The anticipated
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FIG. 4. Numerical results of time evolution of the signals for the system of Bquith 7,=1 andX,=1 andA/X,=0.4. D is in units
7. X&. The sampling time stept=0.01r,. Left: T,=16<T4=17.5897.(a) The input signals(t); The system outpux(t) with (b) D
=0, (c) D=0.005,(d) D=0.12, and(e) D=0.5. Right:T,=20>T4=17.5897.(a) the input signab(t); the system outpux(t) with (b)
D=0, (c) D=0.002,(d) D=0.1, and(e) D=0.3.

ASR effect with a fast inputsmall T,) and a slow system BER. Figures ) and §b) show the BER as a function of
(largeTy) is indeed observed. the noise intensityD and the signal amplitud&/X, at T,
Figure 4(left) and (right) show two numerical examples =0.9T4 and T,=1.05T, respectively. Figure 6 shows the
of the time evolution of the signals for the system of EL, behavior of the BER vs noise intensity for representative
illustrating the essential features of the residual ASR effect atalues ofA/X,. We note the following.
Tp<TgqandT,>T4. When the suprathreshold input signalis  (a) In Figs. Sa), 6(a), and Gc), at T,<Tq, the BER pre-
fast (T, is smaller tharT), the system output cannot reach sents a resonancelike behavior as the noise intensity in-
the decision threshold in one pulse duration df, [see, Fig.  creases. The minimal value of the BER is obtained at an
4 left (b)]. In such a condition, the noise plays a constructiveoptimal nonzero noise intensity.
role, by spurring the output switchings of the system, helping (b) WhenT,>Ty, the BER always starts from zekat
them to better follow the transitions present in the fast suD=0) and then increases as the noise intensity increases, as
prathreshold inpufsee Fig. 4 left(d)]. This outcome con- shown in Figs. ), 6(b), and &c). Upon further increase of
firms the prediction of the residual ASR effect with a fastthe noise intensity, the BER reaches a local minimum for
input on a slow systemT(,<Ty). However, the condition slightly suprathreshold amplitudes &#X, [see Figs. &)
T,<T4 for the occurrence of the residual ASR effect shouldand @b)]. However, this nonmonotonic behavior of the BER
not be taken as a strict quantitative conditidn.is a strict  gradually vanishes for larger suprathreshold amplitudes of
measure of the switching time of the system only in theA/X, at T,>T, [see Figs. &) and Gc)]. For the slightly
absence of noise; when noise is addggljs only an indica-  suprathreshold amplitude &f/X,,, the increase of the BER,
tive measure of the switching time of the system. This isasD just starts to rise above zero, is in accordance with the
why, as shown in Fig. 4 right, the residual ASR effect canretardation observed in Fig(@).
still survive whenT, is slightly aboveTy. In Fig. 4 right, (c).Note that the residual ASR effect will not disappear
without the noise, the system output does cross the decisidior any suprathreshold input binary signals whep<Ty
threshold¢ in one pulse duratiofT, [see Fig. 4 rightb)],  [e.g., Fig. $a)]. As T,>Ty, this form of ASR effect only
providing error-free output digits with the decoding schemeexists in a limited range oA/X,, [e.g., Fig. %b)]. Therefore,
introduced in Sec. Il. With a small amount of noiselat this effect is referred to as the “residual” ASR.
=0.002, we observe that the switching of the system output We note that the residual ASR effect can also be measured
can be, on some occasions, retarded by the noise, giving ris®y another performance measure, i.e., the channel capacity
to some erroneous output symbpdee arrows in Fig. 4 right
(c)]. On adding more noise, this possibility of retardation C=1+Plogy(Pe)+(1—P¢)logy(1—Pe), (5
becomes ineffectivesee Fig. 4 righ{d) and(e)]. There is a
local optimal noise intensity db=0.1, as shown in Fig. 4 which is a monotone decreasing function of the BER)].
right (D), at which the system output assisted by noise trace$he channel capacity can characterize the rate of information
the suprathreshold input more correctly thanDaet0.002.  transfer in an efficient way28,29. The channel capacity
Beyond, too much noise will dominate the system outputwill present the same resonancelike behaviors as the BER,
[see Fig. 4 right(e)], and the erroneous decoded digits arewith different resonance curve shapes. Hence, the BER is
more frequent than at the optimal condition@=0.1. used in this paper without losing the general feature of the
Figures 5 and 6 show the corresponding evolutions of theesidual ASR effect.
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A/Xb'

FIG. 5. Numerical results of the BER as a function of the noise intefsityn units Taxﬁ) and signal amplitude8/X,, for the system
with 7,=1 and X,=1, at(a) T,=0.9T4; (b) T,=1.05T4. For different reduced amplitudes/X,, T, are selected in terms of the
corresponding values &f;. The sampling time steAt=0.01r,.

Additionally, in this paper, the decision threshdlds zero  the natural boundary conditions that it vanishes at lartp
in accordance with the symmetrical characteristic of the inanyt [31]. The steady-state solution of E@), for a perma-
formation channel. We argue that residual ASR effect willnent input at+A or —A, is given by
also occur in signal detection with a decision threshold de-

termined by a given false alarm probabilitg0]. Different _ 7,V(X)

thresholds will result in different system switching times. p(x)=1im P(X,t)ZCeXF{— D | (7)

But if the pulse duration of the input signal is smaller than toee

the corresponding system switching time, adding noise can

also enhance the detection probability of the input signawhereC is the normalization constaf81].

through a similar noise-spurred response. Now, we will seek the nonstationary solutigr{x,t) of
the Fokker-Planck equation, E@), in case of an input tran-

IV. A NONSTATIONARY PROBABILITY DENSITY MODEL sition from s(t)=—A to s(t)=+A, or conversely. This

computation is performed in Appendix B. We show in Ap-
The qualitative understanding of the residual ASR effectpendix B that the transition from the stationary density cor-
in the preceding section is based on the comparison betwegssponding tos(t)=—A to the stationary density corre-
the fast repetition timel, of the input bit stream and the sponding tos(t)=+A, is dominated by an exponential
slow system switching tim& 4 measured in the absence of temporal relaxation with reduced time constanit 1/ This
noise. We shall now attempt a more detailed theoreticahllows us to deduce a response tifie= 7,/\; for the sys-
analysis of the dynamics of Eql), in the presence of both tem, which is a measure of the time taken by the system to
the binary input and the noise input, in order to seek a deepe&witch from one potential well to the other, when the binary
understanding, at a more quantitative level, of the residuahput changes from-A to + A (or conversely, in the pres-
ASR effect. ence of noise. This system response timehave a similar
qualitative interpretation as the system switching tife
A. System response time considered in the preceding section. But an essential advance
is that T, explicitly incorporates the influence of the input
noise n(t), while T4 conveys no such dependence. The
O3§tudy of T,, as a function of the noise intensity, then
Mlows us to obtain a guantitative description of the residual
ASR effect, or the effect of the spurring of the system by
noise.
Figure 7 shows the system response tiaienensionless

The response of the system of Ed), in the presence of
both the binary input and the noise input, can be precisel
described by solving the associated Fokker-Planck equati
[31,32. In each pulse duratiof,, the system of Eq(l) is
subjected to the constant signa(s) =+ A, i.e., wave forms
s1(t)=+A or s,(t)=—A, with an additional input Gaussian
white noise »(t). Under these conditions, the statistically /7,=1/\, obtained from Appendix B, as a function of the
equivalent description for the corresponding probability den-né)isé’1 intenlsityD and the signal amplithdA/xb. At small

sity p(x,t) is governed by the Fokker-Planck equation A/X, (AIXy>A,/Xp~0.38), Fig. 7 shows a monotonic de-
cay of T, whenD increases, expressing, as anticipated, that
Ip(x.1) the switching dynamics of the system is accelerated as th
Ta = p(X,1), (6) e switching dynamics of the system is accelerated as the
at noise level increases. At largév X,,, our theoretical results
of Fig. 7 show a nonmonotonic action of the noise intensity
whereV’ (x) = —x+x3/X2¥ A and the Fokker-Planck opera- D on T,: At small D, the response tim&, starts to rise,
tor is Lep=(dlax)V'(x)+(D/71,)(3%19x?). p(x,t) obeys revealing a tendency of the noise to slow down the dynam-

J D &

TN () + —
X ( ) Ta &XZ
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(@)

FIG. 7. Theoretical results of the system response fiple, vs
AlX;, andD (in units 7,X2).

as the noise leveD increases, i.e., the switching dynamics
accelerated by noise.

The reduction of the response timgwith increasingD is
only half of the mechanism at work to deliver the nonmono-
tonic evolution of the BER as shown in Figs. 5 and 6. The
other important part of the mechanism is that, as the noise
level increases, although it accelerates the switching dynam-
ics of the system, it also enhances the fluctuationsxfigt
undergoes once it has reached one potential well or the other.
The accelerated switching dynamics is favorable, while the
enhanced fluctuations are detrimental, to the correct trans-
mission of the binary data. This two parts played by the noise

Of et . . . . | (acceleration of the switching dynamics between wells, and
0 0.05 0.1 0.15 0.2 0.25 0.3 enhancement of the fluctuations inside the welsult in the
D nonmontonic evolutions of the BER shown in Figs. 5 and 6.

To take further our theoretical description that gave us
a dependence of, with D, we now proceed to obtain a
theoretical expression for the BER to be studied as a function
of D.

B. A theoretical nonstationary probability density model

K M In Appendix B, the nonstationary densip(x,t) for an

Ty/r058 input transition froms(t) = — A to s(t) = + A (or conversely
is approximated with the two first terms from its asymptotic
representation of EqB11), as

0.1F Tp/ra=0.55

pIx.t|s(t) == A]=p[x|s(t)= =A]
+{p[x|s(t)=FA]- p[x|s(t) = = Al}

0 02 04 5 06 08 1 xXexp(—t/T,), (8

FIG. 6. Numerical results of the BER as a function of the noise
intensity D (in units Taxﬁ) for the system withr,=1 andX,=1. where p[X|_S(t) - .iA].:C exf{—mV(X)/D] are the steady-
(@) AlX,=0.4 atT,<T,=17.5897;(b) A/X,=0.4 atT,>Tg: (c) state solutions given in Ed7). In Eq. (8), When.t=0, thg
A/X,=3 atT,<Ty=0.53102 and’,>T4. The sampling time step (€M expeT)=1 andp[x,£| s(t)=*A] starts with the ini-
At=0.01r,. tial condition of p[x|s(t)=FA]. As t— + o, the term exp

(—t/T,)=0, andp[ x,t|s(t) = = A] tends to the stationary con-

ics; yet, this unexpected behavior takes place in a narrowlition of p[x|s(t)=+A].
range forD, then to give way to the expected decaylpfas At the output, the decision for decoding the binary digits,
D is further increased. Therefore, the standard behavior thats introduced in Sec. Il, is to compare the sampled values of
is evidenced in Fig. 7 is the reduction of the response fime X;=Xx(jT,) to the threshold=0. Based on our approxima-
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0.005 0.4 AX, T 0005 04 b

FIG. 8. Theoretical results of the BER based on the nonstationary probability density model, for the systegrWitandX,=1, for
different amplitudes oA/X, at (a) T,=0.9T4; (b) T,=1.05T4. Note that this theory of Eq9) cannot be evaluated &=0.

tion of the nonstationary probability density of E@), the  signal pulse duration and the system switching time. The
BER of Eq.(2) can be theoretically expressed as noise essentially plays a constructive role by accelerating the
switching dynamics of a slow system for a more efficient

Pe:;[P(1|O)+ P(0|1)] transmission of a fast input.

o 10
f p[X, Tpls(t) = —Aldx (@)
0

T2

0
+j p[x,Tp|s(t)=+Aldx]|. 9)

When Eq.(8) is introduced in Eq(9), it is visible that the
term exp(T,/T;) should satisfy the condition of exp
(=T,/T)<1/2, i.e., T, should not be sufficiently small com-
pared toT, . It is in this case that the BER falls below 1/2,
and that effective binary transmission can take plg2d.
The following quantitative results which are presented in
Figs. 8 and 9 are all calculated in this regime where exp
(—=Tp/T)=<1/2. 2 ‘ ‘ . .

Figures 8 and 9 illustrate the theoretical results of the 0 0.2 0.4 06 08 1
BER of Eq.(9) as a function of the noise intensify and the
input amplitudeA/X,. As visible, these theoretical results o '(b)
also show the effect of residual ASR in suprathreshold signal
transmission, and they are in good qualitative agreement
with the simulation results of Figs. 5 and 6. There are some
discrepancies at the quantitative level, because our theoreti-  0.08r
cal model is an approximation. By comparing Fig. 9 to the
numerical results of Fig. 6, it can be seen that the theory , o.0sf
especially fits well wherT,/, is large. Overall, our theo- *
retical model, although approximate, captures well the 0.04}
double role played by the noise, both in accelerating the
switching dynamics between wells while enhancing the fluc- 002l
tuations inside the wells, this resulting in a nonmonotonic
evolution of the BER.

o

T it =175
pa

Tp/ra=1 75

or
Tp/ta=40

V. CONCLUSION (IJ 0.65 011 OE.)I15 012 O.I25 0.3

A different form of ASR, residqal ASR phenomenon, has FIG. 9. Theoretical results of the BER based on the nonstation-
been demonstrated in aingle bistable dynamic system ary probability density model for the system with=1, X,=1,
driven by a suprathreshold binary signal. An essential featurg/x,=0.4 at(a) T,<Tg; (b) T,>T4. Note that this theory of Eq.
of residual ASR is given by the competition between the(9) cannot be evaluated &=0.

011109-7
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Residual ASR is a nontrivial effect and raises other relatediescribed by Eq.1). This method is also applicable for other
interesting lines of investigation. For instance, the neurononlinear systems analyzed in R€fs,33] with different po-
physiological sensory system responses to some fast stimuntial functions. Next, based on the system response time, a
in the background of noise, with a non-negligible dynamicnonstationary probability density model is established in this
system characteristic time. We also argue that the residuglaper.

ASR effect can be demonstrated in bistable electronic or op-

tical experiments transmitting suprathreshold input signals 1. System response time
[3,12]. These subjects are very promising and currently un-
der study. Eq. (6), the Fokker-Planck operatorLgp

=(alax)V'(X)+ (D/7,) 3’/ 9x? is not a Hermitian operator
[31]. We rescale the variables as

ACKNOWLEDGMENT
F. Duan acknowledges financial support of lagR@ des r=tl7,, y=x/\Dlrs Xp=Xy/\DI7,,
Pays de la Loire, France. -
A=A/\D/,, (B1)
APPENDIX A: THEORETICAL SOLUTION
OF THE SYSTEM SWITCHING TIME Eq. (6) becomes
The cubic equatiov(—x3/X§+A=0 has one real root, 2
. ap(y,T) d d
and two conjugate complex rootg andx, as =| —V'(y)+ —|p(y,7), (B2)
or (9y (Qyz
21/3q p1/3
X+ =" 3p1/3+ 3x U3’ whereV'(y)= —y+y3/XbIK. The steady-state solution of
Eqg. (B2) is given by
(1=iy3)q (1%iy3)p™ i _
= — = lim ,7)=Cexg—-V , B3
TR A e (A1) p(y)= lim p(y,7)=C exe ~V(y)] (B3)
where q=—3X2, p=-r+4g°+r?, and r=—27AX2. where C is the normalization constant. A separation ansatz
Next, we can expanfB35] for p(y,7) [31],
1 C, C, Cs V(y)
= + + , A2 ply,7)=u(y)exp — ——|exp(—\7), (B4)
X—x3XZ+A  XTXy X=X XXy (A2) 2
with leads to
X2 Lu=—\u, (BS)

C]_:_CZ_Cg, C2:

(X4 =X1)(Xo=Xq)’
with  a Hermitian operator L= (% ay?)—[3V'2(y)
—Xﬁ —2V"(y)]. The functionsu(y) are eigenfunctions of the
:(x+ “X) (X —x2)° (A3) operatorL with the eigenvalue&. Multiplying both sides of
Eq. (B5) by u(y) and integrating it, yields

Cs

Thus, from a initial positionx, to the end positiorx, the
system switching timd 4 reads tel
Y g im€a f {u 2(y) +uA(y)

1 12 1 "
2V =5 Vi(y) | dy

—o0

Td_fx dx’ o X=Xy = e ,
Ta Jxo X —X3UXZ+A Mxo=x: fﬁw u?(y)dy
X—Xq X=Xy (B6)
+CslIn +Cjln . (A4)
Xo— X1 Xo— X2 where eigenfunctionsi(y) satisfy the boundary conditions
Then, Eq.(4) is derived. of Ilmyﬂiwu(y)zo and Imyﬂiwu (y)=0. The eigenvalue

problem of Eqg.(B5) is then equivalent to the variational
problem consisting in finding the extremal values of the right
side of Eq.(B6) [31,32. The minimum of this expression is
then the lowest eigenvaluk,=0, corresponding to the

The following approximate method for obtaining the sys-steady-state solution of E¢B3) [31]. We adopt here eigen-
tem response time has been discussed in [B&f. Here we  functionsu(y)=p(y)exd —V(y)/2] and p(y)+#0, Eqg. (B6)
give a simple demonstration for the bistable dynamic systenbecomes

APPENDIX B: SYSTEM RESPONSE TIME
AND NONSTATIONARY PROBABILITY DENSITY MODEL

011109-8
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f +m[p'z(yw5|oz<y>V'2<y)—E[V’<y)|o2<y)]' exd — V(y)]dy
2 2

— o0

A= — . (B7)
La p*(y)ex —V(y)]dy

Since 2. Nonstationary probability density model
o From Eg.(B9), we can obtain the eigenfunctions(y)
f [V’ (y)p?(y)]'exd — V(y)1dy=V"(y)p*(y) = pi(y)exd —V(y)/2] corresponding to the eigenvalug for
- i=0,1,...n, where pi(y)=dyt+dyy+---+dy". The

e eigenvectors{d'}=[dj,d}, ... d\] are normalized. Be-
Xexp[—V(y)]|f§+f p2(y)V'2(y)exd —V(y)ldy  causel is a Hermitian operator, eigenfunctions(y) and
o u;(y) are orthogonal

+ o
= 2(y)V'*(y)exd —V(y)1dy, e
j—w PUYIVEy)exi = V(y)Jdy fﬁ ui(y)u;(y)dy= 6, (B10)
Eqg. (B7) can be rewritten as o )
wherei,j=0,1,...n. p(y,7) can be expanded, according

+o to eigenfunctionsy; and eigenvalues;, as
Jf p'2(y)exd —V(y)1dy ? W ? '

(B8)
exd — N 7], (B1D)

A= . V(y)
fﬁ p2(y)exd —V(y)1dy ply. 7= 2, Ci“i(y)exf{‘ W

Assumep(y)=dg+d,y+---+d.y" and the orden is an  WhereC; are normalization constants. In this paper, we take

integer, we obtain an approximate expression ob(y,7)=3={_,C;u;(y)exp
[—V(y)/2]exd —\;7] instead of Eq(B11). Then, if the pre-
([KI=N[M]){d}=0, (B9  ceding input signal is(t)=*A and the next one is(t)=
_ ) . oo . _ * A, a simple nonstationary probability density model is de-
with eigenvectors{d'}=[dy,d}, ... d,] corresponding t0 (i ed as

eigenvalues{\}=[N\g,\1, ... ,\y] for i=0,1,...n. The

integern is not increased in the iterative process until the  ,ry t|s(t)=+A]=p[x|s(t)= = A]+{p[X|s(t)= TA]
preceding values of; approximate the next ones within the

tolerance error. The elements of matri¢h| and[K] are —p[x|s(t)==Al}exp —t/T,), (B12)

m;j = J_ Y *iexd — V(y)]dy>0, with the initial and stationary conditions

pIX,t=0ls(t) = £ A]=p[X|s(t) = FA],
+CX) . .
kij= L@ ijy" 1 %exd — V(y)]dy=0, p[x,t=+c|s(t)= = A]=p[X|s(t) = = A].

wherei, j=0,1, ... n. The matrix[M] is positive definite  Here, p[x|s(t)=+A]=Cexd —7.V(X)/D] are the steady-
and the matri{K] is semipositive definite. The minimal ei- State solutions given in Eq.(7), and V(x)=—x%2
genvalue\, is zero. The inverse of minimal positive eigen- +X*(4X§) ¥ Ax correspond to the constant inpugt) =
value\; describes the main time of the system tending to thet A, respectively. This kind of nonstationary solution of
steady state solution of E4B3), what we call the system p[X,t|s(t)==*A] can be further developed into the case of
response time. Note the time scale transformation in Eqp(y,7)=2{_,C;u;(y)exd —V(y)/2]exd —\;7] for n=2 [34].
(B1), the minimal positive eigenvalue should ke/7, and  The remaining open question is the influence of the cutting
the real system response timeTis=7,/\;. The reduced terms on the accuracy of the nonstationary probability den-
dimensionless system response time is thghr,=1/A ;. sity function.

[1] R. Benzi, A. Sutera, and A. Vulpiani, J. Phys. &, L453 [3] L. Gammaitoni, P. Haggi, P. Jung, and F. Marchesoni, Rev.

(1981). Mod. Phys.70, 233(1998.
[2] R. Benzi, G. Parisi, A. Sutera, and A. Vulpiani, Tellg4, 10 [4] F. Moss, D. Pierson, and D. O’Gorman, Int. J. Bifurcation
(1982. Chaos Appl. Sci. Eng4, 1383(1994.

011109-9



DUAN, ROUSSEAU, AND CHAPEAU-BLONDEAU PHYSICAL REVIEW E59, 011109 (2004

[5] A.R. Bulsara and L. Gammaitoni, Phys. Tod4§; 39 (1996. New York, 1995.

[6] J.J. Collins, C.C. Chow, and T.T. Imhoff, Phys. Rev.5E [23] S. Barbay, G. Giacomelli, and F. Marin, Phys. Rev. L88,
R3321(1995. 4652 (2000).

[7] C. Henegharet al, Phys. Rev. 54, R2228(1996. [24] S. Barbay, G. Giacomelli, and F. Marin, Phys. Rev6§ 1

[8] A.R. Bulsara and A. Zador, Phys. Rev.58, R2185(1996. (20019).

[9] D. DeWeese and W. Bialek, Nuovo Cimentall3, 733(1995. [25] X. Godivier and F. Chapeau-Blondeau, Int. J. Bifurcation

[10] J.E. Levin and J.P. Miller, Naturé.ondon 380, 165(1996. Chaos Appl. Sci. Eng8, 581 (1998.

[11] X. Pei, L. Wilkens, and F. Moss, Phys. Rev. L€etiZ, 4679 [26] F. Duan and B. Xu, Int. J. Bifurcation Chaos Appl. Sci. Eng.
(1996. 13, 411(2003.

[12] F. Apostolico, L. Gammaitoni, F. Marcheson, and S. Santucci[27] T.C. Gard, Introduction to Stochastic Differential Equations
Phys. Rev. E55, 36 (1997. (Marcel Dekker, New York, 1998

[13] L. Gammaitoni and A.R. Bulsara, Phys. Rev. Le#8, 1 [28] F. Chapeau-Blondeau, Phys. Revsg 2016(1997).
(2002. [29] L.B. Kish, G.P. Harmer, and D. Abbott, Fluct. Noise Leti.

[14] N.G. Stocks, Phys. Rev. Le®4, 2310(2000. L13 (2001).

[15] N.G. Stocks, Phys. Lett. 279, 308 (2002. [30] M.E. Inchiosa and A.R. Bulsara, Phys. Rev.38, R2021

[16] N.G. Stocks, Phys. Rev. &3, 1 (2002. (1996.

[17] N.G. Stocks and R. Mannella, Phys. Rev6& 1 (200J). [31] H. Risken,The Fokker-Planck Equation: Methods of Solution

[18] R.P. Morse and E.F. Evans, Nat. Me&].928 (1996 and Applications Springer Series in Synergetics Vol. 18, 2nd

[19] R.P. Morse and E.F. Evans, Hear. RE33 120(1999. ed. (Springer-Verlag, Berlin, 1989

[20] M.J. Chacron, A. Longtin, M. St-Hilaire, and L. Maler, Phys. [32] B. Xu, F. Duan, R. Bao, and J. Li, Chaos, Solitons Fract&s
Rev. Lett.85, 1576(2000. 633(2002.

[21] L. Gammaitoni, F. Marchesoni, E. MenichellaSaetta, and S[33] J. Li, R. Bao, and B. Xu, Physica 823 249 (2003.
Santucci, Phys. Rev. Letf.1, 3625(1993. [34] B. Xu (private communication

[22] J.G. ProakisDigital Communications3rd ed.(McGraw-Hill, [35] D. Rousseauunpublishedl

011109-10



