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Soliton propagation in an erbium-doped fiber with and without a continuous wave background
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Considering ultrashort pulse propagation in a nonlinear resonant fiber governed by Hirota-Maxwell Bloch
equations, the soliton interaction in an erbium-doped fiber system associated with higher-order dispersion,
self-steepening, and self-induced transparency effects is studied for the case when the fiber is driven with and
without a constant pumping source. Using auto-Ba¨cklund-transformation, one- and two-soliton solutions are
generated. The significance of the results is discussed in detail.
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I. INTRODUCTION

The field of optical solitons has considerable potential
ultrafast technological applications, and it presents many
citing research problems both from fundamental and app
points of view@1#. Solitons are envisaged by communicati
experts all over the world as the future tools in achieving
endeavor of an ideal global village where information trav
very fast and communication is efficient and cost effecti
Experiments done at different laboratories have confirm
the theoretical conjecture about the feasibility of ultrafa
long-distance, and less expensive communication syst
without any loss of power using optical solitons as bits
information. In the last decade, many distinguished phy
cists, applied mathematicians, and engineers have con
uted in a major way to this exciting area of research. Opt
communication is a wonderful example of how the interp
between mathematics and more applied research has g
ated significant technological advances. Many technolog
applications of optical solitons are being actively pursu
including soliton switching, pulse compression, dispers
management, wavelength conversion, and so on@1–8#.

The propagation of temporal soliton envelopes in non
ear optical media has been predicted and demonstrated
perimentally. This prediction arises from the opportunity
reducing the Maxwell equations, which govern the propa
tion to a single completely integrable soliton equation in
form of nonlinear Schro¨dinger ~NLS! equation. Soliton-type
pulse propagation through nonlinear optical fibers is reali
by means of the exact counterbalance between the m
constraints of the fiber, viz., group velocity dispersion whi
broadens the pulse and the self-phase modulation which
tracts the pulse. The propagation of optical pulses throug
nonlinear fiber in the picosecond regime is described by
well-known NLS equation. With the current interest of usi
solitons as pulse bits in long optical fibers for communic
tion purposes, it is important for us to reevaluate the pra
cality of using analytical techniques for predicting the beh
ior of such bits. Since such pulses are near a pure so
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solution, it becomes feasible to use analytical soliton te
niques and potentiality of obtaining useful analytical resu
becomes very high. In order to increase the bit rates, i
necessary to decrease the pulse width. As pulse lengths
come comparable to the wavelength, however, the N
equation becomes inadequate, additional terms have to
included, and the resulting pulse propagation is called
higher-order nonlinear Schro¨dinger ~HNLS! equation which
is of the form@1,2,5,6,9,10#

iuz1 1
2 utt1uuu2u1 i«@b1uttt1b2~ uuu2u!t

1~b31 isR!u~ uuu2!t#50. ~1!

u denotes the normalized slowly varying complex pulse
velope,t is the normalized retarded time in the nondime
sional form andz is the normalized propagation distance al
in the non-dimensional form. The perturbation term« is the
relative spectral width. Equation~1! includes effects such a
third-order dispersion~term corresponding tob1), self-
steepening~term corresponding tob2), and stimulated Ra-
man scattering~term corresponding tob31 isR). All the co-
efficients in the higher-order terms are real. The terms w
b1 , b2, and b3 give perturbations of dispersive or Hami
tonian type and the resulting equation has been thoroug
analyzed by Kodama@11,13#. The term withsR corresponds
to self-induced Raman effect. It is well known that the thir
order dispersion~TOD! effect is responsible for splitting-up
of higher-order solitons. The inelastic Raman scattering
due to the delayed response of the medium which forces
pulse to undergo a frequency shift and known as s
frequency shift. The effect of self-steepening is due to
intensity-dependent group velocity of the optical puls
which gives the pulse a very narrow width in the course
propagation. Because of this, the peak of the pulse will tra
slower than the wings. Among the effects associated w
third-order nonlinearity, stimulated Raman scattering a
stimulated Brillouin scattering limit the maximum inpu
power available for transmission, whereas self-phase mo
lation directly influences the dispersion by modifying th
pulse shape and thus can play a vital role, together w
chromatic dispersion, in determining the transmission r
attainable in a given fiber.
©2003 The American Physical Society15-1
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Equation ~1! is found to be integrable for the casesR
50, b151, b256, andb3523 for which multisoliton so-
lutions have been obtained using inverse scattering trans
@12#. In Ref. @13#, when sR50, employing a certain Lie
transformation from the perturbed equation, Kodama w
able to reduce Eq.~1! to an integrable form by considerin
terms up toO(«) only leading to the Hirota equation give
by

iuz1 1
2 utt1uuu2u1 i«b1~uttt16uuu2ut!50, ~2!

for which Hirota had already obtained multisoliton solutio
using the inverse scattering transform@14#.

The propagation of the optical solitons that we have d
cussed so far results from compensation between self-ph
modulation and group-velocity dispersion and other high
order effects. A different type of optical soliton is associat
with the self-induced transparency~SIT! effect in resonant
absorbers. In 1967, McCall and Hahn have proposed
soliton in two-level resonant atoms@3#.

In theoretical description of this strongly resonant situ
tion it is frequently possible to ignore all other energy lev
of the atoms and treat the interaction of light with a so-cal
two-level atom. By assuming classical treatment of lig
resonant interaction of intense light with matter can
treated quite thoroughly. Extensive investigation of th
strongly resonant situation led to the observation of soli
behavior, both in experiments and in numerical solutions
the governing equations@15,16#. SIT equations are fre
quently referred to as the Maxwell-Bloch~MB! equations.
Lamb gave an elaborate study on different limiting cases
the MB equations@4#. The connection between MB equa
tions and the sine-Gordon equation is explained in literat
@10#. Owing to the large enhancement of the nonlinearity
resonant media, which is not accompanied here by abs
tion as occurs in the CW case, it is clear that guided S
solitons are potentially very attractive for applications
volving both low power and ultrafast all-optical signal pr
cessing@17,18#.

When Er is doped with the core of the optical fibers, th
the nonlinear wave propagation can have both the effects
to silica and Er impurities. Er impurities give SIT effect
the optical pulse whereas the silica material gives the N
soliton effect@17–19,21–24#. Thus the important constrain
to the NLS soliton, namely, the optical losses can be so
what compensated with the effect of SIT. So if we consid
these effects for a large width pulse then the system dyn
ics will be governed by the coupled system of the NLS eq
tion and the MB equation~NLS-MB system!. Maimistov
et al., in 1983, proposed the system and obtained the
pair and the inverse scattering technique~IST! for the soliton
solution @7#.

Porsezian and Nakkeeran also proved the coexistenc
the NLS soliton and the MB soliton and also established
Painlevèproperty @23#. Doktorov and Vlasov gave a goo
explanation to the possibility of the NLS-MB solitons@19#.
Kakei and Satsuma derived theN-soliton solution for the
NLS-MB equations using the IST@22#.
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Nakazawa et al. reported that a stable 2p/N51,
NLS-MB soliton exists@17,18#. Also, the multiple-soliton
structure proved that the higher-order NLS-MB solitons
ways split into multiple (2p/N)51 solitons. These proper
ties are also confirmed through a computer run. The ph
change of the new soliton is governed solely by the N
component, while the pulse delay is determined solely by
SIT component when the detuning from the resonance
zero. The propagation and switching of SIT in nonlinear
rectional couplers with a two-level atom has been recen
investigated numerically by retaining the transverse dep
dence of the optical field and atomic variables. This wo
demonstrated that the self-confinement due to the guid
structure permits the injected SIT soliton to maintain its p
ticlelike behavior. Recent experiments by Nakazawaet al.
have confirmed guided wave SIT soliton formation a
propagation by employing a few meters of erbium-dop
fiber, which was cooled to 4.2 K@17,18#. This justifies the
approximation of treating ultrashort pulse propagation
waveguide or fiber couplers doped with resonant two-le
centres. To the best of our knowledge, only a small num
of works have been reported for the higher-order effects w
SIT effects.

The prime aim of this paper is to consider the impact
higher-order perturbation terms appearing in Eq.~2! and to
generate the two-soliton solutions of the Hirota-MB equ
tions with and without the pumping effect. The paper is o
lined as follows. In Sec. II the theoretical formulation of th
problem is presented. In Sec. III, considering the linear
genvalue problem and the auto-Ba¨cklund-transformation
method, single- and two-soliton solutions for the vacuu
soliton case as well as that for the constant pumping sou
case are presented. In Sec. IV, the conclusions are mad

II. THEORETICAL MODEL

As in a pure silica fiber, under the influence of ultrash
pulse propagation Er doped fiber also suffers from
higher-order effects such as TOD!, self-steepening~SS!, and
stimulated Raman scattering~SRS!. Nakkeeran and Porse
zian, in their work, have included all these effects by cons
ering the coupled system of HNLS-MB equations which a
integrable only for certain parametric choices@24# and have
obtained one soliton solution by employing an au
Bäcklund-transformation resulting from a 333 Lax pair in
addition to group velocity dispersion~GVD! and self-phase
modulation~SPM! effects. Doktorov and Vlasov also consid
ered the SS effect and showed that the coupled system
derivative nonlinear Schro¨dinger-Maxwell Bloch fiber sys-
tem allows soliton type pulse propagation@20#. From the
literature, it is also established that the influence of ad
tional effects such as TOD and SS on the NLS soliton res
in splitting of the bound soliton state due to the difference
speed of each of the solitons and also due to modification
the velocity components. By considering the higher-ord
perturbation terms appearing in Eq.~2!, Porsezian and Nak
keeran proposed the coupled system of the Hirota and
MB equation ~H-MB system! recently, which governs the
wave propagation of ultrashort pulses~USP! in Er-doped fi-
bers. The H-MB system equation is given by@23#

iuz1 1
2 utt1uuu2u1 i«b1~uttt16uuu2ut!1^p&50, ~3!
5-2
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pt22i ~vp1hu!50,

ht2 i ~pu* 2up* !50,

where ^•••& is the averaging function over the entire fr
quency range. For example,

^p~z,t;v!&5E
2`

1`

p~z,t;v!g~v!dv, ~4!

such that

E
2`

1`

g~v!dv51. ~5!

g(v) is the distribution function which represents the unc
tainty in the energy level of the resonant atoms.p is a mea-
sure of the polarization of the resonant medium andh de-
notes the extent of population inversion. In an earlier wo
Porsezian and Nakkeeran@23#, have constructed only on
soliton solution for Eq.~3!, but have not analyzed the inte
action scenario and the concept of continuous wave ba
ground, which are the main results in this paper.

III. SOLITON SOLUTIONS

In Ref. @23#, Porsezian and Nakkeeran analyzed the p
sibility of soliton pulse propagation using Painleve´ analysis
and constructed the Lax-pair and one-soliton solut
through Bäcklund transformation@23,24#. As our main aim
in this paper is to generate two soliton solutions, in the f
lowing, we use the auto-Ba¨cklund-transformation method
and generate soliton solutions with and without continuo
wave background. For this purpose, we consider the lin
eigenvalue problem for Eq.~3!, which is of the form

ct5Q1c,

cz5Q2c,

c5~c1 ,c2!T, ~6!

where

Q15S 2 il u

2u* il D ~7!

and

Q25S A B

C 2AD ~8!

with

A52 il21
i

2
uuu21«b1~24il312iluuu21uut* 2u* ut!

2 K ih

2~l1v!L , ~9!
06661
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2
ut1«b1~4l2u12ilut22uuu2u2utt!

1 K p

2~l1v!L ,

C52lu* 1
i

2
ut* 1«b1~24l2u* 12ilut* 12uuu2u* 1utt* !

2 K p*

2~l1v!L ,

such thatQ1z2Q2t1@Q1 ,Q2#50 gives back Eq.~3!. From
the linear eigen value problem given by Eq.~6!, soliton so-
lutions are generated for Eq.~3! using auto-Ba¨cklund-
transformation technique and thereby the recurrence relat
connecting thenth ~primed! and (n21)th ~unprimed! soliton
wave functions are obtained in the form

c185~2 il1 im82 1
2 A4n822uu1u8u2!c11 1

2 ~u1u8!c2 ,

c2852 1
2 ~u* 1u8* !c11~ il2 im82 1

2 A4n822uu1u8u2!c2 ,
~10!

wherem8 and n8 are real constants denoting the soliton v
locity and amplitude parameters, respectively, andl[m8
1 in8. The recurrence relation connecting thenth ~primed!
and (n21)th ~unprimed! soliton solutions is of the form

u1u85
24Gn8

11uGu2
, ~11!

whereG5c1 /c2. Moreover,u8[u(n) andu[u(n21), n
51,2, . . . such thatu(1) refers to the one-soliton solutio
and so on.

Now two different cases are considered~i! vacuum soliton
case for whichu(0)50 is taken as the seed solution and~ii !
u(0)5k, which represents a constant pumping source an
complex.

A. Vacuum soliton case

Here we assumeu(0)50. Hence from Eqs.~6! and ~7!,
and with the condition for the pure state given byp50
@23,24# andh51, the relation between the wave functions
given by

c1~0!5c1~0!exp~Az2 ilt!,

c2~0!5c2~0!exp@2~Az2 ilt!#, ~12!

where ci(0)(i 51,2) are integration constants. The pse
dospectral functionG(0) is given by

G~0![
c1~0!

c2~0!
5C~0!exp@2~Az2 ilt!#, ~13!

whereC(0)[c1(0)/c2(0). Onsubstituting these in Eq.~11!,
the one-soliton solution is obtained as
5-3
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u~z,t![u~1!

522n~1!sech$2@~A111Av1!z1n~1!t

1n~1!D1#%exp$22i @~A121Av2!z

1m~1!t1d1#%, ~14!

where d1 and D1 are integration phase constants and
other parameters are given by

A1152m~1!n~1!14«b1@3m2~1!n~1!2n3~1!#,

A1254«b1$m~1!@m2~1!23n2~1!#%1@m2~1!2n2~1!#,

Av15K n~1!

2$@m~1!1v#21n2~1!%
L ,

Av25K „m~1!1v…

2$@m~1!1v#21n2~1!%
L . ~15!

Figure 1~a! shows the surface plot ofuu(z,t)u2 wheng(v)
given by Eq.~5! takes the form of a Dirac delta functio
d(v2v0) at the resonant frequencyv0. Hence from Eq.~4!,
^p(z,t;v)&5p(z,t;v0). It is clear from Fig. 1 that
p(z,t;v0) is responsible for introducing a phase shift fro
that of the ordinary nonlinear Schro¨dinger equation case a
shown in Fig. 1~b!. On substituting Eq.~14! into Eq.~3!, the
corresponding measure of the polarization of the reson
medium denoted byp and the extent of population inversio
denoted byh can be readily obtained having the respect
expressions
E
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p~z,t!5n~1!sech~az1bt1c!†2 f 12 f 2
2~112 f 2!

22i @a2b f2~113 f 2!#tanh~az1bt1c!

1b2~116 f 2!tanh2~az1bt1c!22ib3tanh3

3~az1bt1c!1sech2~az1bt1c!„2$~116 f 2!

3@b228n2~1!#%12ib@5b2224n2~1!#

3tanh~az1bt1c!…‡exp~ f 1z1 f 2t1 f 3! ~16!

and

FIG. 1. ~a! Surface plot of the intensity of the soliton solutio
given by Eq.~14! wheng(v)5d(v2v0), where the resonant fre
quencyv050.5. ~b! Surface plot of the intensity of the solito
solution for the ordinary nonlinear Schro¨dinger equation.
h~z,t!5 1
4 „2b2@24n2~1!25b2#sech4~az1bt1c!1sech2~az1bt1c!$2ab23b2f 2~114 f 2!1~116 f 2!

3@8 f 2n2~1!116v0n2~1!22b2v0#1 ib~118 f 214v0!@5b2224n2~1!#tanh~az1bt1c!136b2

3@b224n2~1!#tanh2~az1bt1c!%1@ f 212v02 ib tanh~az1bt1c!#$2 f 12 f 2
2~112 f 2!22i @a2b f2~113 f 2!#

3tanh~az1bt1c!1b2~116 f 2!tanh2~az1bt1c!22ib3tanh3~az1bt1c!%…, ~17!
where

a52~A111Av1!, b52n~1!, c52n~1!D1 ,

f 152~A121Av2!, f 252m~1!, f 352d1 .

Once again on using the recurrence relations given by
~10!, the two-soliton solution for Eq.~3! is obtained and is of
the form

u~2![u2~z,t!5
N~z,t!

D~z,t!
, ~18!
q.

where

N~z,t!52n~1!sech~j1!exp~2 ix1!~Dm!2

14in~1!sech~j1!exp~2 ix1!n~2!Dm tanh~j2!

12n~1!sech~j1!exp~2 ix1!@n2~1!2n2~2!#

12n~2!sech~j2!exp~2 ix2!~Dm!2

24in~2!sech~j2!exp~2 ix2!n~1!Dm tanh~j1!

22n~2!sech~j2!exp~2 ix2!@n2~1!2n2~2!#,
5-4
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D~z,t!5~Dm!21n2~1!1n2~2!

22n~1!n~2!tanh~j1!tanh~j2!

22n~1!n~2!sech~j1!sech~j2!cos~x22x1!

~19!

with

j i52S 2m~ i !n~ i !2
n~ i !

2@~m~ i !1v0!21n2~ i !#

14«b1@3m2~ i !n~ i !2n3~ i !# D z12@n~ i !t1n~ i !D i #,

x i52S m2~ i !2n2~ i !1
@m~ i !1v0#

2@„m~ i !1v0…
21n2~ i !#

14«b1@m3~ i !23m~ i !n2~ i !# D z

12@m~ i !t1d i # with i 51,2. ~20!

Also Dm5m22m1. Figure 2 represents the in-phase inje
tion with equal amplitudes. Here, the two solitons colli
with each other atz50. Figure 3 represents the off-pha
injection with equal amplitudes. Here no soliton interacti
takes place. Corresponding plots can be drawn for the cas
unequal amplitudes also.

B. Constant pumping source case

Now let us construct the soliton solution for the consta
pumping source case. For the constant pumping source
u(0)5k5k11 ik2 , which is taken as the seed solutio
Hence,

FIG. 2. Surface plot of the in-phase injection of the two solit
solution given by Eqs.~18!, ~19!, and ~20! when g(v)5d(v
2v0), where the resonant frequencyv050.5.

FIG. 3. Surface plot of the off-phase injection of the two solit
solution given by Eqs.~18!, ~19!, and ~20! when g(v)5d(v
2v0), where the resonant frequencyv050.5.
06661
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c1t~0!52 ilc1~0!1kc2~0!,

c2t~0!5kc1~0!1 ilc2~0!. ~21!

Hence from Eq.~21!,

c1~0!5c1~z!exp~2 iAl21uku2t!,
~22!

c2~0!5c2~z!exp~ iAl21uku2t!,

whereci(z)( i 51,2) are integration constants. Thus from E
~6!, the corresponding wave functions are obtained as

c1~0!5c1~0!exp~AA21BCz2 iAl21uku2t!,

c2~0!5c2~0!exp@2~AA21BCz2 iAl21uku2t!#.

~23!

Hence the pseudospectral functionG(0) is given by

G~0![
c1~0!

c2~0!
5C~0!exp@2~AA21BCz2 iAl21uku2t!#,

~24!

whereC(0)[c1(0)/c2(0). Onsubstituting these in Eq.~11!,
the one-soliton solution is obtained as

u~z,t![u~1!52„k12n~1!sech$2@SRz1MIt1n~1!D1#%

3exp@2i ~SIz2MRt2d1!#…, ~25!

where

SR5@ 1
2 ~DR1ADR

21DI
2!#1/2,

SI5
DI

2SR
,

MR5@ 1
2 ~LR1ALR

21LI
2!#1/2,

MI5
LI

2MR
,

LR5@m2~1!2n2~1!1uku2#,

LI52m~1!n~1!,

DR5AR
22AI

21BRCR2BICI ,

DI52ARAI1BICR2BRCI , ~26!

andd1 andD1are integration phase constants. Also,

AR52m~1!n~1!2K n~1!

2$@m~1!1v#21n2~1!%
L

14«b1@3m2~1!n~1!2n3~1!#22«b1uku2n~1!,

~27!
5-5
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AI52@m2~1!2n2~1!#1
1

2
uku2

2K m~1!1v

2$@m~1!1v#21n2~1!%
L 14«b1

3@3m~1!n2~1!2m3~1!#12«b1uku2m~1!,

BR5m~1!k12n~1!k214«b1$k1@m2~1!2n2~1!#

22m~1!n~1!k2%22«b1uku2k1 ,

BI5m~1!k21n~1!k114«b1$k2@m2~1!2n2~1!#

22m~1!n~1!k1%22«b1uku2k2 ,

CR52m~1!k12n~1!k224«b1$k1@m2~1!2n2~1!#

12m~1!n~1!k2%12«b1uku2k1 ,

CI52m~1!k22n~1!k114«b1$k2@m2~1!2n2~1!#

22m~1!n~1!k1%22«b1uku2k2 ,

k5k11 ik2 .

Figure 4 shows the surface plot for the intensityuu(z,t)u2

when g(v)5d(v2v0). From the figure, it is clear tha
uu(z,t)u2 has a constant value equal touku2 instead of zero
whent→6`. It can also be seen that whenk→0, Eq.~25!
reduces to Eq.~14!. Following a similar procedure as in cas
~i!, the expressions forp(z,t) andh(z,t) pertaining to the
soliton solution given by Eq.~25! can be readily obtained
from the master equation~3!.

Once again on using the recurrence relations given by
~11!, the two-soliton solution for Eq.~3! is obtained and is of
the form

u~2![u2~z,t!5
kD~z,t!1N~z,t!

D~z,t!
, ~28!

whereN(z,t) andD(z,t) have the same form as Eq.~19!.
In this case,j i and x i ( i 51,2) have the following expres
sions:

j152@SRz1MIt1n~1!D1#,

j252@S2Rz1M2It1n~2!D2#,

FIG. 4. Surface plot of the intensity of the soliton solution giv
by Eq.~25! wheng(v)5d(v2v0) andk15k250.02, where the
resonant frequencyv050.5.
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q.

x152~2SIz1MRt1d1!,

x252~2S2Iz1M2Rt1d2!, ~29!

whereSR , SI , MR , andMI are given by Eq.~26!. Now

S2R5@ 1
2 ~D2R1AD2R

2 1D2I
2 !#1/2,

~30!

S2I5
D2I

2S2R
,

M2R5@ 1
2 ~L2R1AL2R

2 1L2I
2 !#1/2,

M2I5
L2I

2M2R
,

where

L2R5@m2~2!2n2~2!1uku2#,

L2I52m~2!n~2!,

D2R5A2R
2 2A2I

2 1B2RC2R2B2IC2I ,

D2I52A2RA2I1B2IC2R2B2RC2I ,

A2R52m~2!n~2!2K n~2!

2@~m~2!1v!21n2~2!#
L

14«b1@3m2~2!n~2!2n3~2!#22«b1uku2n~2!,

A2I52@m2~2!2n2~2!#1
1

2
uku2

2K m~2!1v

2@~m~2!1v!21n2~2!#
L 14«b1@3m~2!n2~2!

2m3~2!#12«b1uku2m~2!,

B2R5m~2!k12n~2!k214«b1$k1@m2~2!2n2~2!#

22m~2!n~2!k2%22«b1uku2k1 ,

B2I5m~2!k21n~2!k114«b1$k2@m2~2!2n2~2!#

22m~2!n~2!k1%22«b1uku2k2 ,

FIG. 5. Surface plot of the in-phase injection of the two solit
solution given by Eqs.~28!, ~29!, and~30! wheng(v)5d(v2v0)
andk15k250.02, where the resonant frequencyv050.5.
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C2R52m~2!k12n~2!k224«b1$k1@m2~2!2n2~2!#

12m~2!n~2!k2%12«b1uku2k1 ,

C2I52m~2!k22n~2!k114«b1$k2@m2~2!2n2~2!#

22m~2!n~2!k1%22«b1uku2k2 .

Figure 5 accounts for the in-phase injection between
solitons for equal amplitudes for the case whenk15k2

50.02 and when the central frequencyv050.05, while Fig.
6 portrays the off-phase injection. From the above mentio
figures, it is clear thatuu(z,t)u2 has a constant value equal
uku2 instead of zero whent→6`. It can also be seen tha
whenk→0, Eq. ~28! reduces to Eq.~18!.

FIG. 6. Surface plot of the off-phase injection of the two solit
solution given by Eqs.~28!, ~29!, and ~30! when g(v)5d(v
2v0) and k15k250.01, where the resonant frequencyv0

50.5.
l-
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IV. CONCLUSIONS

This paper concerns the coherent soliton pulse interac
in an erbium doped fiber system associated with the high
order dispersion, self-steepening, and self-induced trans
ency effects. Using auto-Ba¨cklund-transformation, one- an
two-soliton solutions with and without the continuous wa
background have been generated. As usual, it is obse
that there is an exact balancing between higher-order pe
bation terms present in Eq.~3! and self-induced transparenc
effects. Next, the soliton solution when the erbium-dop
fiber system is driven by a constant pumping source is c
sidered. In this case, the soliton solution will have a const
value equal to that of pumping source even at infinity
phenomenon which differs from the case where the soli
solution asymptotically decreases to zero at infinity. This
depicted as the soliton in a continuous wave backgrou
The interaction scenario is also studied in detail for both
cases. Future work includes a study of the influence of TO
SS, and SRS effects on the interaction scenario for
HNLS-MB system with continuous wave background.
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