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Uncoupled continuous-time random walks: Solution and limiting behavior of the master equation
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A detailed study is presented for a large class of uncoupled continuous-time random walks. The master
equation is solved for the Mittag-Leffler survival probability. The properly scaled diffusive limit of the master
equation is taken and its relation with the fractional diffusion equation is discussed. Finally, some common
objections found in the literature are thoroughly reviewed.
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[. INTRODUCTION contributions about the theory of CTRWSs, including the
problem of anomalous relaxation, can be found in Re8-—

The idea of combining a stochastic process for waiting41]. The recent book by ben-Avraham and Havlin discusses
times between two consecutive events and another stochastit depth the possible applications of the formalism devel-
process which associates a reward or a claim to each eveaped in the aforementioned papg42].
dates back at least to the first half of the 20th cenfdrg]. The asymptotic relation between properly scaled CTRWs
The Crame-Lundberg model for insurance risk is based on awith power-law waiting times and fractional diffusion pro-
point (or renewal procesq 3,4] ruling the random times at cesses has already been rigorously studied by Balakrishnan
which random claims have to be paid by the company due tin 1985, dealing with anomalous diffusion in one dimension
the occurrence of accidents. Similar concepts have been us@d3], four years before the publication of the fundamental
in renewal theory and in queueing theory as faH-8]. paper by Schneider and Wyss on the analytic theory of frac-

In the 1960s, Montroll and Weiss published a celebratedional diffusion and wave equatiorjg4]. Later, many au-
series of papers on random walks, where they applied th#hors discussed this relatigd5—53. As written above, the
ideas developed by mathematicians working on probabilitycorrespondence between CTRWSs with Mittag-Leffler waiting
theory to the physics of diffusion processes on lattices. Inime and the time-fractional diffusion equation has been lu-
particular, they wrote a paper on continuous-time randontidly worked out and explained in Rei48] by Hilfer and
walks (CTRWS [9], in which the waiting-time between two Anton, who have shed light on the relevance of the Mittag-
consecutive jumps of a diffusing particle is a real positiveLeffler function, their specific aims, methods, and interpreta-
stochastic variable. tions being completely different from those of Balakrishnan.

The paper of Montroll and Weiss on CTRWs was theHowever, it must be recognized that already Balakrishnan in
starting point for several developments on the physicahis formula (27) has found, as the natural choice for the
theory of diffusion. In more recent times, CTRWs were ap-waiting-time in CTRWs approximating fractional diffusion,
plied back to economics and finance by Rudolf Hilféb],  the waiting time density whose Laplace transforntiisthe
by the authors of the present pagéd—14 and, later, by notation used in this papet/(1+ csf), wherec is a positive
Weiss and co-worker§l5,16 and by Kutner and Bitata  constant. Implicitly, this is the Mittag-Leffler waiting-time
[17,18. However, here, the focus will be on anomalous re-described in Sec. Ill below. Meerschaeittal. have devel-
laxation properties of the waiting-time probability density oped a method to derive the equations for CTRWs in the
and on the consequent relation between CTRWs and fraddiffusive limit [52]. In their paper, they discuss both the
tional diffusion. coupled and uncoupled case.

Anomalous relaxation with power-law tails of the  The present paper is devoted to a detailed discussion of
waiting-time density was investigated by means of Montethe uncoupled case and it is organized as follows. In Sec. Il,
Carlo simulation by Montroll and Schgt9]. Shlesinger, Tu- the basic quantities are introduced and a summary of the
naley, and other authors studied the asymptotic behavior dheory is given. Sec. Il is devoted to the solution of the
CTRWs for large time$20—24 (see also Ref25]). Hilfer master equation in the uncoupled case. General formulas are
has recognized the important role played by Mittag-Leffler-presented and specialized to the case of the Mittag-Leffler
type functions in anomalous relaxati¢®6,27]. Interesting  waiting-time survival probability, in which an exact solution

is available in terms of a fractionally generalized compound-

Poisson process. In this section, a fractional relaxation equa-
*Electronic address: scalas@unipmn.it; tion satisfied by the Mittag-Leffler function is discussed. In
URL: http://www.fracalmo.org Sec. IV, the proper scaling leading to the fractional diffusion
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equation is presented. The main result of this section is that +o0
the solution of the CTRW master equation weakly converges Y(7)= J e(&,7)dé,

to the solution of a Cauchy problem for the fractional diffu- o

sion equation. This result is a version of the central limit "

theore_m and the steps for a rigorqus proqf are §ketched. Fi- )\(g):f e(& 7)dT, (4
nally, in Sec. V, the reader can find a discussion of some 0

objections which are usually raised when dealing with frac- ] ) ]

tional diffusion. Unnecessary mathematical difficulties have2nd the survival function?(7) is

been avoided throughout the paper.

q’(T):l—fTI/I(T')dT’:J'wI/I(T')dT’. (5)
II. BASIC DEFINITIONS 0 ’

As mentioned in the Introduction, CTRWs are essentially The integral equation, Eq(3), can be solved in the
point processes with reward. The point process is charactekaplace-Fourier domain. The Laplace transfogs) of a
ized by a sequence of independent identically distributed9eneralizegifunctiong(t) is defined as
(i.i.d.) positive random variables;, which can be inter-

preted as waiting times between two consecutive events: G(s)= J'Mdte‘Stg(t), (6)
0
n
tn:t0+2 7, to—t,_i=7,, N=123..., t,=0. whereas the Fourier transform of (generalized function
i=1 f(x) is defined as

()

z e i KX
The rewards are i.i.d. not necessarily positive random vari- flx)= j,m dxe**f(x). @)
ables¢; . In the usual physical interpretation, ti§es repre-
sent the jumps of a diffusing particléghe walkey, and they A generalized function is a distributidfike Dirac’s 8) in the
can ben-dimensional vectors. In this paper, only the one-sense of Sobolev and Schwaf&].
dimensional case is studied, but the extension of many re- One gets
sults to then-dimensional case is straightforward. The posi-

tion x of the walker at time is [with N(t) = maXn:t,<t} and ~ - 1
x(0)=0]: p(r,8)=W(s) —=——, (€S)
1-o(k,S)
& in t f the density(7)
or, in terms of the densi ,
x(t)=3, &. ) 5
< 1-(s) 1
. P(x,8)= = : (€)
CTRWs are rather good and general phenomenological mod- S 1-&(«,s)
els for diffusion, including anomalous diffusion, provided
that the time of residence of the walker is much greater thaas, from Eq.(5), one has
the time it takes to make a jump. In fact, in the formalism,
jumps are instantaneous. 1—(s)
In general, the jumps and the waiting times are not inde- Wis)=—75— (10

pendent from each other. Then, the random walk can be de-
scribed by the joint probability density(¢,7) of jumps and |y order to obtainp(x,t), it is then necessary to invert its
waiting times;¢ (&, 7)déd 7 is the probability of a jump to be

in the interval €, £+ d£) and of a waiting time to be in the Laplace-Fourier transfornp(x,s). Analytic solutions are

interval (r,7+d7). The following integral equation gives
the probability densityp(x,t) for the walker being in posi-

tion x at timet, conditioned by the fact that it was in position
x=0 at timet=0:

p(x,t)=&8(x)W(t)

t + oo
+J f e(x—x"t—=t")p(x',t")dt’dx’, (3)
0J—=

whereW(7) is the so-called survival function(7) is related
to the marginal waiting-time probability densiig(7). The
two marginal densitieg{7) and\(¢) are

quite important, as they provide a benchmark for testing nu-
merical inversion methods. In the following section, an ex-
plicit analytic solution for a class of continuous-time random
walks with anomalous relaxation behavior will be presented.
It will be necessary to restrict oneself to the uncoupled case,
in which jumps and waiting times are not correlated.

Ill. SOLUTION OF THE MASTER EQUATION

In this section, the solution of E¢3) will be discussed in
the uncoupled case. First of all, a general formula will be
derived forp(x,t), then it will be specialized to two cases:
the well-known case of an exponential survival function and
the case where the survival function is a Mittag-Leffler func-
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tion. The connections and the analogies between these two In this case the integral master equation fdix,t) be-
cases will be presented. A new solution will be obtained incomes

terms of a fractionally generalized compound-Poisson pro-

cess. t

As anticipated above, the study will be restricted to un- P(x, )= 86(x)W (1) + JO p(t—t")

coupled continuous-time random walks. This means that

jump sizes do not depend on waiting times and the joint +o ) R
probability density for jumps and waiting times can be fac- X J_m Ax=x")p(x’,t)dx" |dt’. (12
torized in terms of the two marginal densities,

(&, 7)=N(E) (1) (11)  This equation has a well-known general explicit solution in

terms of P(n,t), the probability ofn jumps occurring up to
with the normalization conditions [déN(é&)=1 and time t, and of then-fold convolution of the jump density,

Jdry(r)=1. An(X):

n00= [T e gy o den O£ N1 o) M E). 19

Indeed,P(n,t) is given by

P(n,t)=J0tt//n(t—T)‘lf(T)dT, (14

where ¢,(7) is then-fold convolution of the waiting-time density:

n(7)= fonoTnil cee J'OTldTnfldTnfz' AT p(t— T )P — Tho2) - (1), (15

The n-fold convolutions defined above are probability den- A remarkable analytic solution is available when the

sity functions for the sum of variables. waiting-time probability density function has the following
The Laplace transform d®(n,t), P(n,s), reads exponential form:
P(n,s)=[9(s)]"¥(s). (16) ()= pe . (20

By taking the Fourier-Laplace transform of E€L2), one  Then, the survival probability i (7)=e *" and the prob-
gets ability of n jumps occurring up to timé is given by the
Poisson distribution

P ,S)Z‘T’ S)——7". (17 n
P(x ( 1—(s)N (k) p(n,t):(’utl) e M, (21
But, recalling that|\(x)|<1 and |#(s)|<1, if x#0 ands "
#0, Eq.(17) becomes In this case, Eq(19) becomes
p(x,8)=T(s) 2, [F(SA(x)]" (18) ooxty= S oty . 22)

n=0 !

this gives, inverting the Fourier and the Laplace transforms _ ) ) N _
and taking into account Eqél3) and (14), When\(x) is the jump density for a positive random vari-
able, Eq.(22) is the starting point of the Cram&undberg

- model for insurance risk1,2]. It is worth noting that the
p(x,t)= Zo P(n,H)Aq(X). (19 survival probability W(7) satisfies the following relaxation
" ordinary differential equation:
Equation(19) can also be used as the starting point to derive

Eqg. (12 via the transforms of Fourier and Laplace, as it

JR— —_ . + —
describes a jump process subordinated to a renewal process. dT‘P(T) pl(r), >0, W(OH)=1. (23
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The simplest fractional generalization of E&3) giving

rise to anomalous relaxation and power-law tails in the lﬂ(T):—E_E/;(—Tﬁ)

waiting-time probability density can be written as follows,
by appropriately choosing the time scale:

ds
ar "

V(0%)=1,
(24

>0,

——W(7), 0<p=1:

where the operatod?/dt? is the Caputo fractional deriva-
tive, related to the Riemann-Liouville fractional derivative.
For a sufficiently well-behaved functiofi(t), the Caputo
derivative is defined, for€8<1, by the equation

d? 1 d(t f(n t A8

t
a U Ta—p &fo T Ta-p 0

(29

and reduces to the ordinary first derivative f8=1. The
Laplace transform of the Caputo derivative of a functi¢t)

IS
d?
L
d

?f(t);s) =sPf(s)—sP1f(0"). (26)

If Eq. (26) is applied to the Cauchy problem of EQ4), one
gets

sh1

T(s)= (27)

1+sP

Equation(27) can be inverted, giving the solution of EQ4)
in terms of the Mittag-Leffler function of paramete®
[55,56],

W(1)=Eg(—77), (28)

PHYSICAL REVIEW E69, 011107 (2004

F(1-8) ,
= mexp{— IT (B+ l)},
0=r7<1, (32
and the asymptotic representation is
sin(Bm) I'(B+1)
(1)~ - I 0<pB<l, 7—w. (33

Before going on, it is now time to review the results obtained
so far. The solution of Eq24) is a survival probability func-
tion W(7) with power-law decayr # if 0<B<1 and r—.
The decay exponent of the corresponding probability density
function ¢(7) is —(B+1), with values in the interva(l,2).
This ensures that the normalization condition §§r) can be
satisfied. However, already the first momentygf) is infi-
nite. It is worth stressing that the cage=1 does not corre-
spond to ar~ ! decay of the survival probability, but to the
exponential relaxation described by Eg3).

The Laplace transform af(7) is given by[see Eq(10)]

~ ~ 1

P(s)=1-sV¥(s)= —. (34)
1+

Therefore, recalling Eqg16) and (27), one can obtain the

Laplace transform oP(n,t):

1 sh1

P(ns)=——— :
(n.9) (1+sP)" 1+F

(39

This can be analytically inverted dsee Eq.(1.80 in Ref.
[571]

nisf~1

B _ 1By q)— — —
CATER(—)i9)=

(36)

defined by the following power series in the complex plane:

Zn

rgn+1)° (29

Ep(2):=2,

n=0
For small 7, the Mittag-Leffler survival function has the
same behavior as a stretched exponential,

B

7
\I’(T)ZEB(—TB)Z:L—W

=exp{— PIT(B+1)},

0=r<1, (30)

whereas for large, it has the asymptotic representation

sin(Bm) I'(B)
- 31)

W(r)~ ,
(7 .

0<pB<l, 7—om,

Accordingly, for smallr, the probability density function of
waiting timesy(r)=—dW¥(7)/dr behaves as

where
dn
EQ(2) ::EEB(Z).

Equation (36) yields an explicit analytic expression for
P(n,t):

8

P(n,t)= FEg‘>(—t/3). (37)

Equation(37) generalizes the Poisson distributi¢2l) for

the anomalous relaxation case under st(@ky3<<1). It re-
duces to the Poisson distribution in the cg@bsel, in which

the Mittag-Leffler function coincides with the exponential
function. As an immediate consequence of this result and of
Eg. (19), one also gets the analytic solution of the master
equation(12) for a continuous-time random walk character-
ized by the survival function of E(28):
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< tBn Y(7lr)
p(x,t)= 2, —EP(—tA)N(x). (398 P (1)= , >0, (44)
n=o N! r
As a consistency check, one can show that The scaled-jump probability density functian(£) is given
by
+ oo
f_m p(x,t)dx=1, V t. (39 A(£/h)

This is equivalent to the requirement that the Fourier trans-

form computed in=0 satisfiep(01) =1, Vt. Butp(0) is The Laplace transform af, () and the Fourier transform of

given by \n(&) are, respectively,
. ZothAn 5 5 . .
p(O,t)=n§=lo TEF(-) (40 Ui ()=T(rs), An(x)=A(h). (46)
and recalling that for any sufficiently well-behaved function In the Fourier-Laplace domain, the rescaled solution of the
f, master equation reads
o f"(a) - 1-n(s 1
fats)=3 — 0" b= S Ly
n=o I ' S 1= (8)hp(x)

identifying a= —t#

and 5=+t#, one has the following , . . , . o
chain of equalities: Equation(47) will be the starting point for investigating the

diffusive limit of the solution presented in E@38). The
= BN results discussed above, from E42) to Eq.(47), are rather
5(01)2 2 _|E,(8n)(_tﬁ): EB((—tﬁ)thﬁ):EB(O):l. general. It is now possible to specialize them to the class of
n=o0 n: waiting-time densities discussed in Sec. Il and to a large
(41 class of jump densities.

It is now interesting to investigate the behavior of the exact For O<ﬂ <13 Eq.(33) gives the asymptotic representation
solution given by Eq(38) in the so-called diffusive or hy- of the waiting-time density. For such a behavior, one has, for

drodynamic limit. This limit is obtained by making smaller each fixeas>0, that
all waiting times by a positive factar, and all jumps by a - -
positive factorh and then letting andh vanish in an appro- Yr(s)=i(rs)=1—cy(rs)P+o(rf), r—0. (49
priate way. This will be the subject of the following section.
In the case under study, it turns out tltat= 1. Remarkably,
IV. THE DIEEUSIVE LIMIT this result holds also foB=1. An important class of sym-
metric jump densitieg\(— &)=\ (&)] is characterized by

In this section, for the first time, a collection of results by the following behavior, forb>0 and some parametet
the authors of this paper is made available in a complete. (g 2):

way; mathematical subtleties have been recalled wherever

necessary. Partial results were discussed in R&8&53,5§. M) =[b+ e(|x])]|x| (¢, (49)
Here, the focus is on the well-scaled transition to the diffu-

sive limit based on sound limit theorems of probability with (|x|)—0 as|x| . For these densities, exhibiting a

theory. The following derivation should help the reader in _law d t infinitv. th totic relation hold
judging whether, in the problem he/she is dealing with, the OWETAW decay atinfiny, the asymplotic relation holds,

connection between CTRWSs and fractional diffusion is rel-
evant.

As mentioned above, in order to discuss the diffusive o
limit, the waiting times are multiplied by a positive factor Where the constart; is given by
so that one gets

M(kK)=N(hk)=1—c,(h|«|)*+0(h?), h—0, (50

b

tn(r)=r7'1+l’7'2+-‘-+r7'n. (42) C2:I‘(a+l)sin(a7r/2)' (51)

Analogously, the jumps are multiplied by a positive fadtor

Letting xo(h) =0, one has Equation(50) is valid also for symmetric densities with finite

second momento. In that case, one hag=2 and c,
Xo(h)=h& +hé+- - +hé,. (43) = ¢?/2. Both the results in Eq48) and in Eq.(50) are less
trivial than they seem. Indeed, in order to prove E®), it is
The probability density functiom, (7) of the scaled waiting necessary to use a corollary on Laplace transforms discussed
times is related ta)( ) in the following way: in the classical book by Widdefsee Ref.[59], p. 182,

011107-5
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whereas the proof of Eq50) is tedious but can be distilled
from Chap. 8 of Ref[60]. A simpler but weaker proof can be
found in Ref.[58].

By using the asymptotics in Eq&l8) and(50) and replac-
ing in Eq. (47), it follows that

B~ — 25 o s
K,S)~ , I, n—0.
Prn cirPsP+coh? k|
Now, the scaling relation can be imposed,
cirf=cyhe, (53
yielding, forr,h—0,
- sft
Prn(r,8)— ————. (54)
S +|K|

This limit coincides with the Laplace-Fourier transform of
the Green functiorfor fundamental solutionfor the follow-
ing fractional diffusion Cauchy problem:

9P @
—uxt)=
ath

u(x,t), 0<aes2, 0<p=<l,

Jlx|

u(x,0m)=8(x), xe(—o,+x), t>0, (55)
where 9P/ gtP is the Caputo derivative defined in E(R5)
andd?/d|x|* is the Riesz derivative, a pseudodifferential op-
erator with symbol—|«|“. Recalling Eq.(26), the Laplace-

Fourier transform ofu(x,t) reads

st

U(k,8)= (56)

SB+|K|H7

and therefore, as anticipated, one has,ritr— 0 under the
scaling relation Eq(53),

Brn(k,9)—0(x,S). (57)

In this passage to the limify, ,(«,s) andli(«,s) are asymp-

PHYSICAL REVIEW E69, 011107 (2004

B 1 X
U(X,t)—tBTWaﬁ tﬁm ) (58
whereW,, ;(u) is given by
1 [+ :
_ —iku _ @
Wa“g(u)— wa_w dKe Eﬁ( |K| ), (59)

the inverse Fourier transform of a Mittag-Leffler function
[35,53,61,62 In the caseB=1 anda=2, the fractional dif-
fusion equation reduces to the ordinary diffusion equation
and the functior, ;(u) becomes the Gaussian probability
density function evolving in time with a varianeg=2t. In
the general casg0<B<1l and 0<a<2), the function
W, g(u) is still a probability density evolving in time, and it
belongs to the class of FolM-type functions that can be
expressed in terms of a Mellin-Barnes integral as shown in
details in Ref[61].

The scaling equatior{53) can be written in the following
form, whereC is a constant:

h=Cr#le, (60)

If B=1 and a=2, one recognizes the scaling typical of
Brownian motion(or the Wiener procegsindeed, this is the
limiting stochastic process for the uncoupled continuous-
time random walks with exponential waiting-time density
and the class of jump densities with finite second moment. In
all the other cases considered in this pageg(0,1) and
ae(0,2), the limiting process has a probability density func-
tion given byu(x,t) in Eq. (58).

V. DISCUSSION AND CONCLUSIONS

In this paper, the connection between a class of CTRWs
with Mittag-Leffler survival probability and the fractional
diffusion equation has been discussed. In Sec. I, an explicit
solution of the master equation has been derived for long-tail
processes with Mittag-Leffler survival function. As shown in
Sec. IV, it turns out that, for this class, the solution of the
CTRW master equation weakly converges to the solution of a
Cauchy problem for the fractional diffusion equation. Al-
though such weak convergence also occurs for the waiting-
time densities whose Laplace transforms havesaf0 as-

totically equivalent in the Laplace-Fourier domain. Then, theymptotics 1—c;s°+o(s?) (see Refs[43,58), the Mittag-
asymptotic equivalence in the space-time domain betweeheffler waiting-time law deserves special attention as,
the master equatiofi2) and the fractional diffusion equation without passage to the diffusion limit, it leads to a time-
(55) is ensured by the continuity theorem for sequences ofractional master equation, just by insertion into the CTRW
characteristic functions, after the application of the analointegral equation. This fact was discovered and made explicit
gous theorem for sequences of Laplace transfoffls for the first time by Hilfer and Antori48]. Therefore, this
Therefore, there is convergence in law or weak convergencspecial type of waiting-time laviwith its particular proper-
for the corresponding probability distributions and densitiesties of being singular at zero, completely monotonic, and
Here, weak convergence means that the Laplace transfortong tailed may be best suited for approximate CTRW simu-
and/or Fourier transform(characteristic function of the lation of fractional diffusion. It must be stressed that both the
probability density function are pointwise convergdsee results of Secs. Ill and IV are based on sound and original
for details Ref.[7]). In other words, under the appropriate mathematical considerations.

scaling, defined by Eq(53), and in the limitr,h—0, the It is important to remark that the presence of the time
solution given in Eq.(38) weakly converges to the Green Caputo fractional derivativéor equivalently of the Riemann-
function of the fractional diffusion equatiai®5), Liouville derivative) and of the space Riesz derivative in Eq.
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(55 is a natural consequence of the well-scaled diffusion terexample seems to be in contrast with what has been said
limit discussed in Sec. IV. This should be already clear fromin Sec. IV above. However, the paradox disappears if one
previous work on the relation between CTRWSs and fractakes into account the proper scaling given by Edg)—
tional diffusion (see, in particular Re{48]). However, itis  (46). Indeed, the counterexample by Hilfer does not satisfy
still often argued that there is an arbitrariness in the choice ofhis scaling. More precisely, the nonrelevance of this coun-
the fractional operator in E455). If one uses different frac-  terexample for the theory developed in Sec. IV can be stated
tional operators, the physical meaning, if any, of these veras follows. The waiting-time density of the second model
sions of Eq.(55) will be different. presented by Hilfer cannot be written in the form of E4):
Another point has been raised on the physical meaning of;, ()= y(+/r)/r. Essentially, each of the two addends of
Eq. (59). In particular, some authors consider the space fracHjifer’s density has a different scaling form. The scaling of
tional derivative unphysical due to its nonlocality. An answergq, (44) has already been used by the present authors in Ref.
to this objection is that it is always possible to use an equafsg. It was previously used by Feller in deriving the diffu-
tion as a phenomenological model if it gives good results insion equation from the simple symmetric random wal],
the description of a physical phenomenon. For instance, thgy Balakrishnan[43] and, in recent times, independently
usual Fourier diffusion equation is not invariant for time in- from the authors of this paper, by Uchaikin and Saef§a).
version, whereas the basic equations of classical mechanics \we are currently working to extend our approach to the

are. Still, the Fourigr equation gives very useful results wheroupled case, but this will be the subject of future papers.
used in many applications.

Finally, it is important to discuss some recent results by
Hilfer [63,64). H.e has shovyn tha’g qot every co_ntlnuous—'tlme ACKNOWLEDGMENTS
random walk with a long time tail is asymptotically equiva-
lent to a diffusion equation with a fractional time derivative. R. G. and F. M. appreciate the support of the EU
In Ref.[63], he considers different ways to define fractional ERASMUS-SOCRATES program for visits to Bologna and
derivatives in time. He shows that only the Caputo type lead8erlin that, besides teaching, were also useful for this joint
to mass-conserving fractional diffusion. In RE#4], an ex-  research project; moreover, R.G. would like to acknowledge
ample of a CTRW has been given whose waiting-time denRudolf Hilfer for useful discussions after an invited lecture at
sity has a power-law behavior but whose diffusive limit is ICA-1, Stuttgart University and for providing him with a
not the time-fractional diffusion equation. This latter coun-copy of his counterexample before publication.
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