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Our attention focuses on the stochastic dynamo equation with non-normal operator that gives an insight into
the role of stochastics and non-normality in magnetic field generation. The main point of this Brief Report is
a discussion of the generation of a large-scale magnetic field that cannot be explained by traditional linear
eigenvalue analysis. The main result is a discovery of nonlinear deterministic instability and growth of finite
magnetic field fluctuations v dynamo theory. We present a simple stochastic model for the thin-disk
axisymmetricaQ) dynamo involving three factorga) non-normality generated by differential rotatioif)
nonlinearity reflecting how the magnetic field affects the turbulent dynamo coefficientq,castbchastic
perturbations. We show that even for thebcritical casdall eigenvalues are negativeéhere are three possible
mechanisms for the generation of magnetic field. The first mechanism is a deterministic one that describes an
interplay between transient growth and nonlinear saturation of the turhuleffiect and diffusivity. It turns out
that the trivial state is nonlinearly unstable to small but finite initial perturbations. The second and third are
stochastic mechanisms that account for the interaction of non-normal effect generated by differential rotation
with random additive and multiplicative fluctuations.
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The generation and maintenance of large-scale magnetiquation can be found in Ref®,10]. It is known that non-
fields in stars and galaxies has attracted enormous attentiotormal dynamical systems have an extraordinary sensitivity
in past yearg1—4] (see also a recent revielg]). The main  to stochastic perturbations whuch leads to great amplifica-
candidate to explain the process of conversion of the kinetitions of the average energy of the dynamical sysféd.
energy of turbulent flow into magnetic energy is the mean-Although the literature discussing the mean-field dynamo
field dynamo theory2]. The standard dynamo equation for equation is massive, the effects of non-normality and random
the large-scale magnetic fieldB(t,x) reads JB/dt fluctuations are relatively unexplored. Several attempts have
=curl(eB) + BAB+curl(uxB), whereu is the mean veloc- been made to understand the role of random fluctuations in
ity field, « is the coefficient of thex effect, andB is the = magnetic field generation. Non-normality and small-scale
turbulent magnetic diffusivity. This equation has been widelyfluctuations parametrized by stochastic additive forcing were
used for analyzing the generation of the large-scale magnetitie subject of recent research by Farrell and loari@urhe
field. Traditionally the mathematical procedure consists ofeffect of randoma fluctuations on the solution of the kine-
looking for exponentially growing solutions of the dynamo matic mean-field dynamo has been studied in R&g].
equation with appropriate boundary conditigeapercritical ~ However they did not discuss the non-normality of the dy-
casg. While this approach has been quite successful in th@amo equation and the possibility of stochastic transient
prediction of large-scale magnetic field generation, it fails togrowth of magnetic energy. Numerical simulations of mag-
predict thesubcritical onset of a large-scale magnetic field netoconvection equations with noise and non-normal tran-
for some turbulent flow. Although the trivial soluti®@=0is  sient growth have been performed in Ri].
linearly stable for the subcritical cagall eigenvalues are It is the purpose of this Brief Report to present a simple
negative or the dynamo number is less than critica) o stochastic dynamo model for the thin-disk axisymmedrie
non-normality due to differential rotation leads to the growthdynamo involving three factors: non-normality, nonlinearity,
of initial finite perturbationg6]. It turns out that the nonlin- and stochastic perturbations. The differential rotatifn«f-
ear interactions @ suppression amplify this transient fect) is a crucial factor for a non-normal behavigve do not
growth further. Thus, instead of the generation of the largeeonsidera? dynamo herg Recently it has been four{d 3]
scale magnetic field being a consequence of the linear instahat the interactions of these factors lead to noise-induced
bility of trivial state B=0, it results from the interaction of phase transitions in a “toy” model mimicking a laminar-to-
transient amplifications due to the non-normality with non-turbulent transition. In this Brief Report we discuss three
linearities. Thus, the crucial idea behind subcritical transitionpossible mechanisms for the generation of a magnetic field
is that thea effect might be weak, but the generation andthat are not based on standard linear eigenvalue analysis of
maintenance of the large-scale magnetic field is still possiblehe dynamo equation. The first mechanism is a deterministic

The importance of the transient growth of magnetic fieldone that describes an interplay between transient growth and
for the induction equation has been discussed recently inonlinear saturation of both turbulent parametersand .
Refs.[7,8]. The linear growth of magnetic field due to dif- The second and third are stochastic mechanisms that account
ferential rotation has been discussed in RE8s19]. Com-  for the interaction of the non-normal effect generated by dif-
prehensive reviews of subcritical transition in hydrodynam-ferential rotation with random additive and multiplicative
ics due to the non-normality of the linearized Navier-Stokesfluctuations.
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Here we study the non-normality and stochastic perturbaglynamo the azimuthal componeBi(t) is much larger than
tion effects on the growth of magnetic field by using athe radial fieldB,(t), thereforeBzzBi. We did not include
Moss’s noz model for galaxieg14]. Despite its simplicity the strong dependence afand 8 on the magnetic Reynolds
the noz model proves to be very robust and gives reasonabl@umberR,,,.
results compared with real observations. We consider a thin The multiplicative noise&,(t) describes the effect of
turbulent disk of conducting fluid of uniform thicknes$ 2 rapid random fluctuations ofr. We assume that they are
and radiusR (R>h), which rotates with angular velocity more important than the random fluctuations of the turbulent
Q(r) [3,4]. We consider the case oft{) dynamo for which  magnetic diffusivity3 [12]. The additive nois&;(t) repre-
the differential rotation dominates over the effect. We  sents the stochastic forcing of unresolved scéis Both
leave out the issue of spatial distribution of magnetic fieldnoises are independent Gaussian random processes with zero
along the radius and the height of the disk. Our main pur- means(&,(t))=0, (£;(t))=0 and correlations
pose here is to concentrate on the studies of the influence of
random fluctuations and non-normality on the dynamo pro-{£.(t)£.(S))=2D,8(t—s), (&(t)&i(s))=2D8(t—s).
cess. One can write then the following stochastic equations (4)
for the azimuthaB (t) and radialB,(t) components of the

axisymmetric magnetic field: The intensity of the noises is measured by the paramBtgrs

and D¢. One can show13] that the additive noise in the

2 second equation in Ed1l) is less important.
ﬁ:_ a(|B|'§“(t))B¢_ ™ A([B)) B, + &(1), The governing equationél) can be nondimensionalized
dt h 4h? by using an equipartition field strengBy,, a lengthh, and
a timeﬂgl, where(), is the typical value of angular veloc-
dB, w2 B(|B]) 5 @ ity. By using the dimensionless parameters
—:gw r —2 (OB}
at 4h 9. R w?
= _—, = -, e= s
where «(|B|,&,(t)) is the random nonlinear function de- Qo R. 4R,
scribing thea effect, 8(|B|) is the turbulent magnetic diffu- 5
sivity, andg,=r dQ/dr is the measure of differential rota- R :“_Oh R :Qoh (5)
tion (usually rdQ/dr<0). Here we have used a « B’ B’

phenomenological mesoscopic approfth 1§ in which the

coefficients in the classical dynamo equations are considerate can write the stochastic dynamo equations in the form of
to be random functions of time plus random additive noise SPDE’s

Of course, the present paper addresses the oversimplified

case of magnetic field generation. Nonetheless, we present dB;=—[9¢4(B,)B,y+e¢p(B,)B,]dt

this work as a precise illustration of the influence the random —\201,0,(B,)B, dW, + 20, dW.
fluctuations and non-normality may play in the generation 1¥al e =e =TI S
process, and which therefore should be accounted for in dB,=—(gB, +s¢4(B,)B,)dt, (6)

complicated dynamo modeling. Nonlinearity of the functions
a(|B|,&4(t)) and B(|BJ) reflects how the growing magnetic \where W, and W, are independent standard Wiener pro-
field B affects the turbulent dynamo coefficients. There is dlcesses. The dynamica| systéﬁj is Subjected to the multi-

uncertainty about how the dynamo coefficients are suppiicative and additive noises with the following correspond-
pressed by the mean field, and current theories seem to digg intensities:

agree about the exact form of this suppres$i]. Here we

describe the dynamo saturation by using the simplified forms 01=D,/(h*Qq), 0,=D¢/(BZ Qo). (7
[5]
It is well known that the presence of noise can dramatically
a(|Bl,&.(t) = (ao+ £4(1))@u(|B)), change the properties of a dynamical sysfd]. Since the
differential rotation dominates over the effect (R,<R,),
B(|B[)=Bows(|B), (2)  system(6) involves two small paramete=R, /R, ande

=7?/4R, whose typical values are 0.01-0R,
=10-100,R,=0.1-1). These parameters play very impor-
tant roles in what follows. For small values éfande, the
linear operator in Eq(6) is a highly non-normal oneg(
~1). This can lead to a large transient growth of the azi-

where ¢, 5(|B|) is a decaying function such that, ;(0)
=1. In what follows we us¢5]

‘Pa(|B|):[1+ka(B¢/Beq)2]7lv

1 muthal componenB (t) in a subcritical case. Similar deter-
es(|B)=| 1+ Kg 3) ministic low-dimensional models have been proposed to ex-
p 1+ (Beq/B¢)2 plain the subcritical transition in the Navier-Stokes equations

(see, for example, Ref§15,1€). The probability density
wherek, andkg are constants of order one, aBd, is the  function p(t,B, ,B,) obeys the Fokker-Planck equation as-
equipartition strength. It should be noted that for #h& sociated with Eq(6) [17]. Using this equation in the linear
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FIG. 1. Linear case: the azimuthal componBptas a function
of ime [B,(0)=0] for g=1, =10 %, ande=2x10"? and dif-

ferent initial values oB,,—0.017~-0.021, and-0.03.

case one can find a closed system of ordinary differential

equations for the momen{8?), (B,B,), and(BZ):

(BY) 2 25 oy (BY)
%(BrB(P) = —g -2 -5 || (BB,
(B2) 0 -2g9 —2¢ (B2)

02

+l 0

0

Now we are in a position to discuss three possible sce
narios for the subcritical generation of galactic magnetic

field.

Deterministic subcritical generatiorLet us examine the
deterministic transient growth of the magnetic field in the
subcritical case. To illustrate the non-normality effect con-
sider first the linear case without noise terms. The dynamic

system(6) takes the form

il
dt\B, -g

s
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time
FIG. 2. Nonlinear caseB,, as a function of tim¢B,,(0)=0] for
g=1, 6=10* ande=2x10"2 and different initial values oB, ,
—0.017-0.021;-0.03.

Of course without nonlinear terms any initial perturbation
decays. However if we take into account the back reaction
suppressing the effective dissipation, one can expect an en-
tirely different global behavior. In the deterministic case
there can be several stationary solutions to @g.[21]. In
Fig. 2 we illustrate the role of transient growth and nonlin-
earity in the transition to a nontrivial state using E8). with
k,=0.5 andkz=3. We plot the azimuthal componeRt, as
a function of time with the initial conditio8,(0)=0. We

(8) use the same values of parametgrss, and ¢ and three

initial values ofB,(0) as in Fig. 1. One can see from Fig. 2

that the trivial solutiorB,= B, =0 is nonlinearly unstable to

small but finite initial perturbations oB,, such asB,(0)
=—0.03. For fixed values of the parameters in nonlinear
system(6), there exists a threshold amplitude for the initial
perturbation, above whicB(t) grows and below which it
eventually decays.
Stochastic subcritical generation due to additive noise

his scenario has been already discussed in the literflire
see also Refl11] for hydrodynamics The physical idea is
that the average magnetic energy is maintained by additive

Gaussian random forcing representing unresolved scales. It is
clear that the nonzero additive noise,¢0) ensures the

9 . . AT
stationary solution to Eq(8). If we assume for simplicity
o1=0 and =0 then the dominant stationary moment is

Since 6<1, <1, andg~1, this system involves a highly

non-normal matrix with two eigenvalueg; ,= —&=* /489

(B2)si=(g%02)/(4e%) . (10)

(the corresponding eigenvectors are almost pajalléle su-

percritical excitation conditiony;>0 can be written as
Jég>e or yR,R,g> %4 [4]. Consider the subcritical case
when 0< §<&?/g. The solution of systern9) with the initial
conditions B,(0)=—2c\s/g and B,(0)=0 is B,(t)
=c(e”'—e”?"). ThusB,(t) exhibits large transient growth
over a time scale of orderdbefore decaying exponentially.
In Fig. 1 we plot the azimuthal componel, as a function

of time for g=1, 6=10"4, ande=2x10"2 and different

initial values ofB, [B,(0)=0].

We can see that due to the non-normality of syst@mthe
average stationary magnetic enerﬁ;/p(pr)St exhibits a
high degree of sensitivity with respect to the small parameter
e Eq~e % [11,13.

Stochastic subcritical generation due to multiplicative
noise Here we discuss the divergence of the average mag-
netic energyE(t)~(Bi> with time t due to the random fluc-
tuations of then parameter. Although the first moments tend
to zero in the subcritical case, the average en&f@y grows
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aseM when the intensity of noise, exceeds a critical value. where no such amplification is observed in the absence of
The growth rate\ is the positive real root of the character- noise. The value of the critical noise intensity parametgr,

istic equation for systen®) above which the instability occurs, is proportionaktt that
is, very small indeed. In summary, we have discussed galac-
(AN+28)3—468g(\+2&)—20,9%=0. (11 tic magnetic field generation that cannot be explained by

traditional linear eigenvalue analysis of dynamo equation.
For 6=0, the growth rate is,= —2¢+(20:9°)"* as long e have presented a simple stochastic model for dtie
as it is positive, and the excitation condition can be Writtendynamo involving three factors(a non-normality due to
asoy> o= 2%/ g% It means that the generation of averagedifferential rotation(b) nonlinearity of the turbulent dynamo
magnetic energy occurs far,=0! It is interesting to com- ¢ effect and diffusivity, and(c) additive and multiplicative
pare this criterion with the classical supercritical excitationnoises. We have shown that even for the subcritical case,
condition: 89> ¢? [4]. To assess the significance of this para-there are three possible scenarios for the generation of large-
metric instability it is useful to estimate the magnitude of thescale magnetic field. The first mechanism is a deterministic
critical noise intensityo., . First let us estimate the param- one that describes an interplay between transient growth and
etere = 72 8/(4Q,h?). The turbulent magnetic diffusivity is nonlinear saturation of the turbuleateffect and diffusivity.
given by B=lv/3, wherev is the typical velocity of turbu- We have shown that the trivial staBe=0 can be nonlinearly
lent eddy v=10 kms!, and | is the turbulent scale, unstable with respect to small but finite initial perturbations.
=100 pc. For spiral galaxies, the typical values of theThe second and third are stochastic mechanisms that account
thicknessh and the angular velocitf), are h=400 pc and for the interaction of non-normal effect generated by differ-
Q0,=10s1; g=1 [4]. It gives an estimate ofe ential rotation with random additive and multiplicative fluc-
=0.128, that is,0,=8.4x10"3. In general \(8)=\, tuations. We have shown that multiplicative noise associated
+[4/39(2019) Y36+ 0(6). This analysis predicts an am- with the o effect leads to exponential growth of the average
plification of the average magnetic energy in systéBh  magnetic energy even in the subcritical case.
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