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Non-normal and stochastic amplification of magnetic energy in the turbulent dynamo:
Subcritical case
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Our attention focuses on the stochastic dynamo equation with non-normal operator that gives an insight into
the role of stochastics and non-normality in magnetic field generation. The main point of this Brief Report is
a discussion of the generation of a large-scale magnetic field that cannot be explained by traditional linear
eigenvalue analysis. The main result is a discovery of nonlinear deterministic instability and growth of finite
magnetic field fluctuations inab dynamo theory. We present a simple stochastic model for the thin-disk
axisymmetricaV dynamo involving three factors:~a! non-normality generated by differential rotation,~b!
nonlinearity reflecting how the magnetic field affects the turbulent dynamo coefficients, and~c! stochastic
perturbations. We show that even for thesubcritical case~all eigenvalues are negative!, there are three possible
mechanisms for the generation of magnetic field. The first mechanism is a deterministic one that describes an
interplay between transient growth and nonlinear saturation of the turbulenta effect and diffusivity. It turns out
that the trivial state is nonlinearly unstable to small but finite initial perturbations. The second and third are
stochastic mechanisms that account for the interaction of non-normal effect generated by differential rotation
with random additive and multiplicative fluctuations.

DOI: 10.1103/PhysRevE.68.067301 PACS number~s!: 47.65.1a, 95.30.Qd
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The generation and maintenance of large-scale magn
fields in stars and galaxies has attracted enormous atte
in past years@1–4# ~see also a recent review@5#!. The main
candidate to explain the process of conversion of the kin
energy of turbulent flow into magnetic energy is the me
field dynamo theory@2#. The standard dynamo equation f
the large-scale magnetic fieldB(t,x) reads ]BÕ]t
5curl(aB)1bDB1curl(u3B), whereu is the mean veloc-
ity field, a is the coefficient of thea effect, andb is the
turbulent magnetic diffusivity. This equation has been wid
used for analyzing the generation of the large-scale magn
field. Traditionally the mathematical procedure consists
looking for exponentially growing solutions of the dynam
equation with appropriate boundary conditions~supercritical
case!. While this approach has been quite successful in
prediction of large-scale magnetic field generation, it fails
predict thesubcritical onset of a large-scale magnetic fie
for some turbulent flow. Although the trivial solutionB50 is
linearly stable for the subcritical case~all eigenvalues are
negative or the dynamo number is less than critical one!, the
non-normality due to differential rotation leads to the grow
of initial finite perturbations@6#. It turns out that the nonlin-
ear interactions (b suppression! amplify this transient
growth further. Thus, instead of the generation of the lar
scale magnetic field being a consequence of the linear in
bility of trivial state B50, it results from the interaction o
transient amplifications due to the non-normality with no
linearities. Thus, the crucial idea behind subcritical transit
is that thea effect might be weak, but the generation a
maintenance of the large-scale magnetic field is still possi

The importance of the transient growth of magnetic fie
for the induction equation has been discussed recentl
Refs. @7,8#. The linear growth of magnetic field due to di
ferential rotation has been discussed in Refs.@3,19#. Com-
prehensive reviews of subcritical transition in hydrodyna
ics due to the non-normality of the linearized Navier-Stok
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equation can be found in Refs.@9,10#. It is known that non-
normal dynamical systems have an extraordinary sensiti
to stochastic perturbations whuch leads to great amplifi
tions of the average energy of the dynamical system@11#.
Although the literature discussing the mean-field dyna
equation is massive, the effects of non-normality and rand
fluctuations are relatively unexplored. Several attempts h
been made to understand the role of random fluctuation
magnetic field generation. Non-normality and small-sc
fluctuations parametrized by stochastic additive forcing w
the subject of recent research by Farrell and Ioannou@7#. The
effect of randoma fluctuations on the solution of the kine
matic mean-field dynamo has been studied in Ref.@12#.
However they did not discuss the non-normality of the d
namo equation and the possibility of stochastic transi
growth of magnetic energy. Numerical simulations of ma
netoconvection equations with noise and non-normal tr
sient growth have been performed in Ref.@8#.

It is the purpose of this Brief Report to present a simp
stochastic dynamo model for the thin-disk axisymmetricaV
dynamo involving three factors: non-normality, nonlineari
and stochastic perturbations. The differential rotation (V ef-
fect! is a crucial factor for a non-normal behavior~we do not
considera2 dynamo here!. Recently it has been found@13#
that the interactions of these factors lead to noise-indu
phase transitions in a ‘‘toy’’ model mimicking a laminar-to
turbulent transition. In this Brief Report we discuss thr
possible mechanisms for the generation of a magnetic fi
that are not based on standard linear eigenvalue analys
the dynamo equation. The first mechanism is a determini
one that describes an interplay between transient growth
nonlinear saturation of both turbulent parameters:a andb.
The second and third are stochastic mechanisms that acc
for the interaction of the non-normal effect generated by d
ferential rotation with random additive and multiplicativ
fluctuations.
©2003 The American Physical Society01-1
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Here we study the non-normality and stochastic pertur
tion effects on the growth of magnetic field by using
Moss’s no-z model for galaxies@14#. Despite its simplicity
the no-z model proves to be very robust and gives reasona
results compared with real observations. We consider a
turbulent disk of conducting fluid of uniform thickness 2h
and radiusR (R@h), which rotates with angular velocity
V(r ) @3,4#. We consider the case ofaV dynamo for which
the differential rotation dominates over thea effect. We
leave out the issue of spatial distribution of magnetic fi
along the radiusr and the height of the disk. Our main pu
pose here is to concentrate on the studies of the influenc
random fluctuations and non-normality on the dynamo p
cess. One can write then the following stochastic equati
for the azimuthalBw(t) and radialBr(t) components of the
axisymmetric magnetic field:

dBr

dt
52

a„uBu,ja~ t !…

h
Bw2

p2b~ uBu!

4h2
Br1j f~ t !,

dBw

dt
5gvBr2

p2b~ uBu!

4h2
Bw , ~1!

where a„uBu,ja(t)… is the random nonlinear function de
scribing thea effect,b(uBu) is the turbulent magnetic diffu
sivity, andgv5r dV/dr is the measure of differential rota
tion ~usually r dV/dr,0). Here we have used
phenomenological mesoscopic approach@17,18# in which the
coefficients in the classical dynamo equations are consid
to be random functions of time plus random additive noi
Of course, the present paper addresses the oversimp
case of magnetic field generation. Nonetheless, we pre
this work as a precise illustration of the influence the rand
fluctuations and non-normality may play in the generat
process, and which therefore should be accounted fo
complicated dynamo modeling. Nonlinearity of the functio
a„uBu,ja(t)… andb(uBu) reflects how the growing magneti
field B affects the turbulent dynamo coefficients. There is
uncertainty about how the dynamo coefficients are s
pressed by the mean field, and current theories seem to
agree about the exact form of this suppression@20#. Here we
describe the dynamo saturation by using the simplified fo
@5#

a~ uBu,ja~ t !5„a01ja~ t !…wa~ uBu!,

b~ uBu!5b0wb~ uBu!, ~2!

where wa,b(uBu) is a decaying function such thatwa,b(0)
51. In what follows we use@5#

wa~ uBu!5@11ka~Bw /Beq!
2#21,

wb~ uBu!5S 11
kb

11~Beq /Bw!2D 21

, ~3!

whereka andkb are constants of order one, andBeq is the
equipartition strength. It should be noted that for theaV
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dynamo the azimuthal componentBw(t) is much larger than
the radial fieldBr(t), therefore,B2.Bw

2 . We did not include
the strong dependence ofa andb on the magnetic Reynold
numberRm .

The multiplicative noiseja(t) describes the effect o
rapid random fluctuations ofa. We assume that they ar
more important than the random fluctuations of the turbul
magnetic diffusivityb @12#. The additive noisej f(t) repre-
sents the stochastic forcing of unresolved scales@7#. Both
noises are independent Gaussian random processes with
meanŝ ja(t)&50, ^j f(t)&50 and correlations

^ja~ t !ja~s!&52Dad~ t2s!, ^j f~ t !j f~s!&52D fd~ t2s!.

~4!

The intensity of the noises is measured by the parametersDa
and D f . One can show@13# that the additive noise in the
second equation in Eq.~1! is less important.

The governing equations~1! can be nondimensionalize
by using an equipartition field strengthBeq , a lengthh, and
a timeV0

21, whereV0 is the typical value of angular veloc
ity. By using the dimensionless parameters

g5
ugvu
V0

, d5
Ra

Rv
, «5

p2

4Rv
,

Ra5
a0h

b
, Rv5

V0h2

b
, ~5!

we can write the stochastic dynamo equations in the form
SDE’s

dBr52@dwa~Bw!Bw1«wb~Bw!Br #dt

2A2s1wa~Bw!Bw dW11A2s2 dW2 ,

dBw52„gBr1«wb~Bw!Bw…dt, ~6!

where W1 and W2 are independent standard Wiener pr
cesses. The dynamical system~6! is subjected to the multi-
plicative and additive noises with the following correspon
ing intensities:

s15Da /~h2V0! , s25D f /~Beq
2 V0! . ~7!

It is well known that the presence of noise can dramatica
change the properties of a dynamical system@18#. Since the
differential rotation dominates over thea effect (Ra!Rv),
system~6! involves two small parametersd5Ra /Rv and«
5p2/4Rv whose typical values are 0.01–0.1 (Rv

510–100,Ra50.1–1). These parameters play very impo
tant roles in what follows. For small values ofd and«, the
linear operator in Eq.~6! is a highly non-normal one (g
;1). This can lead to a large transient growth of the a
muthal componentBw(t) in a subcritical case. Similar dete
ministic low-dimensional models have been proposed to
plain the subcritical transition in the Navier-Stokes equatio
~see, for example, Refs.@15,16#!. The probability density
function p(t,Br ,Bw) obeys the Fokker-Planck equation a
sociated with Eq.~6! @17#. Using this equation in the linea
1-2
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case one can find a closed system of ordinary differen
equations for the moments^Br

2&, ^BrBw&, and^Bw
2&:

d

dt S ^Br
2&

^BrBw&

^Bw
2&

D 5S 22« 22d s1

2g 22« 2d

0 22g 22«
D S ^Br

2&

^BrBw&

^Bw
2&

D
1S s2

0

0
D . ~8!

Now we are in a position to discuss three possible s
narios for the subcritical generation of galactic magne
field.

Deterministic subcritical generation. Let us examine the
deterministic transient growth of the magnetic field in t
subcritical case. To illustrate the non-normality effect co
sider first the linear case without noise terms. The dynam
system~6! takes the form

d

dt S Br

Bw
D 5S 2« 2d

2g 2«
D S Br

Bw
D . ~9!

Sinced!1, «!1, andg;1, this system involves a highly
non-normal matrix with two eigenvaluesg1.252«6Adg
~the corresponding eigenvectors are almost parallel!. The su-
percritical excitation conditiong1.0 can be written as
Adg.« or ARaRvg.p2/4 @4#. Consider the subcritical cas
when 0,d,«2/g. The solution of system~9! with the initial
conditions Br(0)522cAd/g and Bw(0)50 is Bw(t)
5c(eg1t2eg2t). ThusBw(t) exhibits large transient growth
over a time scale of order 1/« before decaying exponentially
In Fig. 1 we plot the azimuthal componentBw as a function
of time for g51, d51024, and «5231022 and different
initial values ofBr @Bw(0)50#.

FIG. 1. Linear case: the azimuthal componentBw as a function
of time @Bw(0)50# for g51, d51024, and«5231022 and dif-
ferent initial values ofBr ,20.017,20.021, and20.03.
06730
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Of course without nonlinear terms any initial perturbati
decays. However if we take into account the back react
suppressing the effective dissipation, one can expect an
tirely different global behavior. In the deterministic ca
there can be several stationary solutions to Eq.~6! @21#. In
Fig. 2 we illustrate the role of transient growth and nonli
earity in the transition to a nontrivial state using Eq.~3! with
ka50.5 andkb53. We plot the azimuthal componentBw as
a function of time with the initial conditionBw(0)50. We
use the same values of parametersg, d, and « and three
initial values ofBr(0) as in Fig. 1. One can see from Fig.
that the trivial solutionBw5Br50 is nonlinearly unstable to
small but finite initial perturbations ofBr , such as,Br(0)
520.03. For fixed values of the parameters in nonline
system~6!, there exists a threshold amplitude for the initi
perturbation, above whichBw(t) grows and below which it
eventually decays.

Stochastic subcritical generation due to additive nois.
This scenario has been already discussed in the literature@7#
~see also Ref.@11# for hydrodynamics!. The physical idea is
that the average magnetic energy is maintained by add
Gaussian random forcing representing unresolved scales.
clear that the nonzero additive noise (s2Þ0) ensures the
stationary solution to Eq.~8!. If we assume for simplicity
s150 andd50 then the dominant stationary moment is

^Bw
2&st5~g2s2!/~4«3! . ~10!

We can see that due to the non-normality of system~9! the
average stationary magnetic energyEst;^Bw

2&st exhibits a
high degree of sensitivity with respect to the small parame
«: Est;«23 @11,13#.

Stochastic subcritical generation due to multiplicativ
noise. Here we discuss the divergence of the average m
netic energyE(t);^Bw

2& with time t due to the random fluc-
tuations of thea parameter. Although the first moments ten
to zero in the subcritical case, the average energyE(t) grows

FIG. 2. Nonlinear case:Bw as a function of time@Bw(0)50# for
g51, d51024 and«5231022 and different initial values ofBr ,
20.017,20.021,20.03.
1-3
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aselt when the intensity of noises1 exceeds a critical value
The growth ratel is the positive real root of the characte
istic equation for system~8!

~l12«!324dg~l12«!22s1g250. ~11!

For d50, the growth rate isl0522«1(2s1g2)1/3 as long
as it is positive, and the excitation condition can be writt
ass1.scr52«3/g2. It means that the generation of avera
magnetic energy occurs fora050! It is interesting to com-
pare this criterion with the classical supercritical excitati
condition:dg.«2 @4#. To assess the significance of this pa
metric instability it is useful to estimate the magnitude of t
critical noise intensityscr . First let us estimate the param
eter«5p2b/(4V0h2). The turbulent magnetic diffusivity is
given by b. lv/3, wherev is the typical velocity of turbu-
lent eddy v.10 km s21, and l is the turbulent scale
l .100 pc. For spiral galaxies, the typical values of t
thicknessh and the angular velocityV0 are h.400 pc and
V0.10215 s21; g.1 @4#. It gives an estimate of«
.0.128, that is, scr.8.431023. In general l(d)5l0
1@4/3g(2s1g)21/3#d1o(d). This analysis predicts an am
plification of the average magnetic energy in system~6!
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where no such amplification is observed in the absence
noise. The value of the critical noise intensity parameterscr ,
above which the instability occurs, is proportional to«3, that
is, very small indeed. In summary, we have discussed ga
tic magnetic field generation that cannot be explained
traditional linear eigenvalue analysis of dynamo equati
We have presented a simple stochastic model for theaV
dynamo involving three factors:~a! non-normality due to
differential rotation,~b! nonlinearity of the turbulent dynamo
a effect and diffusivityb, and~c! additive and multiplicative
noises. We have shown that even for the subcritical ca
there are three possible scenarios for the generation of la
scale magnetic field. The first mechanism is a determini
one that describes an interplay between transient growth
nonlinear saturation of the turbulenta effect and diffusivity.
We have shown that the trivial stateB50 can be nonlinearly
unstable with respect to small but finite initial perturbation
The second and third are stochastic mechanisms that acc
for the interaction of non-normal effect generated by diffe
ential rotation with random additive and multiplicative flu
tuations. We have shown that multiplicative noise associa
with the a effect leads to exponential growth of the avera
magnetic energy even in the subcritical case.
s.
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