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Soliton propagation in an erbium-doped fiber with and without a continuous wave background
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Considering ultrashort pulse propagation in a nonlinear resonant fiber governed by Hirota-Maxwell Bloch
equations, the soliton interaction in an erbium-doped fiber system associated with higher-order dispersion,
self-steepening, and self-induced transparency effects is studied for the case when the fiber is driven with and
without a constant pumping source. Using auta@iand-transformation, one- and two-soliton solutions are
generated. The significance of the results is discussed in detail.

DOI: 10.1103/PhysReVvE.68.066615 PACS nunierd2.81.Dp, 02.30.1k, 42.65.Tg

[. INTRODUCTION solution, it becomes feasible to use analytical soliton tech-
nigues and potentiality of obtaining useful analytical results
The field of optical solitons has considerable potential forbecomes very high. In order to increase the bit rates, it is
ultrafast technological applications, and it presents many exdecessary to decrease the pulse width. As pulse lengths be-
citing research problems both from fundamental and applie§ome comparable to the wavelength, however, the NLS
points of view[1]. Solitons are envisaged by communication €gquation becomes inadequate, additional terms have to be
experts all over the world as the future tools in achieving thdncluded, and the resulting pulse propagation is called as
endeavor of an ideal global village where information travelshigher-order nonlinear Schdinger (HNLS) equation which
very fast and communication is efficient and cost effectivelis of the form[1,2,5,6,9,10
Experiments done at different laboratories have confirmed
the theoretical conjecture about the feasibility of ultrafast,
long-distance, and less expensive communication systems
yvithout any loss of power using optical _so'liton_s as bits of +(Bs+iog)u(Jul?),]=0. )
information. In the last decade, many distinguished physi-
cists, applied mathematicians, and engineers have contrib-
uted in a major way to this exciting area of research. Opticall denotes the normalized slowly varying complex pulse en-
communication is a wonderful example of how the interplayvelope, 7 is the normalized retarded time in the nondimen-
between mathematics and more applied research has gensienal form and; is the normalized propagation distance also
ated significant technological advances. Many technologicah the non-dimensional form. The perturbation tesnis the
applications of optical solitons are being actively pursuedyelative spectral width. Equatiofl) includes effects such as
including soliton switching, pulse compression, dispersiorthird-order dispersion(term corresponding toB;), self-
management, wavelength conversion, and sfle+8|. steepeningterm corresponding t@,), and stimulated Ra-
The propagation of temporal soliton envelopes in nonlin-man scatteringterm corresponding t@s+iog). All the co-
ear optical media has been predicted and demonstrated esfficients in the higher-order terms are real. The terms with
perimentally. This prediction arises from the opportunity of 8,, B,, and 85 give perturbations of dispersive or Hamil-
reducing the Maxwell equations, which govern the propagatonian type and the resulting equation has been thoroughly
tion to a single completely integrable soliton equation in theanalyzed by Kodampl1,13. The term withog corresponds
form of nonlinear Schidinger (NLS) equation. Soliton-type to self-induced Raman effect. It is well known that the third-
pulse propagation through nonlinear optical fibers is realizedrder dispersiofTOD) effect is responsible for splitting-up
by means of the exact counterbalance between the majaf higher-order solitons. The inelastic Raman scattering is
constraints of the fiber, viz., group velocity dispersion whichdue to the delayed response of the medium which forces the
broadens the pulse and the self-phase modulation which copulse to undergo a frequency shift and known as self-
tracts the pulse. The propagation of optical pulses through fiequency shift. The effect of self-steepening is due to the
nonlinear fiber in the picosecond regime is described by thintensity-dependent group velocity of the optical pulse,
well-known NLS equation. With the current interest of usingwhich gives the pulse a very narrow width in the course of
solitons as pulse bits in long optical fibers for communica-propagation. Because of this, the peak of the pulse will travel
tion purposes, it is important for us to reevaluate the practislower than the wings. Among the effects associated with
cality of using analytical techniques for predicting the behav-third-order nonlinearity, stimulated Raman scattering and
ior of such bits. Since such pulses are near a pure solitostimulated Brillouin scattering limit the maximum input
power available for transmission, whereas self-phase modu-
lation directly influences the dispersion by modifying the

iug"'%UTT—’_|u|2u+ie[ﬁlu777+ﬁ2(|u|2u)7
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Equation (1) is found to be integrable for the cass; Nakazawa et al. reported that a stable @N=1,
=0, B;=1, B,=6, andB;= — 3 for which multisoliton so- NLS-MB soliton exists[17,18. Also, the multiple-soliton
lutions have been obtained using inverse scattering transforsiructure proved that the higher-order NLS-MB solitons al-
[12]. In Ref.[13], when or=0, employing a certain Lie Wways split into multiple (2r/N)=1 solitons. These proper-
transformation from the perturbed equation, Kodama wagies are also confirmed through a computer run. The phase
able to reduce Eq(1) to an integrable form by considering change of the new soliton is governed solely by the NLS

terms up toO(&) only leading to the Hirota equation given Component, while the pulse delay is determined solely by the
by SIT component when the detuning from the resonance is

zero. The propagation and switching of SIT in nonlinear di-
rectional couplers with a two-level atom has been recently
iug+3u,,+|ulPu+ieBy(u,,,+6[ul?u,)=0, (2) investigated numerically by retaining the transverse depen-
dence of the optical field and atomic variables. This work
demonstrated that the self-confinement due to the guiding
for which Hirota had already obtained multisoliton solutions structure permits the injected SIT soliton to maintain its par-
using the inverse scattering transfof . ticlelike behavior. Recent experiments by Nakazastal.

The propagation of the optical solitons that we have dishave confirmed guided wave SIT soliton formation and
cussed so far results from compensation between self-phasgropagation by employing a few meters of erbium-doped
modulation and group-velocity dispersion and other higherfiber, which was cooled to 4.2 KL7,18. This justifies the
order effects. A different type of optical soliton is associatedapproximation of treating ultrashort pulse propagation in
with the self-induced transparenc¢gIT) effect in resonant waveguide or fiber couplers doped with resonant two-level
absorbers. In 1967, McCall and Hahn have proposed SItentres. To the best of our knowledge, only a small number
soliton in two-level resonant atonf8]. of works have been reported for the higher-order effects with

In theoretical description of this strongly resonant situa-SIT effec'gs. ) i i ) ]
tion it is frequently possible to ignore all other energy levels . The prime aim of this paper is to consider the impact of

of the atoms and treat the interaction of light with a so-called!igher-order perturbation terms appearing in E2).and to

two-level atom. By assuming classical treatment of "ght,generate the two-soliton solutions of the Hirota-MB equa-

resonant interaction of intense light with matter can bellons with and without the pumping effect. The paper is out-

treated quite thoroughly. Extensive investigation of thislmed as follows. In Sec. Il the theoretical formulation of the

strongly resonant situation led to the observation of solito roblem is presented. In Sec. Il considering the linear ei-
gly . ) . X : envalue problem and the autodkiund-transformation
behavior, both in experiments and in numerical solutions o

) . : ethod, single- and two-soliton solutions for the vacuum
the governing equation§15,18. SIT equations are fre- gqjiion case as well as that for the constant pumping source
quently referred to as the Maxwell-BlodiMB) equations.  caqe are presented. In Sec. IV, the conclusions are made.
Lamb gave an elaborate study on different limiting cases of

the MB equationd4]. The connection between MB equa- Il. THEORETICAL MODEL
tions and the sine-Gordon equation is explained in literature
[10]. Owing to the large enhancement of the nonlinearity in
resonant media, which is not accompanied here by absor
tion as occurs in the CW case, it is clear that guided Sl
solitons are potentially very attractive for applications in-
volving both low power and ultrafast all-optical signal pro-
cessing 17,18

When Er is doped with the core of the optical fibers, then
the nonlinear wave propagation can have both the effects d
to silica and Er impurities. Er impurities give SIT effect to

th?.tOpt'C:r‘I Q[ulls7e ivgezrleag ﬂ]rehs'“(;ﬁ “?ate”";" gt|ves trt]e .NtL odulation(SPM) effects. Doktorov and Vlasov also consid-
soliton effect{17-19,21-24 Thus the important constraint o0 the S5 effect and showed that the coupled system of

to the NLS soliton, namely, the optical losses can be Somege.iyative nonlinear Schdinger-Maxwell Bloch fiber sys-
what compensated with the effect of SIT. So if we conS|der,[em allows soliton type pulse propagati620]. From the

these effects for a large width pulse then the system dynan]l'terature, it is also established that the influence of addi-

ics will be governed by the coupled system of the NLS €qUational effects such as TOD and SS on the NLS soliton results
tion and the MB equatiorNLS-MB systen). Maimistov in splitting of the bound soliton state due to the difference in

et _al., in 198.3' proposed the SySte“_“ and obtained j[he I“"Dépeed of each of the solitons and also due to modifications in

pair gnd the inverse scattering technidL&T) for the soliton the velocity components. By considering the higher-order

So'g“"”[?]- d Nakk | d th ist Egrturbation terms appearing in E®), Porsezian and Nak-
orsezian and Nakkeeran also proved tn€ COexXISIeNnce phq 5y proposed the coupled system of the Hirota and the

the NLS soliton and the MB soliton and also established thg 5 equation (H-MB system recently, which governs the
Painleveproperty[23]. Doktorov and Vlasov gave a good wave propagation of ultrashort puls(t:t’sSP) in Er-doped fi-
explanation to the possibility of the NLS-MB solitoh9]. bers. The H-MB system equation is given [33]

Kakei and Satsuma derived th¢-soliton solution for the '

NLS-MB equations using the I1S[22]. iU +3u.,+|ulPu+ieBy(u,,,+6[ul?u,)+(p)=0, (3

As in a pure silica fiber, under the influence of ultrashort
yulse propagation Er doped fiber also suffers from the
igher-order effects such as TQelf-steepeningSS, and

stimulated Raman scatteringgRS. Nakkeeran and Porse-
zian, in their work, have included all these effects by consid-
ering the coupled system of HNLS-MB equations which are
integrable only for certain parametric choidesl] and have
obtained one soliton solution by employing an auto-
Y8acklund-transformation resulting from ax3 Lax pair in
%ddition to group velocity dispersiofGVD) and self-phase
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—2i(wp+ 7u)=0, i ,
P (wpt7 B=)\u+Eu,+8,81(4)\2u+2|)\u7—2|u|2u—u”)

n,—i(pu* —up*)=0,

p
where (- - -) is the averaging function over the entire fre- +<m>
guency range. For example,
[
+ o0 _ * _y* _ 2, % H * 2, % *
<p(§,7;w)>=ﬁ b(Z.7 0)g(w)do, @ C=—AU*+ 5UT+2f1(—4\"u +2i\u* +2|ul?u* +u*)
p*
such that - <m>,
+ o H
j g(w)dw=1. (5) such thatQ,,—Q,,+[Q;,Q,]=0 gives back Eq(3). From
— the linear eigen value problem given by E§), soliton so-

) o . ) lutions are generated for Eq3) using auto-Beklund-
9(w) is the distribution function which represents the uncer-ransformation technique and thereby the recurrence relations

tainty in the energy I_evel of the resonant atorpsis amea-  connecting theth (primed and (1— 1)th (unprimed soliton
sure of the polarization of the resonant medium ande-  \yave functions are obtained in the form

notes the extent of population inversion. In an earlier work,

Porsezian and Nakkeerd@3], have constructed only one Pr=(—iN+in —3ar 2= [u+u'[P) g+ 3(u+u’) iy,
soliton solution for Eq(3), but have not analyzed the inter-

action scenario and the concept of continuous wave backy:— _ 1 x4+ ' * Yy + (iIN—iw — 2 Vap 2—lu+u']2
ground, which are the main results in this paper. sz 2( Yt gz | | )l(pfé)

[l. SOLITON SOLUTIONS whereu' and v’ are real constants denoting the soliton ve-

) locity and amplitude parameters, respectively, andu’
In Ref. [23], Porsezian and Nakkeeran analyzed the pos= ;' The recurrence relation connecting thén (primed

sibility of soliton pulse propaga}tion using Painl_eaaalysis. and (— 1)th (unprimed soliton solutions is of the form
and constructed the Lax-pair and one-soliton solution

through Baklund transformation23,24). As our main aim —ary’
in this paper is to generate two soliton solutions, in the fol- utu' = , (11)
lowing, we use the auto-Balund-transformation method 1+T)?

and generate soliton solutions with and without continuous )
wave background. For this purpose, we consider the lineaiherel’= ¢ /¢,. Moreover,u’=u(n) andu=u(n—1), n

eigenva|ue prob]em for Eqs), which is of the form =1,2,...such thatu(l) refers to the one-soliton solution

and so on.
¥.=Qq¢, Now two different cases are consider@dvacuum soliton
case for whichu(0)=0 is taken as the seed solution diidl
= Qa¢, u(0)= «, which represents a constant pumping source and is
complex.
wz(dllvlﬁZ)Tv (6)
A. Vacuum soliton case
where
Here we assuma(0)=0. Hence from Eqgs(6) and (7),
—iN U and with the condition for the pure state given py-0
Ql:( . ) (7)  [23,24 andy=1, the relation between the wave functions is
—ut IA given by
and Y1(0)=c1(0)exp AL —iNT),
o, ° ® va(0)=c(O)exi{—(AL=iAD)], (12
2 lc -A

where ¢;(0)(i=1,2) are integration constants. The pseu-

with dospectral functiod’(0) is given by

- 2 i 2 . 3 . 2 * * . llbl(o) .
A=—i\ +§|u| +eB1(—4iN°+2iN|u|*+uul —u*u,) ro)= J (0)=C(O)exp:2(A§—|)\7-)], (13
2
[ in (9  WhereC(0)=cy(0)/c,(0). Onsubstituting these in Eq11),
2\t w)]/’ the one-soliton solution is obtained as
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u(g,m=u(l)
=—2v(1l)secH2[ (A +Av) ¢+ v(L)T
+r(DAJtexp{—2i[ (At Av){
+u(1)7+ 611}, (14

where 6; and A; are integration phase constants and the (a)
other parameters are given by

Ap=2p(1)w(1)+4e B[ 3p*(1)v(1) - v¥(1)],

A= 4 By (1) w*(1) = 3v3(1) [} +[13(1) — v*(1)],

AU]_: 2 2 y
2{[w(1) + o]+ v4(1)} (b)
FIG. 1. (a) Surface plot of the intensity of the soliton solution
o= (1(1) + o) (15) given by Eq.(14) wheng(w) = 8(w— w,), where the resonant fre-
? 2{[ (1) + 0P+ vA(1)} quency wo=0.5. (b) Surface plot of the intensity of the soliton

solution for the ordinary nonlinear Schiinger equation.

Figure 1a) shows the surface plot ¢ti(Z,7)|?> wheng(w)
given by Eq.(5) takes the form of a Dirac delta function
8(w— wg) at the resonant frequenay,. Hence from Eq(4), —2i[a—bf,(1+3f,)JtanHal+b7r+c)
(p(¢{,mw))=p({,T;w0). It is clear from Fig. 1 that
p(¢, 7 wp) is responsible for introducing a phase shift from

p({,m)=w(1)sechial+br+c)[2f,— f5(1+2f))

+b?(1+6f,)tanif(al+br+c)— 2ib3tant?

that of the ordinary nonlinear Schtimger equation case as X(al+br+c)+seck(al+br+c)(—{(1+6f,)
shown in Fig. 1b). On substituting Eq(14) into Eq.(3), the ) ) _ ) )
corresponding measure of the polarization of the resonant X[b"=8v%(1)]}+2ib[5b°—24v7(1)]

medium denoted bp and the extent of population inversion
denoted byzn can be readily obtained having the respective
expressions and

Xtanhal+b7+c))]lexp(fi{+fr+13) (16)

|

(L, 7)=5(2b%[24v%(1) —5b?]sech(al+ b7+ c)+secR(al+br+c){2ab—3b%f,(1+4f,) + (1+6f,)
X[8f,12(1)+ 16wor?(1) — 2b%wo]+ib(1+8f,+ 4wg)[ 5b%— 24v%(1) JtanHal + b7+ c) + 3602
X[b2—4v2(1)Jtantf(al+br+c)} +[f,+2we—ib tanaZ +br+c) {2, — f3(1+2f,) — 2i[a—bf,(1+3f,)]
XtanHaZ+br+c)+b?(1+6f,)tanif(al+br+c)—2ib3tank(al+br+c)}), (17)

where where

a=2(Ap+A,;), b=2u(1), c=2p(1)A,,
N(Z,7)=2v(1)sechi&g)exp —ix)(Au)?

=2zt A m2al) fem 2oy +4i v(1)secti£,)exp(—ix1) v(2) A tanh(£,)

Once again on using the recurrence relations given by Eq. +2u(1)sectié;)exp —ix)[¥3(1)— v3(2)]
(10), the two-soliton solution for Eq3) is obtained and is of
the form +2v(2)sechi&y)exp —ix) (Aw)?
N(¢Z,7) —4iv(2)sechi&y)exp—ixz) v(1)Ap tanh(€y)

u(2)=uy(¢{, 7= (18

D({,7)’ —2v(2)sectié&y)exp —ixo)[vA(1) — v*(2)],
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h1,(0)=—iNgh1(0) + kihp(0),

2,(0) = kip1(0) +iNp2(0). (22)
Hence from Eq(21),

P1(0)=cy(Hexp —i V7\2+|K|27),

(22)
FIG. 2. Surface plot of the in-phase injection of the two soliton P2(0)=co(L)expi VA2 +|k|?7),
solution given by Egs.(18), (19, and (20) when g(w)=8(w
— wg), Where the resonant frequenay=0.5. wherec;(¢)(i=1,2) are integration constants. Thus from Eqg.

(6), the corresponding wave functions are obtained as
D(£,7)=(Ap)?+v*(1)+v*(2)

—2v(1)v(2)tanh(é;)tanh(&,)

#1(0)=c4(0)exp( VAZ+BCL—i\2+[k|?7),

—2v(1)v(2)secli&;)secti&,)cod xo,— x1) 2(0)=c,(0)exy — (VA2 +BCL—i N2+ [«[*7)].
(19) (23
with Hence the pseudospectral functib(0) is given by
£ =2 2y 9(i) v(i) r)= ﬁg; =C(0)exd 2(VA?+BC{—i \\?+[«[?7)],
! 2 (i) + o) 2+ v(1)] ’ (24)

whereC(0)=c4(0)/c,(0). Onsubstituting these in Eq11),

2 . . o 3 .
+aefa[3u () v(i) = vi(D)] the one-soliton solution is obtained as

CH2[v() T+ w(i)A],

[(i)+ wo] u({,m=u(l)=—(x+2v(1l)secH2[Sg{+ M7+ v(1)A,]}
=20 pl(i)—v2(i)+ .
X2 O S i+ woP 2] X eXH{2i(S.¢~ Mgr— 6)]), 25
_ _ _ where
+aeBi[pn()—3u(i)vi()] | ¢
Sr=[3(Dr+ VDg+D)I*2
+2[u(i)r+ 8] with i=1,2. (20
D,
Also Au=u,— 4. Figure 2 represents the in-phase injec- SFE,
tion with equal amplitudes. Here, the two solitons collide
with each other atf=0. Figure 3 represents the off-phase 1 2112
injection with equal amplitudes. Here no soliton interaction Mr=[z(Lrt VLR+LD)]™
takes place. Corresponding plots can be drawn for the case of
unequal amplitudes also. M. — L
I ZMR!
B. Constant pumping source case
— 2 _ .2 2

Now let us construct the soliton solution for the constant Le=[pA (1) = (D) +[«]],
pumping source case. For the constant pumping source case, _
u(0)=«k=«,+ik_, which is taken as the seed solution. Li=2u1(1)v(2),
Hence,

Dr=A%—A?+BRrCr—BC,,
D,=2AgA,+B,Cr—BRC,, (26)

and §; and A jare integration phase constants. Also,

v(1)
ARZZM(l)V(1)< >

2{[w(1) + 0]*+v3(1)}
FIG. 3. Surface plot of the off-phase injection of the two soliton + 2 _ .3 _ 2
solution given by Egs(18), (19), and (20) when g(w)=8(w 4e Ba[3p (1) v(1) = v (1)~ 2e Bl x*¥(),
—wg), where the resonant frequenay=0.5. (27)
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FIG. 5. Surface plot of the in-phase injection of the two soliton
FIG. 4. Surface plot of the intensity of the soliton solution given Solution given by Eq$28), (29), and(30) wheng(w) = §(w— wg)

by Eq.(25) wheng(w)=8(w— w,) andx, =«_=0.02, where the andx,=«_=0.02, where the resonant frequensy=0.5.

resonant frequenci,=0.5.

X1=2(=S§{+Mg7+6y),

1
A|:*[M2(1)*V2(1)]+§|K|2 X2=2(—Sy{+Myr7+ 5,), (29
< w(l)+w P, whereSg, S;, Mg, andM, are given by Eq(26). Now
_ By
2ALu D+ o v3L) Sor=[4 (Dot VD2 D512
X[3u(1)v*(1)— p3(1)]+2e By x|*w(1), 5 (30)
21
Br=p(1)x, — w1k +4efyln.[n3(1)~vA(1)] MCRET

—2u(1)n(1)k_}— 28 Byl x|k ,

Mor=[3(Lor+ VL +L5)1"2

Bi=u(L)x_+v(1)r;+4eB{r [p*(1)—v¥(1)]

2 I-2|
—2u(D)v(L)k,}—2&B4| x|k, My =o—,
2Msr
Cr=—m(D ki —v(D)k_—4eB{r. [u*(1)—v*(D)] where
+2u(D)v(1)k_}+2eBq| x|’k ,
: Lor=[12(2)~1%(2)+ |2,
Ci=—m(Dr_—v(1)ky +a4eBifr_[u*(1)—1*(1)] L= 20(2)%(2)
21— eple) v s),
—2u(D)v(1) K} —2eBq|k|?k_,
K=k, +iKk_ . Dor=A%r— A3 +BorCor— B2 Ca
Figure 4 shows the surface plot for the intendity¢, 7)|? D21 =2AzrA21+ B21Cor~B2rCa
when g(w) = 6(w—wg). From the figure, it is clear that
|u(Z,7)|? has a constant value equal|te|? instead of zero v(2)
whenr— * . It can also be seen that when-0, Eq.(25) Aor=2p(2)¥(2)— 2 ((2)+ )%+ v3(2)]
reduces to Eq.14). Following a similar procedure as in case H
(i), the expressions fop(¢,7) and 5({,7) pertaining to the +4eB[3u?(2)v(2)— v3(2)]— 28 B1| k|?v(2),

soliton solution given by Eq(25) can be readily obtained

from the master equatiof3). 1
Once again on using the recurrence relations given by Eq. Az = —[#?(2) —v%(2)]+ §|K|2

(12), the two-soliton solution for Eq.3) is obtained and is of

the form w(2)+
- > +4eB1[3u(2)v(2)
kD({,7)+N({,7) 2[(u(2)+ w)*+v5(2)]
u(2)=uy(Z,7)= Dz : (28 5 5
(47 — 13(2)]+2¢ By k|?u(2),

whereN(¢{,7) andD(¢,7) have the same form as E@L9).

_ _ 2 _ .2
In this case and y; (i=1,2) have the following expres- Bor=u(2) ks = v(2) k- +4sfr{k.[15(2) = v(2)]

sions: —2u(2)v(2)k_Y—2eBq|k|?k . ,
L5 M (DA Bai= m(2)k_+ 1(2) k. +4e Brfk_[u?(2)— 17(2)]
§,=2[Sr{+ My T+ 1(2)A5], —2u(2)v(2) Kk} — 2By k|?k_,
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IV. CONCLUSIONS

This paper concerns the coherent soliton pulse interaction
in an erbium doped fiber system associated with the higher-
order dispersion, self-steepening, and self-induced transpar-
ency effects. Using auto-Bilund-transformation, one- and
two-soliton solutions with and without the continuous wave
background have been generated. As usual, it is observed
that there is an exact balancing between higher-order pertur-

FIG. 6. Surface plot of the off-phase injection of the two soliton bation terms present in E¢3) and self-induced transparency
solution given by Egs.(28), (29), and (30) when g(w)=4(w  effects. Next, the soliton solution when the erbium-doped
—wg) and k. =«_=0.01, where the resonant frequeney, fiber system is driven by a constant pumping source is con-

=05 sidered. In this case, the soliton solution will have a constant
value equal to that of pumping source even at infinity, a

Cor=—u(2)k, —v(2)k_—4deB{K [ n?3(2)— 1v*(2)] phenomenon which differs from the case where the soliton

2 solution asymptotically decreases to zero at infinity. This is

+2u(2)v(2)k _}+ 28B4 k| Ky depicted as the soliton in a continuous wave background.

B 2 2 The interaction scenario is also studied in detail for both the
Cou=—m(2) k- —v(2)r +a4eBr{rx [n(2)—v(2)] cases. Future work includes a study of the influence of TOD,
—2u(2)v(2) ks ) — 2 By| K| 2k . SS, and SRS effects on the interaction scenario for the

HNLS-MB system with continuous wave background.

Figure 5 accounts for the in-phase injection between two

solitons for equal amplitudes for the case when=«_

=0.02 and when the central frequenoy=0.05, while Fig. ACKNOWLEDGMENTS

6 portrays the off-phase injection. From the above mentioned

figures, it is clear thau(Z,7)|? has a constant value equal to  V.C.K. wishes to acknowledge IUCAA, Pune for support.
|k|? instead of zero whem— *o. It can also be seen that K.P. wishes to thank DST and CSIR, Government of India,
when k—0, Eq.(28) reduces to Eq(18). for financial support through research projects.
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