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Residual aperiodic stochastic resonance in a bistable dynamic system transmitting
a suprathreshold binary signal

Fabing Duan,* David Rousseau, and Franc¸ois Chapeau-Blondeau†
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Conventional stochastic resonance can be viewed as an amplitude effect, in which a small~subthreshold!
input signal receives assistance from noise to trigger a stronger response from a nonlinear system. We dem-
onstrate another mechanism of improvement by the noise, which is more of a temporal effect. An intrinsically
slow system has difficulty to respond to a fast~suprathreshold! input, and the noise plays a constructive role by
spurring the system for a more efficient response. The possibility of this form of stochastic resonance is
established and studied here in a double-well bistable dynamic system, driven by a suprathreshold random
binary signal, with the noise accelerating the switching between wells.
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I. INTRODUCTION

Stochastic resonance~SR! is a phenomenon in which th
response of a nonlinear system to asubthresholdperiodic
input signal is optimized by a nonzero level of noise@1–5#.
The phenomenon of SR can be extended to cases with
riodic broadband signals, that is, aperiodic stochastic re
nance~ASR! @6,7#. For the bistable dynamic system used
a prototype model of SR, the term of subthreshold deno
the condition where the input signal amplitude is less th
the critical value that just destroys the system bistability@4#.
It is well known in these systems that forsuprathreshold
signals, conventional SR usually disappears@8–11#. This re-
sult has been established in many situations, including c
putational models@8,9#, real neurophysiological studies@10#,
arrays of noisy Hodgkin-Huxley neurons@11#. Beyond, a re-
sidual SR effect was observed by Apostolicoet al. @12# in a
single bistable system subject to a suprathreshold sinuso
signal. This residual SR is related to a synchronization-l
mechanism~resonant trapping! @12#. An observation of such
a resonant trapping effect was also obtained in noise a
vated nonlinear dynamic sensors when measured by
dence time distribution@13#. Stocks and co-workers@14–17#
also introduced another form of SR, termed suprathresh
SR, which occurs in a parallel array of threshold devices
neuronal models with a predominantly suprathreshold inp
Suprathreshold SR is then suggested as a coding strateg
sensory neurons@17#. This strategy is associated with rece
experiments@18,19#, which show that the coding of forman
information in cochlear implants can be improved by add
noise to some suprathreshold stimuli. Additionally, it is i
teresting to note that the intrinsic receptor noise can enha
the encoding of small yet suprathreshold amplitude mod
tions by perturbing periodic phase locked patterns@20#.
These results indicate that, in addition to subthreshold sig
enhancement previously reported@1–11#, noise can also play
a constructive role to transmit suprathreshold signals thro
nonlinear systems@12–20#.

*Electronic address: fabing.duan@univ-angers.fr
†Electronic address: chapeau@univ-angers.fr
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In this paper, an ASR phenomenon is observed to surv
in a singlebistable dynamic system subject to a suprathre
old random binary signal. This form of suprathreshold AS
is distinct from the previous form of Ref.@12#, in the input
signal, and in the measure of performance receiving
provement from the noise. We term this effect residual A
~suprathreshold!. Generally, conventional ASR~subthresh-
old! @6# is more like an amplitude effect, wherein a sma
aperiodic input has an amplitude too small to trigger tran
tions at the output, and it gets assistance from noise for t
In contrast to conventional ASR, residual ASR~suprathresh-
old! as we will show is a temporal effect, wherein a slo
dynamic system has difficulty to follow the variations im
posed by a fast~suprathreshold! input, and it gets spurred by
the noise for that. Other types of action of the noise on
response times of a bistable dynamic system have been
served, for instance in Ref.@21#, where it is shown that the
correlation duration of the noise associated to a sinuso
forcing can have an impact on the distribution of hystere
transition times at the output. Here, we will demonstrate t
the temporal action of the noise can lead to an enhancem
of information transmission from a fast suprathreshold in
by addition of noise. However, as we will see, the inp
signal has to remain a little suprathreshold, but not too mu
otherwise the positive effect of noise tends to vanish, whe
our term ‘‘residual.’’ Residual ASR effects may be significa
in bistable electronic or optical devices, where noise can
utilized in a constructive way as an aid to suprathresh
signal transmission. We also suggest that residual ASR
fects may be of importance to biological systems, especi
in situations where the system switching characteristic ti
cannot be neglected.

The paper is organized as follows: Section II introduc
the bistable dynamic system under study. Considering
input information-bearing binary signal, the measure of
system performance is chosen as the bit error rate~BER!. In
Sec. III, an essential parameter for the existence of the
sidual ASR, the system switching time, is introduced. It
observed in numerical simulations that the bistable sys
subject to a random binary suprathreshold signal presen
~local! minimum in the BER at an optimal nonzero nois
intensity, this being the residual ASR effect. This effect
©2004 The American Physical Society09-1
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discussed in detail by comparing the signal pulse duratio
the system switching time. In Sec. IV, the mechanism
residual ASR effect is theoretically analyzed. An appro
mate theory based on a nonstationary probability den
model is proposed. Finally, the conclusions are drawn
some further research directions are suggested.

II. BINARY SIGNAL TRANSMISSION
BY A BISTABLE SYSTEM

In this paper, the input is a baseband binary pulse am
tude modulation signal@22#. In such a random signal, wav
form s1(t)51A represents digit 1 and digit 0 is mapped in
wave forms2(t)52A, within a time interval ofTp . Here,A
is the pulse amplitude andTp is the pulse duration@22#. This
kind of random binary signals(t), depicted in Fig. 1~a!, has
already been employed in both experimental evidences
binary ASR phenomenon@23,24# and numerical studies
@25,26#. s(t) is then corrupted by an additive Gaussian wh
noise h(t) with autocorrelation^h(t)h(0)&52Dd(t) and
zero mean.D denotes the noise intensity. Next, the mixtu
of signal and noise is applied to a bistable dynamic sys
given as@25#

ta

dx~ t !

dt
5x~ t !2

x3~ t !

Xb
2

1s~ t !1h~ t !, ~1!

with system parametersta.0 andXb.0. ta is related to the
system relaxation time. The dynamics of Eq.~1! is derived
from the symmetrical double-well potentialV0(x)52x2/2
1x4/(4Xb

2), having the two minimaV0(6Xb)52Xb
2/4. Pa-

FIG. 1. Time evolution of the signals for the system of Eq.~1!
with ta51 and Xb51. ~a! The random binary input signals(t)
with A50.4 andTp510. The corresponding source digits are a
inset;~b! the mixture of signals(t) plus noiseh(t) with D50.1 ~in
units taXb

2); ~c! The system statex(t). According to the sampled
values ofx(t) at t j5 jTp for j 51,2, . . . , thereadout digits are
given in the inset. The erroneous digits are denoted by arrows.
sampling time stepDt50.01.
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rametersta andXb have the units of time and signal ampl
tude, respectively, and define natural scales associated t
process of Eq.~1!.

We are interested in recovering the successive input di
0 and 1, from the observation of the system statex(t). Input
source digits represented by wave formssi(t) for i 51,2 are
emitted at a rate of one wave form everyTp and last over a
durationTp . To obtain the decoded digits, the system st
x(t) is sampled at equispaced timest j5 jTp for j
51,2, . . . , resulting in a sequence of sampled valuesxj
5x(t j ). Then, eachxj is compared to the decision thresho
, for decoding digit 0 or 1: Ifxj.,, the decoded digit is 1
otherwise it is 0, as depicted in Fig. 1~c!. In this communi-
cation process, we assume that the intervalTp at which input
digits are emitted, and the transition times at which o
given pulse of durationTp ends while the next pulse starts
the emitter, are both known at the receiver. This is a cas
synchronized communication, as considered in Ref.@25#.
The timest j of output readings are placed, as in Ref.@25#,
just at the end of one emitted pulse, just before the next p
starts, this to maximize the time allowed for the statex(t) to
approach the stable state associated to the digit being
rently transmitted.

Now, this system of Eq.~1! with input binary digits and
output binary readings can be viewed as an informat
channel transmitting binary data. It has been analyzed a
memoryless symmetric binary channel in Refs.@25,26#. An
information measure, the BER, will be used to quantify t
performance of this nonlinear information channel. We
sume that the input binary digits occur with equal probab
ties, i.e., P(0)5P(1)51/2, and are statistically indepen
dent. P(0) andP(1) represent the probabilities of digits
and 1 at the input, respectively. In the presence of no
P(0u1) is the probability of error for the decoded output
be 0 when the input digit is 1, and conversely forP~1u0!.
Thus, the total probability of errorPe reads

Pe5P~0!P~1u0!1P~1!P~0u1!. ~2!

Since each erroneous output digit will lose one bit of info
mation @e.g., Fig. 1~c!#, Pe is also called the BER in binary
data transmission.

In this paper, we numerically integrate the stochastic d
ferential equation of Eq.~1! using a Euler-Maruyama dis
cretization method with a small sampling time stepDt!ta
@27#. The block scheme for transmitting binary data by th
nonlinear system of Eq.~1! has been designed in Ref.@26#,
wherein the input signal is generated by a pseudorand
binary signal generator. With this designed block scheme,
BER can be automatically recorded in numerical simu
tions.

III. RESIDUAL APERIODIC STOCHASTIC RESONANCE

In this section, the residual ASR effect is demonstrated
numerical simulations. An essential parameter which c
trols the residual ASR is the switching time of the dynam
system. Residual ASR will take place when this switchi
time is large in comparison to the repetition periodTp of the
input bit stream.

he
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RESIDUAL APERIODIC STOCHASTIC RESONANCE IN . . . PHYSICAL REVIEW E69, 011109 ~2004!
A. System switching time

The system switching time is the time taken by the syst
to switch from one potential well to the other, when the inp
signal switches from the amplitude2A to 1A ~or con-
versely!. In the absence of the noiseh(t), the minimal value
of the signal amplitudeA that destroys the system bistabili
in Eq. ~1!, occurs when the cubic equationx2x3/Xb

21A
50 ceases to have three real roots. The outcome is
bistability is destroyed whenA.Ac52Xb /A27'0.38Xb

@4,25#.
In the absence of noise andA.Ac , if the system is modu-

lated by the wave forms2(t)52A for a sufficiently long
time, the current internal statex(t) resides at the stable po
sition a, i.e., the minimum of potential functionV(x)5

2x2/21x4/(4Xb
2)1Ax ~see Fig. 2!. Next, when the wave

form s1(t)51A is applied,x(t) will be located at an un-
stable positionb of the potential functionV(x)52x2/2
1x4/(4Xb

2)2Ax. Progressively,x(t) will tend towards the
corresponding stable positionc, as shown in Fig. 2.

In this transition process, the switching timeTd is defined
as the time for the system to evolve from the positionb to the
position defined by the decision threshold,. An appropriate
choice for this threshold, which preserves the symme
character of the information channel, and which is adopte
the sequel, is,50.

From Eq.~1! with no noiseh(t), we have

dt

ta
5

dx

x2x3/Xb
26A

. ~3!

Therefore, the switching timeTd verifies

FIG. 2. Evolution of the potential functionV(x) and the expla-
nation of the system switching. Stable positionsa and c are the
minima of the potential functions. Statesx(t) at positionsa andc
are the real roots of the cubic equationx2x3/Xb

27A50. b is an
unstable position.ta51, Xb51, A51, andAc'0.38.
01110
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Td

ta
5E

x2

0 dx

x2x3/Xb
21A

5C1 lnF x1

x12x2
G

1C2 lnF x1

x12x2
G1C3lnF x2

x22x2
G , ~4!

wherex2 is the unique real root of equationx2x3/Xb
22A

50 (A.Ac). Similarly, x1 is the unique real root of equa
tion x2x3/Xb

21A50, with two corresponding conjugat
complex rootsx1 and x2 . C1 , C2, and C3 are integration
constants. Theoretical expressions ofx2 , x1 , x1 , x2 ,
C1 , C2, andC3 are developed in detail in Appendix A. Thi
case is for the input signal amplitude varying from2A
to 1A, but thanks to the symmetry of the process, t
switching timeTd is the same when the input changes fro
1A to 2A.

In the present problem,ta can be taken as the unit o
time, andXb as the unit of signal amplitude. Parametersta
andXb can be thought of as fixed and imposed by the tra
mission channel. What is important then is to investigate
influence of the parametersTp and A attached to the inpu
signal, andD attached to the noise. Our regime of interest
A here isA.Ac52Xb /A27, i.e., a regime of suprathresho
input. By contrast, previous studies have considered the
of A,Ac to show a form of stochastic resonance or a co
structive role of the noise in binary signal transmissi
@25,26#. Equation~4! gives the switching timeTd in units of
ta , and Td is displayed in Fig. 3. We shall then study th
interplay between a largeTd ~slow system! in relation to a
small Tp ~fast input!, and show that in such conditions, a
dition of noise via an increase ofD can also play a construc
tive role.

B. Residual ASR phenomenon

A numerical simulation of the system of Eq.~1! has been
undertaken, with the evaluation of the BER. The anticipa

FIG. 3. Plot of the reduced switching timeTd /ta of Eq. ~4! as a
function of the reduced input amplitudeA/Xb . The decision thresh-
old ,50. Note thatTd /ta will tend to infinity asA/Xb approaches
Ac /Xb52/A27.
9-3
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FIG. 4. Numerical results of time evolution of the signals for the system of Eq.~1! with ta51 andXb51 andA/Xb50.4. D is in units
taXb

2 . The sampling time stepDt50.01ta . Left: Tp516,Td517.5897.~a! The input signals(t); The system outputx(t) with ~b! D
50, ~c! D50.005, ~d! D50.12, and~e! D50.5. Right:Tp520.Td517.5897.~a! the input signals(t); the system outputx(t) with ~b!
D50, ~c! D50.002, ~d! D50.1, and~e! D50.3.
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ASR effect with a fast input~small Tp) and a slow system
~largeTd) is indeed observed.

Figure 4~left! and ~right! show two numerical example
of the time evolution of the signals for the system of Eq.~1!,
illustrating the essential features of the residual ASR effec
Tp,Td andTp.Td . When the suprathreshold input signal
fast (Tp is smaller thanTd), the system output cannot reac
the decision threshold, in one pulse duration ofTp @see, Fig.
4 left ~b!#. In such a condition, the noise plays a construct
role, by spurring the output switchings of the system, help
them to better follow the transitions present in the fast
prathreshold input@see Fig. 4 left~d!#. This outcome con-
firms the prediction of the residual ASR effect with a fa
input on a slow system (Tp,Td). However, the condition
Tp,Td for the occurrence of the residual ASR effect shou
not be taken as a strict quantitative condition.Td is a strict
measure of the switching time of the system only in t
absence of noise; when noise is added,Td is only an indica-
tive measure of the switching time of the system. This
why, as shown in Fig. 4 right, the residual ASR effect c
still survive whenTp is slightly aboveTd . In Fig. 4 right,
without the noise, the system output does cross the deci
threshold, in one pulse durationTp @see Fig. 4 right~b!#,
providing error-free output digits with the decoding sche
introduced in Sec. II. With a small amount of noise atD
50.002, we observe that the switching of the system ou
can be, on some occasions, retarded by the noise, giving
to some erroneous output symbols@see arrows in Fig. 4 righ
~c!#. On adding more noise, this possibility of retardati
becomes ineffective@see Fig. 4 right~d! and~e!#. There is a
local optimal noise intensity ofD50.1, as shown in Fig. 4
right ~D!, at which the system output assisted by noise tra
the suprathreshold input more correctly than atD50.002.
Beyond, too much noise will dominate the system out
@see Fig. 4 right~e!#, and the erroneous decoded digits a
more frequent than at the optimal condition ofD50.1.

Figures 5 and 6 show the corresponding evolutions of
01110
at

e
g
-

t

s

on

e

ut
ise

s

t

e

BER. Figures 5~a! and 5~b! show the BER as a function o
the noise intensityD and the signal amplitudeA/Xb at Tp
50.9Td and Tp51.05Td , respectively. Figure 6 shows th
behavior of the BER vs noise intensity for representat
values ofA/Xb . We note the following.

~a! In Figs. 5~a!, 6~a!, and 6~c!, at Tp,Td , the BER pre-
sents a resonancelike behavior as the noise intensity
creases. The minimal value of the BER is obtained at
optimal nonzero noise intensity.

~b! When Tp.Td , the BER always starts from zero~at
D50) and then increases as the noise intensity increase
shown in Figs. 5~b!, 6~b!, and 6~c!. Upon further increase o
the noise intensity, the BER reaches a local minimum
slightly suprathreshold amplitudes ofA/Xb @see Figs. 5~b!
and 6~b!#. However, this nonmonotonic behavior of the BE
gradually vanishes for larger suprathreshold amplitudes
A/Xb at Tp.Td @see Figs. 5~b! and 6~c!#. For the slightly
suprathreshold amplitude ofA/Xb , the increase of the BER
asD just starts to rise above zero, is in accordance with
retardation observed in Fig. 4~c!.

~c!.Note that the residual ASR effect will not disappe
for any suprathreshold input binary signals whenTp,Td
@e.g., Fig. 5~a!#. As Tp.Td , this form of ASR effect only
exists in a limited range ofA/Xb @e.g., Fig. 5~b!#. Therefore,
this effect is referred to as the ‘‘residual’’ ASR.

We note that the residual ASR effect can also be measu
by another performance measure, i.e., the channel capa

C511Pelog2~Pe!1~12Pe!log2~12Pe!, ~5!

which is a monotone decreasing function of the BER@22#.
The channel capacity can characterize the rate of informa
transfer in an efficient way@28,29#. The channel capacity
will present the same resonancelike behaviors as the B
with different resonance curve shapes. Hence, the BER
used in this paper without losing the general feature of
residual ASR effect.
9-4
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FIG. 5. Numerical results of the BER as a function of the noise intensityD ~in units taXb
2) and signal amplitudesA/Xb for the system

with ta51 and Xb51, at ~a! Tp50.9Td ; ~b! Tp51.05Td . For different reduced amplitudesA/Xb , Tp are selected in terms of th
corresponding values ofTd . The sampling time stepDt50.01ta .
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Additionally, in this paper, the decision threshold, is zero
in accordance with the symmetrical characteristic of the
formation channel. We argue that residual ASR effect w
also occur in signal detection with a decision threshold
termined by a given false alarm probability@30#. Different
thresholds will result in different system switching time
But if the pulse duration of the input signal is smaller th
the corresponding system switching time, adding noise
also enhance the detection probability of the input sig
through a similar noise-spurred response.

IV. A NONSTATIONARY PROBABILITY DENSITY MODEL

The qualitative understanding of the residual ASR eff
in the preceding section is based on the comparison betw
the fast repetition timeTp of the input bit stream and th
slow system switching timeTd measured in the absence
noise. We shall now attempt a more detailed theoret
analysis of the dynamics of Eq.~1!, in the presence of both
the binary input and the noise input, in order to seek a dee
understanding, at a more quantitative level, of the resid
ASR effect.

A. System response time

The response of the system of Eq.~1!, in the presence o
both the binary input and the noise input, can be precis
described by solving the associated Fokker-Planck equa
@31,32#. In each pulse durationTp , the system of Eq.~1! is
subjected to the constant signalss(t)56A, i.e., wave forms
s1(t)51A or s2(t)52A, with an additional input Gaussia
white noiseh(t). Under these conditions, the statistica
equivalent description for the corresponding probability d
sity r(x,t) is governed by the Fokker-Planck equation

ta

]r~x,t !

]t
5F ]

]x
V8~x!1

D

ta

]2

]x2Gr~x,t !, ~6!

whereV8(x)52x1x3/Xb
27A and the Fokker-Planck opera

tor is LFP5(]/]x)V8(x)1(D/ta)(]2/]x2). r(x,t) obeys
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the natural boundary conditions that it vanishes at largex for
any t @31#. The steady-state solution of Eq.~6!, for a perma-
nent input at1A or 2A, is given by

r~x!5 lim
t→`

r~x,t !5C expF2
taV~x!

D G , ~7!

whereC is the normalization constant@31#.
Now, we will seek the nonstationary solutionr(x,t) of

the Fokker-Planck equation, Eq.~6!, in case of an input tran-
sition from s(t)52A to s(t)51A, or conversely. This
computation is performed in Appendix B. We show in A
pendix B that the transition from the stationary density c
responding tos(t)52A to the stationary density corre
sponding to s(t)51A, is dominated by an exponentia
temporal relaxation with reduced time constant 1/l1. This
allows us to deduce a response timeTr5ta /l1 for the sys-
tem, which is a measure of the time taken by the system
switch from one potential well to the other, when the bina
input changes from2A to 1A ~or conversely!, in the pres-
ence of noise. This system response timeTr have a similar
qualitative interpretation as the system switching timeTd
considered in the preceding section. But an essential adv
is that Tr explicitly incorporates the influence of the inpu
noise h(t), while Td conveys no such dependence. T
study of Tr , as a function of the noise intensityD, then
allows us to obtain a quantitative description of the resid
ASR effect, or the effect of the spurring of the system
noise.

Figure 7 shows the system response time~dimensionless!
Tr /ta51/l1 obtained from Appendix B, as a function of th
noise intensityD and the signal amplitudeA/Xb . At small
A/Xb (A/Xb.Ac /Xb'0.38), Fig. 7 shows a monotonic de
cay of Tr whenD increases, expressing, as anticipated, t
the switching dynamics of the system is accelerated as
noise level increases. At largerA/Xb , our theoretical results
of Fig. 7 show a nonmonotonic action of the noise intens
D on Tr : At small D, the response timeTr starts to rise,
revealing a tendency of the noise to slow down the dyna
9-5
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DUAN, ROUSSEAU, AND CHAPEAU-BLONDEAU PHYSICAL REVIEW E69, 011109 ~2004!
ics; yet, this unexpected behavior takes place in a nar
range forD, then to give way to the expected decay ofTr as
D is further increased. Therefore, the standard behavior
is evidenced in Fig. 7 is the reduction of the response timeTr

FIG. 6. Numerical results of the BER as a function of the no
intensityD ~in units taXb

2) for the system withta51 andXb51.
~a! A/Xb50.4 atTp,Td517.5897;~b! A/Xb50.4 atTp.Td ; ~c!
A/Xb53 atTp,Td50.53 102 andTp.Td . The sampling time step
Dt50.01ta .
01110
w

at

as the noise levelD increases, i.e., the switching dynami
accelerated by noise.

The reduction of the response timeTr with increasingD is
only half of the mechanism at work to deliver the nonmon
tonic evolution of the BER as shown in Figs. 5 and 6. T
other important part of the mechanism is that, as the no
level increases, although it accelerates the switching dyn
ics of the system, it also enhances the fluctuations thatx(t)
undergoes once it has reached one potential well or the o
The accelerated switching dynamics is favorable, while
enhanced fluctuations are detrimental, to the correct tra
mission of the binary data. This two parts played by the no
~acceleration of the switching dynamics between wells, a
enhancement of the fluctuations inside the wells! result in the
nonmontonic evolutions of the BER shown in Figs. 5 and

To take further our theoretical description that gave
a dependence ofTr with D, we now proceed to obtain a
theoretical expression for the BER to be studied as a func
of D.

B. A theoretical nonstationary probability density model

In Appendix B, the nonstationary densityr(x,t) for an
input transition froms(t)52A to s(t)51A ~or conversely!
is approximated with the two first terms from its asympto
representation of Eq.~B11!, as

r@x,tus~ t !56A#.r@xus~ t !56A#

1$r@xus~ t !57A#2r@xus~ t !56A#%

3exp~2t/Tr !, ~8!

where r@xus(t)56A#5C exp@2taV(x)/D# are the steady-
state solutions given in Eq.~7!. In Eq. ~8!, when t50, the
term exp(2t/Tr)51 andr@x,tus(t)56A# starts with the ini-
tial condition of r@xus(t)57A#. As t→1`, the term exp
(2t/Tr)50, andr@x,tus(t)56A# tends to the stationary con
dition of r@xus(t)56A#.

At the output, the decision for decoding the binary digi
as introduced in Sec. II, is to compare the sampled value
xj5x( jTp) to the threshold,50. Based on our approxima

e

FIG. 7. Theoretical results of the system response timeTr /ta vs
A/Xb andD ~in units taXb

2).
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FIG. 8. Theoretical results of the BER based on the nonstationary probability density model, for the system withta51 andXb51, for
different amplitudes ofA/Xb at ~a! Tp50.9Td ; ~b! Tp51.05Td . Note that this theory of Eq.~9! cannot be evaluated atD50.
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tion of the nonstationary probability density of Eq.~8!, the
BER of Eq.~2! can be theoretically expressed as

Pe5
1

2
@P~1u0!1P~0u1!#

5
1

2 F E
0

1`

r@x,Tpus~ t !52A#dx

1E
2`

0

r@x,Tpus~ t !51A#dxG . ~9!

When Eq.~8! is introduced in Eq.~9!, it is visible that the
term exp(2Tp /Tr) should satisfy the condition of ex
(2Tp /Tr)<1/2, i.e.,Tp should not be sufficiently small com
pared toTr . It is in this case that the BER falls below 1/2
and that effective binary transmission can take place@22#.
The following quantitative results which are presented
Figs. 8 and 9 are all calculated in this regime where e
(2Tp /Tr)<1/2.

Figures 8 and 9 illustrate the theoretical results of
BER of Eq.~9! as a function of the noise intensityD and the
input amplitudeA/Xb . As visible, these theoretical resul
also show the effect of residual ASR in suprathreshold sig
transmission, and they are in good qualitative agreem
with the simulation results of Figs. 5 and 6. There are so
discrepancies at the quantitative level, because our theo
cal model is an approximation. By comparing Fig. 9 to t
numerical results of Fig. 6, it can be seen that the the
especially fits well whenTp /ta is large. Overall, our theo
retical model, although approximate, captures well
double role played by the noise, both in accelerating
switching dynamics between wells while enhancing the fl
tuations inside the wells, this resulting in a nonmonoto
evolution of the BER.

V. CONCLUSION

A different form of ASR, residual ASR phenomenon, h
been demonstrated in asingle bistable dynamic system
driven by a suprathreshold binary signal. An essential fea
of residual ASR is given by the competition between t
01110
p

e

al
nt
e
ti-

y

e
e
-
c

re

signal pulse duration and the system switching time. T
noise essentially plays a constructive role by accelerating
switching dynamics of a slow system for a more efficie
transmission of a fast input.

FIG. 9. Theoretical results of the BER based on the nonstat
ary probability density model for the system withta51, Xb51,
A/Xb50.4 at~a! Tp,Td ; ~b! Tp.Td . Note that this theory of Eq.
~9! cannot be evaluated atD50.
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Residual ASR is a nontrivial effect and raises other rela
interesting lines of investigation. For instance, the neu
physiological sensory system responses to some fast sti
in the background of noise, with a non-negligible dynam
system characteristic time. We also argue that the resi
ASR effect can be demonstrated in bistable electronic or
tical experiments transmitting suprathreshold input sign
@3,12#. These subjects are very promising and currently
der study.
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APPENDIX A: THEORETICAL SOLUTION
OF THE SYSTEM SWITCHING TIME

The cubic equationx2x3/Xb
21A50 has one real rootx1

and two conjugate complex rootsx1 andx2 as

x152
21/3q

3p1/3
1

p1/3

3321/3
,

x1,25
~16 iA3!q

3322/3p1/3
2

~17 iA3!p1/3

6321/3
, ~A1!

where q523Xb
2 , p52r 1A4q31r 2, and r 5227AXb

2 .
Next, we can expand@35#

1

x2x3/Xb
21A

5
C1

x2x1
1

C2

x2x1
1

C3

x2x2
, ~A2!

with

C152C22C3 , C25
2Xb

2

~x12x1!~x22x1!
,

C35
2Xb

2

~x12x2!~x12x2!
. ~A3!

Thus, from a initial positionx0 to the end positionx, the
system switching timeTd reads

Td

ta
5E

x0

x dx8

x82x83/Xb
21A

5C1 lnF x2x1

x02x1
G

1C2 lnF x2x1

x02x1
G1C3lnF x2x2

x02x2
G . ~A4!

Then, Eq.~4! is derived.

APPENDIX B: SYSTEM RESPONSE TIME
AND NONSTATIONARY PROBABILITY DENSITY MODEL

The following approximate method for obtaining the sy
tem response time has been discussed in Ref.@32#. Here we
give a simple demonstration for the bistable dynamic sys
01110
d
-
uli

al
p-
ls
-

-

m

described by Eq.~1!. This method is also applicable for othe
nonlinear systems analyzed in Refs.@5,33# with different po-
tential functions. Next, based on the system response tim
nonstationary probability density model is established in t
paper.

1. System response time

In Eq. ~6!, the Fokker-Planck operator LFP
5(]/]x)V8(x)1(D/ta)]2/]x2 is not a Hermitian operato
@31#. We rescale the variables as

t5t/ta , y5x/AD/ta, X̄b5Xb /AD/ta,

Ā5A/AD/ta, ~B1!

Eq. ~6! becomes

]r~y,t!

]t
5F ]

]y
V8~y!1

]2

]y2Gr~y,t!, ~B2!

whereV8(y)52y1y3/X̄b
27Ā. The steady-state solution o

Eq. ~B2! is given by

r~y!5 lim
t→`

r~y,t!5C exp@2V~y!#, ~B3!

whereC is the normalization constant. A separation ans
for r(y,t) @31#,

r~y,t!5u~y!expF2
V~y!

2 Gexp~2lt!, ~B4!

leads to

Lu52lu, ~B5!

with a Hermitian operator L5(]2/]y2)2@ 1
4 V82(y)

2 1
2 V9(y)#. The functionsu(y) are eigenfunctions of the

operatorL with the eigenvaluesl. Multiplying both sides of
Eq. ~B5! by u(y) and integrating it, yields

l5

E
2`

1` H u82~y!1u2~y!F1

4
V82~y!2

1

2
V9~y!G J dy

E
2`

1`

u2~y!dy

,

~B6!

where eigenfunctionsu(y) satisfy the boundary condition
of lim

y→6`
u(y)50 and lim

y→6`
u8(y)50. The eigenvalue

problem of Eq.~B5! is then equivalent to the variationa
problem consisting in finding the extremal values of the rig
side of Eq.~B6! @31,32#. The minimum of this expression i
then the lowest eigenvaluel050, corresponding to the
steady-state solution of Eq.~B3! @31#. We adopt here eigen
functionsu(y)5p(y)exp@2V(y)/2# and p(y)Þ0, Eq. ~B6!
becomes
9-8



l5

E
2`

1` H p82~y!1
1

2
p2~y!V82~y!2

1

2
@V8~y!p2~y!#8J exp@2V~y!#dy

1`
. ~B7!
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E
2`

p2~y!exp@2V~y!#dy
he
e

i-
n-
th

E

g

ke

e-

of
of

ing
en-

v.

n

Since

E
2`

1`

@V8~y!p2~y!#8exp@2V~y!#dy5V8~y!p2~y!

3exp@2V~y!#u2`
1`1E

2`

1`

p2~y!V82~y!exp@2V~y!#dy

5E
2`

1`

p2~y!V82~y!exp@2V~y!#dy,

Eq. ~B7! can be rewritten as

l5

E
2`

1`

p82~y!exp@2V~y!#dy

E
2`

1`

p2~y!exp@2V~y!#dy

. ~B8!

Assumep(y)5d01d1y1•••1dnyn and the ordern is an
integer, we obtain

~@K#2l@M # !$d%50, ~B9!

with eigenvectors$di%5@d0
i ,d1

i , . . . ,dn
i # corresponding to

eigenvalues$l%5@l0 ,l1 , . . . ,ln# for i 50,1, . . . ,n. The
integer n is not increased in the iterative process until t
preceding values ofl i approximate the next ones within th
tolerance error. The elements of matrices@M# and @K# are

mi j 5E
2`

1`

yi 1 jexp@2V~y!#dy.0,

ki j 5E
2`

1`

i jy i 1 j 22exp@2V~y!#dy>0,

where i, j 50,1, . . . ,n. The matrix @M# is positive definite
and the matrix@K# is semipositive definite. The minimal e
genvaluel0 is zero. The inverse of minimal positive eige
valuel1 describes the main time of the system tending to
steady state solution of Eq.~B3!, what we call the system
response time. Note the time scale transformation in
~B1!, the minimal positive eigenvalue should bel1 /ta and
the real system response time isTr5ta /l1. The reduced
dimensionless system response time is thenTr /ta51/l1.
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2. Nonstationary probability density model

From Eq. ~B9!, we can obtain the eigenfunctionsui(y)
5pi(y)exp@2V(y)/2# corresponding to the eigenvaluel i for
i 50,1, . . . ,n, where pi(y)5d0

i 1d1
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i yn. The
eigenvectors$di%5@d0
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i , . . . ,dn

i # are normalized. Be-
causeL is a Hermitian operator, eigenfunctionsui(y) and
uj (y) are orthogonal

E
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where i , j 50,1, . . . ,n. r(y,t) can be expanded, accordin
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r~y,t!5(
i 50

n

Ciui~y!expF2
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whereCi are normalization constants. In this paper, we ta
an approximate expression ofr(y,t).( i 50
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@2V(y)/2#exp@2lit# instead of Eq.~B11!. Then, if the pre-
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2r@xus~ t !56A#%exp~2t/Tr !, ~B12!

with the initial and stationary conditions

r@x,t50us~ t !56A#5r@xus~ t !57A#,

r@x,t51`us~ t !56A#5r@xus~ t !56A#.
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