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Amplitude death induced by dynamic coupling
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The present paper shows that dynamic coupling induces amplitude death in coupled identical oscillators. For
a simple limit-cycle oscillator, our theoretical analysis provides the necessary and sufficient condition for
amplitude death. Furthermore, we guarantee that amplitude death never occurs, if each oscillator satisfies the
odd number property that is known in the field of delayed-feedback control of chaos.
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There have been various investigations on amplitude X1 X 1(1—x21—x22)—wx ) u
death in coupled oscillatorgl—3]; this phenomenon is a AL | TP 'g g A ARy

coupling-induced stabilization of the origin in the oscillators. X2 Xp2(1—Xp1—Xjgp) + wXpy 0

For two coupled oscillators, Aronson, Ermentrout, and Ko-

pell have investigated this phenomenon in deftd]l From

these results, we can see that amplitude death never occursvimere x,,; 5 € R(i=1,2) andu, geR are the system vari-

coupled identical oscillators. ables and the coupling signals, respectively. The parameter
Reddy, Sen, and Johnston reported that a time-delay cow>0 is the natural frequency. It is well accepted that the

pling, which is frequently observed in laser and biologicaloscillator without couplingi.e., uz=u,=0) has been con-

systems, induces an amplitude death in coupled identical osjdered as a typical model of limit cycle. This is because the

cillators[5]. Their result has created considerable interest imscillator shows a stable limit cycle with unit amplitude.

recent yearg6,7]. The theoretical analysis on time-delay- geveral investigations of the static-coupled oscillators have

induced amplitude death has been shown in [&ffurther- oo reported in Ref§3-5,8. The main purpose of this

more, this phenomenon was experimentally observed in ele¢s,her is to propose the following dvnamic counling:
tronic circuits[9], living oscillators[10], and thermo-optical ap prop gy Ping:

oscillatorg[11]. In addition, the time-delay-induced stabiliza-

tion of coupled identical discrete-time systems has been in- Z,= =2y Xp1, Uyu=K(Zy—Xa1), 3
vestigated 12].

Kuntsevich and Pisarchik showed amplitude death in a )
dual-wavelength clasB- laser with modulated lossd43]. Zp=—2Zg+Xa1, Up=K(Zg—Xp1), (4)

This laser is a nonautonomous system, since the losses in a
channel are modulated by an external sinusoidal force. In . ) ] )
studies on amplitude death of autonomous Systm], Whereza’ﬂER are the additional variables in the dynamIC
the coupling signal is proportional to the difference betweerfoupling. ke R corresponds to the coupling strength. It
the oscillators’ states. The proportionality factor is a constanshould be noted that Eqg3) and(4) include the other oscil-
value; hence, it can be consideredsgatic coupling. In other  lator variables;, andx,,, respectively. The steady states of
words, static coupling without delay does not induce ampli-subsystems1) and(2) without coupling k=0) are
tude death in coupled identical oscillators.

The present paper proposesignamiccoupling that has T_ T T_ T
not onIypthe progorrt)ionglitypfactor%]ut also itspOV\?n dynamics; [Xa1Xa2]' =10 0T, [Xp1 X521 =[0 01,
however, the dynamic-coupled systems are classified into the

autonomous systems. The motivations of our proposal are ggi-, never change even by dynamic coupling; hence, cou-
follows: it is a rough approximation of the time-delayed cou-pling influences only the state stability.

pling for low-frequency oscillators and/or short-time delay Th :
- ) e L e parameter and the coupling strength are seb at
[14]; RC-ladder coupling15], which is an approximation of _ 10 andk=4.0. Figure 1 shows the numerical simulation of

RC wire delay connections in VLSI chifid6], can be con- the coupled limit-cycle oscillators. Each oscillator without

s_lde_red as a kind of_the dyr!am|_c coupling. From these m(.)E:oupIing k=0) behaves periodically unti=150; then, the
tivations, the dynamic coupling is reasonable from a practi-

) ) : o dynamic coupling is achieved &t 150. It can be seen that
cal viewpoint. We shall show the dynamic-coupling-induced o . . )

) . " ; the oscillations vanish after the coupling. This phenomenon
amplitude death, and provide the stability analysis.

) . . .y . is the amplitude death induced by dynamic coupling. The
Let us consider two identical limit-cycle oscillators, bifurcation diagram ©=4) is shown in Fig. 2, where the

Xo1| [Xa1(1=X21=x%,) = wXa0] [u, coupling strengtrk is used as a bifurcation parameter. We
.= s , (1) can observe amplitude death in the wide rangek.ofThe
Xaz) [Xa2(1=Xo1=Xg2) t@Xa1] |0 variablex,, presents oscillatory behavior ke[0,2.3]; the
amplitude death occurs ike[2.3,8.5, where all variables
converge on the origin. The stable fixed point, which differs
*Electronic address: kkonishi@fun.ac.jp from the origin, appears fde=8.5. Now, an important ques-
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FIG. 1. Behavior of the coupled limit-cycle oscillators just be-
fore and after the dynamic coupling & 10k=4.0). Two isolated where
oscillators are coupled at=150.

IF(X)
tion remains about the analytical derivation of the coupling A= IX x=0. ©®
strength range. This paper shall answer it on the basis of
linear stability analysis. These subsystems are couplediby ;. A is a Jacobi matrix
We consider two identicaim-dimensional subsystems of the nonlinear function at the steady st&eand has at
208 least one eigenvalue in the open right half complex plane
. . (i.e., A is an unstable matr)x
s :[Xa: F(Xa)+Bu, s :[XB: F(xg)+Bug The local stability of steady stat®) in the coupled sys-
“1y,=Cx,, Y5=CXg, tem is the same as the stability of linear subsystehs, 4

) coupled byll, ;. The coupled linear systems can be given
where x, ;e R™ are the system variables, ;¢ R and by

Y.,p€ RP are the input and output signalB:R™—R™ de- )
notes the nonlinear function that has an unstable steady state | X, A—BKC BK 0 0

Xa
0 [i.e., F(0)=0]. Be R™! and Ce R¥*™ are the input and ;) 0 O c 0 .
output matrices. These subsystels; are coupled by R p “«
. : kﬁ 0 0 A-BKC BK || xg|’
=—z,+ =—z,+
| AT il BT BT ; C 0 0o 1,0l z
U,= K(Za_ya)’ uB: K(Zﬁ_yﬁ)l B (7)

b . , : i
wherez, < R" are the additional variables for dynamic cou wherel, is the p-dimensional identity matrix. The stability

pling. Ke R*P implies the coupling strength. Figure 3 illus- . . i
trates the structure of the coupled systems. The steady stahémi?\r) iny tfgz)(?\?p?ﬁ;gmy on the characteristic func
of the coupled systems is described by 1 2
Mno,—A+BKC  —BK
(X 2 X 2517 =[0000, ® fl(x):de{ m }

-C (A+DI,
The amplitude death induced by dynamic coupling can be

considered as a stabilization of steady st&e M —A+BKC —BK
In order to analyze local stability of E¢5), we linearize fo(N):=de c D)1 |
subsystem& , 5 around the steady state; the linearized sub- P
systems are as follows: Linear system(7) is stable if and only if all roots\[i
).(a:AXa_’_Bua ).(B:AXBjL Bug =1,2,...,2(m+p)] of f(\)=0 are in the open left half_
A3, Al complex plane. These roots can be obtained by solving
Yo=CX,, Yp=CXg, f1(A\)=0 andf,(\)=0.

- . If lim,_.f{(A)=0c andf,(0)<0 are satisfied, at least
Amplitude Death w=4 one root off ;(A) =0 is in the open right half complex plane.
: It is obvious that the first condition lign, . f;1(\) = always
holds, and the second condition can be described by

f1<0>=det—A]=§1<—aq>,

5 10 whereoy(q=1,2, ... m) are the eigenvalues &. Hence,
if A has an odd number of real positive eigenval(edd

FIG. 2. Bifurcation diagram of the coupled limit-cycle oscilla- number property, then we have ;(0)<0. These arguments
tors forke[0,12] (w=4.0). can be summarized as follows: If the Jacobi matixof
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oscillators satisfies the odd number property, the dynamic 8
coupling never induces amplitude death at the origin in #-of kv20F=0
coupled identical systems. The odd number property has )
been known in the field of delayed-feedback control of chaos =~ BF
[17]. A similar stability analysis can be found in Refa8— I
20].

We shall provide two numerical examples to confirm our A . {
theoretical results. First, let us look again at limit-cycle os- , p
cillators (1) and (2) coupled by dynamic coupling3) and ) ’ \M :
(4). The above linear stability analysis can be applied to 2 3 4 5
these coupled oscillators. The Jacobi matrix described in - @
Eq. (6), FIG. 4. Amplitude death region fore(,k) space.

A 1 -o coupled by
o 17

Wa:_wa+gﬁ2! ua:k(wa_gaZ)!
has the eigenvalues, ,=1*+iw; hence,A is an unstable
matrix, and does not satisfy the odd number property. The W,B:_WB+ £aa,  Ug=K(Wg—E&py).
other parameters are
&4, p€R(i=1,2,3) are the system variables amg, ;e R
B=[10]", C=[10], K=k. are the parameters. Each isolated subsystem has the steady

_ . _ state
From linear stability analysis, we have

— T_ T
f1(N) =N+ (k= DN+ (k— 1+ @)\ + 1+ w?— 2Kk, Eap=l8a1p1 ap2 Eazpal =[Er1 €263l 8

where
fo(N) =N+ (k— DA%+ (02— 1— KN+ 1+ »?.

Y3~ VY= 41172 vt YAy

The steady state of the coupled oscillators are locally stable &;1= 2 v Sf2T 2 '
if and only if all the roots of the characteristic equations, N
f1(N\)=0 andf,(\)=0, are in the open left half complex T

plane. These roots are not so simple; therefore, we apply the 3= Y3T N3 47”’2,

Routh stability criterion to the characteristic equations. This 2y

criterion has been used to check the stability of characteristic . ) o

equations in the field of control theofg4]. These character- | NiS Steady state can be shifted to the origin via a change of
istic equations are stable if and onlykfand  satisfy the variables,

following inequalities: (a) 1+ w“—2k>0, (b) 1—w“—k e e il o _
<0, (0) 1—w?+k<0, (d) k>1, (6) K2+ w?k—2w?>0, Xai pi*=6ai o~ 611 (1=1.2.3), 2o p=Wa ™ &2,
and (f) k?— w’k+2w?<0. From these inequalities, we ob- then we obtain the subsystefis s coupled byll, 4. Since
tain the amplitude death region shown in Fig. 4. The couthe nonlinear function is ' '

pling strength range can be described as

LHw?— wJo?—8)<k<i(w?+w|w’—8)

—(Xg+ &r2) — (X3t &53)

F(x)= X1+t yi(Xo+ &52) \
for 2\2<w<\/4+ 17, and Yo+ (Xa+ &r3) (X1 + &1 v3)
Hw?— wo?—8)<k<i(1l+w?) we obtain the Jacobi matrix
0o -1 -1
for V4+ \/1_7s w. This theoretical result allows us to obtain
the coupling strength range 2.348<<8.500 for w=4. It A=l 1 0
must be noted that the range agrees well with the numerical (3 0 & ys

result shown in Fig. 2. . _ _ _
Second, we consider the two identicalRter systems,  The input and output matrices and the coupling gain are

given by
ba= " Eaz™ Laa, §p= " Ep2™ Epa B=[010]", C=[010], K=k.
Er= bt Vifart e, Ep=épt vi€ptug, The parameters are fixed at the well-known valugs:
_ . =0.398, y,=2.0, andy3=4.0, where each isolated sub-
Exz= Vot Eas(€a1—va), Ep3=vatEps(ép1— va), system k=0) behaves chaotically. The eigenvalueadre
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FIG. 5. Behavior of the coupled Rsler systems just before and
after the dynamic couplingk&3.0). Two isolated systems are
coupled att=150.

— k

o1=—3.655 ando, 3= 0.131+i0.981; hence, we notice that FIG. 6. Bifurcation diagram of the coupled &er systems for
A is an unstable matrix and does not satisfy the odd numbef<[0,10].

property. From linear stability analysis, we notice that amp“'hence, the stability can be easily analyzed even for high-

tude qeath could occlur at steady state. I?gure S shfows tIHﬁ‘mensional oscillators. On the contrary, for the time-delayed
beha_lwor of _the coupled systems just be ore and after dy<':oupled-induced amplitude death, a laborious task of graphi-
namic coupling k=3). They behave chaotically before the cal method, Nyquist plof14], is needed to determine the
coupling and converge on steady stélg after that. Unlike stability.

th_e limit-cycle osciIIat_ors, i'.[ is not So easy to derive the cou- In conclusion, this paper introduced the dynamic coupling
pling strength range in Wh.'Ch amplitude death oceurs. HOWthat induces amplitude death in coupled identical oscillators.
ever, a numerical analysis supports us in estimaings  \ye have analyzed the amplitude death, and obtained the suf-

shown in Fig. 6. The bifurcation diagram fér[0,10] is  ficient condition under which it never occurs. Furthermore,
indicated in Fig. €. Figure @b) presents the maximum ;e ghserved amplitude death in coupled limit-cycle oscilla-
real part of roots of f3(A\)=0 and f(A\)=0 (-5 and in coupled Kesler systems.

[i.e., Nmax=max ;1 gRe(;)]. From our stability analysis,

we know that steady state) is stable if and only if this This research was supported by the Grants-in-Aid for
value is negative. It can be stated that amplitude death occuidoung ScientistgB) from the Ministry of Education, Cul-

in a coupling strength range where the maximum real part ofure, Sports, Science and Technology of Jaf@rant No.
the roots is negative. The above numerical estimation,@f, 15760326 and by the Special Research Funds of Future
is a simple calculation of eigenvalues of system mafrix  University—Hakodate.
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