PHYSICAL REVIEW E 68, 066614 (2003
Multireflection boundary conditions for lattice Boltzmann models
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We present a general framework for several previously introduced boundary conditions for lattice Boltzmann
models, such as the bounce-back rule and the linear and quadratic interpolations. The objectives are twofold:
first to give theoretical tools to study the existing link-type boundary conditions and their corresponding
accuracy; second to design boundary conditions for general flows which are third-order kinetic accurate. Using
these new boundary conditions, Couette and Poiseuille flows are exact solutions of the lattice Boltzmann
models for a Reynolds number R® (Stokes limi} for arbitrary inclination with the lattice directions. Nu-
merical comparisons are given for Stokes flows in periodic arrays of spheres and cylinders, linear periodic
array of cylinders between moving plates, and for Navier-Stokes flows in periodic arrays of cylinders for Re
<200. These results show a significant improvement of the overall accuracy when using the linear interpola-
tions instead of the bounce-back reflectiop to an order of magnitude on the hydrodynamics fielBarther
improvement is achieved with the new multireflection boundary conditions, reaching a level of accuracy close
to the quasianalytical reference solutions, even for rather modest grid resolutions and few points in the
narrowest channels. More important, the pressure and velocity fields in the vicinity of the obstacles are much
smoother with multireflection than with the other boundary conditions. Finally the good stability of these
schemes is highlighted by some simulations of moving obstacles: a cylinder between flat walls and a sphere in
a cylinder.
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[. INTRODUCTION Ref. [1]). This layer near the boundaries is known as the
Knudsen or accommodation layer and leads at the macro-
Boundary conditions in kineti¢or particle methods, the scopic level to an apparent nonzero velocity at the boundary
lattice Boltzmann(LB) model being one such example, are (slip velocity). Moreover, in numerical methods using an un-
fundamentally different from their equivalent for more tradi- derlying grid, the actual boundaries are not located on the
tional computational fluid dynamid€€FD) methods, such as grid points but at positions depending upon the details of the
finite-difference or finite-element ones. In many traditionalboundary conditions.
CFD methods the boundary conditioffer instance fluid It has been recognized quite early that such effects indeed
velocity, pressure, or some of their derivativase explicitly  exist in lattice gases and lattice Boltzmann equation. In Ref.
set on the nodes defining the mesh boundary. In kineti¢2] Knudsen layers have been studied for two simple orien-
methods, the particlegpopulationg leaving the computa- tations of the boundary on a triangular lattice and it has been
tional domain have to be replaced by particlpspulations  shown for Couette flows that the bounce-back condition lo-
entering it. The properties of these entering particles defineates the no-slip walls midway through the last fluid node
the boundary conditions and can be either gigepriori or  and the first outside one. This result has been extended in
computed from those of the leaving particles. Such boundarRefs.[3,4] to Poiseuille-Hagen flows for which it has been
conditions can only be set exactly from a perfect knowledgeshown that exact parabolic profiles, for the same no-slip
of the kinetic properties of the studied flow. In general thiswalls as in the Couette case, can be recovered for special
perfect knowledge is not available and some approximationgelations between some eigenvalues of the collision operator.
have to be used, leading to some discrepancies between tBDespite these results there have still been numerous attempts
particle distributions prescribed by the fluid dynamics andto set the boundary conditions on the lattice no@es, for
the boundary conditions. The resulting mismatch obviouslyinstance, Refs[5-9], to name a few Although most of
limits the accuracy of modeling usual macroscopic boundarghem have given reasonable results for flat boundary parallel
conditions by kinetic methods. It is well known in the con- to the main lattice planes, they are not accurate enough when
text of rarefied gas dynamics that the physical effect of suchlealing with inclined flat walls or curved ones. To solve this
mismatch creates a region, located near the boundary, whepeoblem we had proposed a different approach based on the
the discrepancy between the local distributions and the fluideconstruction of the unknown populations from a second-
ones is exponentially damped away fronisée, for instance, order Chapman-Enskog expansion in RE0]. Recently
several authors have proposed various boundary conditions
based on a link approadil1-17.
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irina.ginzburg@cemagref.fr to study boundary conditions. Second we extend the results
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eral flows, called here “multireflection,” such that the mag- TABLE I. Equilibrium weightst, andty .
nitudes of the Knudsen layers are only third-order correc
tions to the kinetic problem. The analysis of the boundaryModel to t5 ty =3t t; =3t, t; =3t;

conditions is done along the lines already introduced in Refs:
[2—4]: the boundary condition is written as a closure relation
between an unknown population entering the fluid and som&2Q9
others known from the fluid dynamics; the populations are
then replaced in the closure relation by their second-order 3-7¢2 1 1
approximations; finally a Taylor expansion of the result at theD3Q15 E = 24
boundary node gives a second-order estimate of the pertur- s
bation of the kinetic solution by the boundary condition. If
this estimate is zero, the boundary condition is said to be
“th_ird-ord(_ar kinetic accurate.” For some flows and geom- gi L iel0, ... by} (50 being a zero vectdrThe velocity set
etries(for instance Poiseuille flows along the symmetry axisig chosen such that it has the same symmetry group as the
of the latticg, a honzero estimate can be recast as a Sh.'f.t R ubic lattice; in particular it is invariant under the central
the actual location of the walls and the boundary condition s, > -
does not create Knudsen layers; this is not the case for geRYmmetry(i.e., if ¢, is an element of the satg=—cq is also
eral flows and the estimate gives the order of magnitude o element and the set is invariant by any exchange of
the Knudsen layer produced by the boundary condition. ~ coordinates.

Indeed this does not preclude the fact that the bulk solu- These models obey the following evolution equation for
tion of the lattice Boltzmann equation is only a second-ordethe populationf; moving with velocityc; :
approximation of the bulk solution of the Navier-Stokes one.
If the physics of the studied flow is dominated by bulk phe-

4 1
9 3 12

nomena, third-order kinetic accuracy would probably not be fi(r+ci t+1)=f(r.1), @
necessary. However, our study has been done in the context

of moderate resolutions and/or moving boundaries for which F T f(C Y A FNEE V] at* e B

we will show that decreasing the Knudsen effects is very fi(r.)=fi(r,t) —[A-f e(r’t)]'HPC' F 2

important. . - . % .
The scope of this work is restricted to boundary condi-WhereA is the collision matrix, the; are parameters given

tions involving only populations moving along the same orlater [see Egs(7) and(8), and Table ], F is a body force,
opposite directions on the same line and on at most threand f"®=f—f®9 [f=(f;)]. The equilibrium distributionf ®4
fluid nodes at the same time. Presently the third-order kinetie- (%9 is a function of the conserved quantiti@smdj such
accuracy of multireflection is proven theoretically and stud-that
ied numerically for incompressible steady flows. The exten-
sion of these results to compressible and/or unsteady flows is

left for future work iy iy
uture work. ed_ =
In Sec. Il we give the general framework for our lattice 20 fi _izzo fi=p, )

Boltzmann models and sketch the associated Chapman-

Enskog expansion. Section Il is devoted to the definition of b b

the boundary conditions considered here and to their theoret- 4 e 2’” B

ical analysis. The results are summarized in Sec. llIF. In i:zo fi la™ & fiCia=Jdo V a. 4)

Sec. IV the standard definition of the momentum exchange

between the fluid and a boundary is recalled and a modifiegiere and in the sequel, greek subscripts stand for the spatial
definition is proposed to improve the accuracy. Using a 15¢oordinatesy, y, and so on; in addition repeated greek indi-
velocity model in three dimensiortslenoted D3Q15 in Ref.  ces correspond to implicit summations over the space coor-
[27]), these boundary conditions have been tested for Stokg§nates.

flows over a cubic array of spheres in Sec. VA4, a square The collision matrixA is defined by its eigenvectore

array of cylinders in Sec. VA5, and a periodic line of cyl- anq ejgenvalues, (in the interval ]0,2 for linear stability:
inders between moving walls in Sec. VA6. Results for

Navier-Stokes flows over a square array of cylinders are

given in Sec. VB. In Sec. VI we present some possible AL f e l( ne. ) ®)

modifications of the static algorithms to deal with moving =N Q)&

boundaries and we test them by simulating a cylinder mov-

ing between two parallel flat walls and a sphere moving in 8as in Ref.[18], the eigenvectors, are built from polynomi-

cylinder. als of the components of thé which are then orthogonal-

ized. The procedure starts with tHe+1 b-vectors ey,

(&)i=1, ande, (8)i=cCi, (ke{l,...D}). It then pro-

A. General models ceeds with ab vector ey, ; built on thec?=|/c;|? and or-

The lattice Boltzmann models considered here are definethogonal tog;, D—1 pairwise orthogonal vectors built from

on a cubic lattice irD dimensions byb=b,,+1 velocities Dcfa—ciz, and D(D—1)/2 vectorse,, (&)i=Ci,Cig With

b

Il. LATTICE BOLTZMANN MODELS
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a# B. Note that the preceding vectors have to be all nonzero 1( 1 1) 27—1 10
= 10

in order to recover the usual Navier-Stokes equations. The e N
procedure continues with higher degree polynomials and Y
ends when the set of linearly independent orthogonal vectorgith =1/ . .
has been exhausted. This construction is unique if it proceeds | the Siﬁ]maﬂons reported in Sec. V A, we use the fol-
by increasing polynomial degrees and decreasing symmetrging equilibrium:

i.e., b vectors having in the physical space the symmetry of a

scalar, then of a vector, a second rank tensor, and so on. This e w2

set of vectorsg, defines what is usually called the moment fi G(P'J):tp(csp+~]i)y (13)
'?rziibslﬁi’ozh? 21: Theenrﬁ rszg ;r:e Igirr?ﬁl(;/tl?r? s g;gmgﬁﬁgo?sdlswhich leads to the Stokes equation which is written for sta-
defined in the moment space as a function of the conserve
guantities compatible with the symmetries of the latiisee

Refs.[15,18—-2] for details and examples of moment bases VP—FE=vAJ, V- f: 0, P=c?p. (12)

ipnary incompressible case as

B. Simplified models C. Simplified Chapman-Enskog expansion

Although the theory for boundary condition can be done Neglecting the third-order and higher derivatives of the
in the above general framework, the algebra is simpler whefomentum and the second-order and higher derivatives of
using only two eigenvalues, for the vectorss, unchanged the density and of the nonlinear terms, the populations can be
by central symmetry andl, for the others, and the following approximated as
equilibrium distribution:

fi~f (D4 £(2) (13)
- 2 3j7-j?
f74p,9) =ty (csp+3) + 3ty —=—, (6)  wheref(!) is related to the first-order derivatives of the mo-
2p mentum through some second-order terEﬁPB by

Where‘Ji:j'Ei:JaCiai ji:j'éi:jaciav p:||6i||21 and’;) is 1
equal top(r,t) for the compressible Navier-Stokes equation f=— )\_aﬁjaEi(i’)ﬁay (14)
and top, for its incompressible variar(see Refs[22,23)). v
Thet, andty are model dependent and must obey at leasfng(2) is related to the second-order derivatives of the mo-
the constraints mentum and the first-order derivatives of the nonlinear terms
through some third-order tensEg(i)B7 by
bm
* 2 __
. tocs=1, (7)

1 . jajﬁ
f-(2)=— vdg o= 0y——=<— E-(s) . 1
i Ay B! Y 2p iaBy (15

bm
t:

om om The projections of the tensofs(2), and E(3)

B 3 iapy ON the first
326 tpciaciﬁ_zo thCiaCis=0das VY @B, (8 D1 vectorse must be equal to zero due to the conserva-
tion laws (3) and(4). Sincedyj, is unchanged by a central
symmetry while dg,j, and d,(j ajB/(ZZ))) change their

coming from the conservation law8) and(4). The momen- ) .
signs, it comes

tumf used in the nonlinear term of E¢p) is defined as

(A-£), =\, FD 4+ \,f2), (16)
J=J-I{F, 9 . .
Taking the value of the terms in E¢L3) at (r,t) and (
wherel;=0 for the standard definition arlg= —1/2 for the +5i ,t+1), the Taylor expansion of the diﬁerende(F
modified one which is used hefsee Refs[3,24-26). The  +c, ,t+1)—f,(r,t) must be equal to the corresponding ex-
“incompressible” variant with}3=p0 has also been used for pansion of _(A.fngiﬂgéi.ﬁ_ After some tedious but

all the steady simulations presented here. straightforward algebra, one gets
The parameters, andt; are given for theD2Q9 and
D3Q15 models in Table (note that the, are those given in
N ( 0 ¢ EZ=15(CiuCip—Ci0,p) (17)

Refs.[27,28 and thet’; are defined to keep the speed of
sound as a free parameteWith these choices the nonlinear
terms and the viscosity are isotropic and the viscosity is Ei(ifgy:t;(3cmciﬁciy—cméﬁy—ciﬁéay—ciyéaﬁ).

given by (18
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ot date jW:;bJW! (20)

. | wherep,, is equal tOp(Fb,t) for the compressible Navier-
Stokes and tg, for its incompressible variari22,23, ac-
cording to the choice made for E().

After the propagation step &t the postcollision popula-

tion 7q(Fb,t) has left the fluid and can be thought to be on
C}Q_e outside nodeb+c9 as fy(rp+cq,t+1). At the same
time the populatiorfy(r,,t+1), corresponding to the direc-
The tensor£i(§fg and Ei(z)ﬂ,/ are unchanged by any permuta- ion Cq=—Cq, IS unknown and has to be supplied by the
tion of their greek subscripts. In general, their component?oundary condition. In the sequel we will restrict our atten-

are linear combinations of the components of ége intro- 10N to the following closure relation:
duced in Sec. Il A. For th®2Q9 andD3Q15 models con-

sidered here, most of the componeg), and E{3), are FaFoot 1) = Kf o(Fot Gt 1)+ kofq(Fp t+1)

FIG. 1. Aboundary surface cutting éﬁ 4 Eq the link between

fluid noder, and an outside one af+ Eq. The solid circles repre-
sent the fluid nodes and the open circle represents an outside no

equal to components of soneg, except for theE(?) . Writ- o S
ing +r_1fgq(rp=Cq,t+1)+ x4 fg(rp—cq,t+1)
L _ e
o o + Kk _ofq(rp—2cq,t+ 1)—th;JqW+t;Fq ,
2 2 i i 2
ElD=t (cm— o)+ 5‘%) . 19 2y

where the symbols with an overbar refer to quantities asso-

the E(?), are linear combinations of the moments built on ciated withc,. The coefficientse,, ko, k-1, k-1, K, are

laa . . .
Dc?,—c? and of c2—Dc2. The latter components can be referred to as the coefficients gf the mterpolatlorf or .of the
multireflection boundary condition. The termv,tyjqy is

expressed in turn as linear combinations, dependingZon . o pJaw
of the g's built on ¢? andc. used to set the Dirichlet boundary conditiopy{=J- Cq)-

For the models such thaf,=c; ,, the diagonal elements The termF ¥ is discussed in Sec. Il E.
of Ei(z) are ZerO:Ei(z)aa:O' For theD2Q9 model, Ei(f))/y Using Eq.(1), relation(21) can also be written in terms of
and E.@wf are, up to a multiplicative constant, the compo- the postcollision distributions, either for some terms or for

iyxx .
nents of the two “cubic” e’s. For the D3Q15 model, @ll of them, as in
E(S),=ES), andES),#0; with their independent permuta-
tions ofx, y, andz, they are, up to a multiplicative constant, ¢ 4+ 1)= .. F.(fv 1)+ g Fu(Fr—G.
the components of the four cubig's. ao tH )= el U+ wofg(Ty o )
+r_1fq(rp—=2cq, 1)+ k_1f5(ry,t)
lll. SIX-POPULATION BOUNDARY CONDITIONS e JTq(Fo Ga D) Wt gt S FE. (22

A. Definitions
" The choice between E¢R1) and Eq.(22) is mostly a matter
fo||ch?nzoggf?g%ggndltlons presented here are based on t%‘? taste. Equation§29) and (31) below have been obtained
) ' ] - with Eq. (22); using Eq.(21) instead leads to the same final
(1) Fluid nodesare defined as the nodesuch that@) the  regyits for steady flows, but with different intermediate steps.
collision step is given by Eq2) without any changetb) the The above boundary condition has the following proper-

propagation step between them is given by 89 The set ties. First, withF2=0, it is a generalization of the bounce-

of fluid nodes is denoted. The nodes that are not i are back rule(with the Dirichlet condition and of the linear and

considered as "outside podes: ) ) quadratic interpolations introduced in REE4]: bounce back
(2) A boundary node ye B is defined as a fluid node corresponds to

having at least one neighbog+ Eq (Whereéqe{éi}) which
is not a fluid node. The set of boundary nodes and the set of -
cut links (connecting a boundary node to an outside)are k1=1, Wg=2, andkg=xk_1=k_ 1=k »,=0; (23
denotedB andC, respectively. S _ _
(3) The boundary conditions are given on a the upwind linear interpolation for € §,<1/2 corresponds

(D—1)-surface() which intersects the link betweeﬁg and

Fb+ Eq at Fb+ 4 Eq (see Fig. L We here consider only Di-

richlet boundary conditions corresponding to a given veloc- K1=268q, Kko=1-264, Wy=2,

ity Uy (rp+ 4Cq.t+1) on Q. The associated momentury -

is defined by and k_1=k_1=k_,=0; (29

066614-4
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and the downwind linear interpolation for ¥, corre- 1

sponds to f(z)—t —| ¥(3dqqiq—Alq— 23V - ])
1 261 1 315717l
264 25, dq 2p P

The closure relatiofi22) is then analyzed by replacing the

and ko= K-1=x-,=0. (29) distributionsf, and fy (or T, andT;) by their second-order
. Chapman-Enskog expansion. This first step is followed by a
Note also that Eq933)—(36) of Ref.[17] give Taylor expansion of the conserved quantities around their
values ath (see Appendix A For incompressible flows
5 18, — 5 V.j=0, relation(22) leads to
7146, "T1vs, Uitey ,
. . . 3jg—1
AO]q+Alaq]q+A2aquq+F%C+ (AP_ 1)( P+ (;,.. )
2 o p
Wq=m, and k_1=x_,=0. (26) J _J J J
a | VAjgTdg ; — Oy q)
p p
The upwind(downwind quadratic interpolations in ReffL4]
correspond toc_;=k_,=0 (ko=k_,=0), the other coef- 3j5—j°
b 1=K 2=0 (k=K _4=0), +Apdg| P+ —=—| +AcF,
ficients being given in their Eq6a) [Eq. (6b), their g being P7a F

replaced by ouis].

Second relation$21) and (22) involve only the popula- =W, +O(ﬁ-f)+0(e3) (29)
. . . qJqw !
tions considered in Refl14].

Finally all the required information is available at the with

boundary node, and its fluid neighbor,—c,, using their

four postcollision distributions at timg see Eq.(22), and Ap= K1+ Ko+ K1+ Kk_1+K_o=1, (30)
fq('Fb—_ Eq ,t+1) after the propagatipn step. This property is
quite important for parallel codes in which the communica-
tions are restricted to the nearest neighbors al
Equation (22) requires three fluid nodes along the link in
order to be used as such. When there are only two fluid A;=1—(kg+2K_1—K_2),
nodes available, the equation can be modified in several

ways. The simplest one, used here, consists in replacing

Ao=2-2(k_1+K_5),

fq(To—Cq,t+1) by fo(rp—Cq,t) in relation(21). A second Ap=1-2(k 1tk o) +2I{1=- (k- 1t Kk )],
one applies when the boundary fo5— ZEq is a flat wall
located atd,= 1/2; in this case the bounce-back condition is Ap=—(Kko+2K_1+K_>),

applied first and its result provides the missing population.

Note that the boundary conditiori21) or (22) do not in
general enforce the conservation of the mass defined for all Ax=—3vA,TAj+A,
fluid cells in Eq.(3). This has to be contrasted to the bound-

ary conditions of Refd.12] and[16]. 1 1 L
A=— )\—2+()\—2— 1)[1—2(K1Jr Kz)]} :
B. Closure relation
In the sequel we use the foIIowmg notat|or]§ _] cq Ko ;_2
andF,=F-c, are the projections of andF oncg; d, and Ai=| 5 t2k |,
dqq are the first and second derivatives along (dq
=Cqqd,). With these notations and with relatiof7) and 1
(18), the first- and second-order nonequilibrium terfid) A-,=(——1 (Ko+t2K_1+K_>), (32)
and (15) become, respectively, J A,

1 where the termk; has been removed from, to A, using
f(l)_ —t* (34 — 2. f) 27 Ap=1, a condition required to remove the presstensity
P, Ha s ' term from the closure relatio(®9) and which is always as-

066614-5



. GINZBURG AND D. D’HUMIERES PHYSICAL REVIEW E68, 066614 (2003

sumed to be satisfied in what follows. Note that the nonlinear When the multireflection coefficients are chosen such that
terms disappear when the linear equilibriil) is used; relations(35)—(37) hold for all the boundary nodes and links,
then Eq.(29) is obviously verified for the linear equilibrium the Couette flow is an exact solution of the linear LB equa-
if the flow and the forcing are perpendicu|ar &9 (jq:jqw tion W|th the Correqunding boundary CondiFionS for any ori-
=F,=0), 3;P=0, ansz—°=0. entation of the moving planes and any distances between

. . them. It is easy to check that this is the case for the linear
Note that the closure relatiof29) applies also to the interpolations(24) and (25).

. inaE RS
boundary conditions of Ref$11] and[13] by replacmqu At this point it is important to realize that relatio(35)—

conditions and apply implicitly in the following sections.

C. Couette flow
Let us first consider the flow between two parallel planes D. Poiseuille-Hagen flow between parallel plates

mOVing with parallel but different velocities in the absence Let us now consider the flow between two para||e| p|ane
of body force £4=0). The corresponding steady flow, walls, at rest and symmetric with respect to the origin, and

callgd Cc_)uette flow, is a pure shear flow fpr Wh'.Ch t_he den'due to uniform forcingf parallel to the walls. Along any line
sity is uniform and only the first-order spatial derivatives are - . .
parallel toc,, the coordinateg, (or any length are defined

nonzero(uniform shear. TakingF>=0 and thelinear equi- 2 ) ) ]
4 usingc, as unit vector and the middle of the fluid segment as

llorium (11), E4. (29) becomes the origin. Then the planes intersect the linetatxq,+ &)
and the exact solution of the linear LB equation is a para-

Aoj g A1dqlq=Waj qu- (32 polic flow given by
Then the Dirichlet boundary conditiof, is met at Fb 452
+ 8, Cq When the following conditions are satisfied: jq:qu( 1— %) , (39
geff
AL _ 84 (33 whereH .1 is an effective width depending on the boundary

Ao condition. Denotingd , the projection ofq on the direction
perpendicular to the wall§n lattice uniy, sinced,P=0 and
Wq=Ao. (B4  dygiq= @gqu for Poiseuille flowsj o is related toF,, O,
. o Hgeff» @andv by
Using Egs.(30), (33), and(34) the coefficients<;, «g, and

w, must be related to the other ones by 8
. 14

_ _ Fq:JOq—®2H2 : (39)

K1=28q T ko1~ (1+28)k_1—(2+28)k_5, (35) g’ qeff

Taking F%°=0 and using Eq(10) and Egs.(35)—(38) and
Kozl_zaq—zx,l+25q?,l+(1+ 25q)?,2, (36)  neglecting the nonlinear ternﬁﬁngar equilibrium(11)], Eq.
(29) leads to the following relation betweetl,.; and H

_ =2(Xg+ J,), the prescribed width along, :
Wq=2(1—Kk_1—K_p). (37 (Xqo'+ 80) P o

For the bounce-back coefficien®3) these conditions are
satisfied only if §;=1/2. This is possible only when the
moving planes are parallel to the symmetry planes of the
underlying lattice, for which the links are either perpendicu- 120 .
lar to the velocity or cut midway through the boundary nodes +————=—[1-264+(1+25;) k4
and the nearest outside ones. For these special orientations of 1=k 17k
the moving planes, the solution of the linear LB equation
with bounce back is exadup to machine accuragyf the
planes are located a,= 1/2 (as found in Ref[2]); note that
this exact solution is lost and the apparent convergence rate
is only first-order in the grid resolution if the planes are
mistakenly located on the boundary nodes or on the nearest . 4 (i_} 11
outside ones. For the other orientations of the moving planes, 3N, 2
the bounce-back rule is no longer compatible with Couette
flows. Since for these orientatiory takes values between 0 For a forcing along one of the main axes , etc), either
and 1, one expects a first-order convergence rate with thg,=0 (and the closure relation is verifiedr ®2=1 and Eq.
grid resolution. (40) relates the effective width of the parabolic profile to its

A(k_1—K_
+ (_1 _2)
1_K_1_K_2

1
T

8v
2 _ 42 2_ 2
quﬁ—Hq-i-GA 454— — v

2
®q

+(3+28y) k5], (40)

ere

N, 2/ 41
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prescribed value. For the bounce-back fubg=1/2 and the jaw(ToF 8 Co) = q(Fp+ 84 )

coefficients given in Eq(23)] and I;=—1/2, Eq.(40) be- aw o a

comes =(jq+ Oqdqiqt 5 830qai ) (Ty),  (44)
D§ﬁ= D§,2+ AN2—1, (42) cannot be obtained from EqR9) if F%CZO. However, Eqs.

(29) and(44) match when the following relations are verified

whereD 4 is the effective diameter arill,, is the diameter ~ (Sufficient conditions
based on the middle of the cut links. F&f=1/4 or

AF:O, A{:ZO, Wq:Ao,

2-\,
(M) =85, “3) A, A,+3VA,

the Poiseuille profile is the exact Poiseuille solution found in
[3,4] for walls located at- (xq,+ 1/2), as for Couette flows.
Note that for Bhatnagar-Gross-KroalBGK) models §, pe_ 3j§—j2 Jaiq
=\,), [45] A2=12,? and the walls are located exactly at Fa=Au| ¥(3dqqiq—Ajq) —dq —
+ (Xgo+ 1/2) for v=1/\/48. WhenA?+ 1/4, the relative er- z P
ror made by takingD 4, instead ofD.¢ IS approximatively A Ao
(4A%-1)/(2D3,). Then locating the walls on the middle of — P, (45
thezcut links is second-order accurate, gfcz)wever the prefactor tp
4A“—1 can be large for large values &f°. For the BGK . .
case, the prefactor is 48— 1 and increases very rapidly where the last right hand side term comes from Q@)
with the viscosity: for instance, i,,= 10 lattice units and The conditionsl¢= —1/2 andAg=0 imply Ag=2, x_;
v=1 (r=7/2), Deg~12.1, i.e., the relative error is larger =—«_,, vA,=—A?%2, and
than 20% (for 7=50, the effective width is larger than 11
times the prescribed one, see, for instance, Fig. 2 in[R§f. A2 A2

A very important property of the bounce-back condition th S . f(2) (46)
for the measurements reported in Sec. V A is that the perme- 4 2v9 2v
ability is independent of the viscosity if the coefficieht is -
kept constant, even for arbitrary complex flows. For eacHrom a technical point of viewf(” is computed from the
particular flow, the precision can be further improved for anpart of the sum in Eq(5) restricted to th&% built from the
appropriate choice ok? [29] (a good starting value being in third-order polynomialgthe nonzerCEm,g in Sec. 11 Q.
general close to 1/4). So far we have been unable to prove The conditiond ;= —1/2 and(45) lead to
theoretically this property; however, this is strongly con-
firmed by all our numerical simulatior(see Sec. V A 8 =25+ 82

2_ K1

For the interpolations of Refl14] and®g=1, Eq. (42
gives the error in the wall location as a functlonu)fA2 52
andl;. It is again possible to choose as a function ofr\ _
to set this error to zero, but this is no longer possible for a Ko=5
fixed value ofA 2. For arbitrary inclined Poiseuille flows, the
errors cannot be canceled for all the valueggfor constant L 5
values of\,, N\,, andl;. As a consequence, none of the K_1=—3tdqt &y,
interpolations of Ref[14] give exact parabolic profiles for
arbitrary inclined Poiseuille flows.

By setting two coefficients in the s€kq,«x_1,k_1,k_5}
to zero, we have been able to derive six sets of relations, for
k1 and the two other coefficients, giving exact inclined Poi- K_p=—%+35
seuille flows. In addition these sets are independefit
l+=—1/\,. However, we did not succeed in finding rules to

2
~358,— 262,

choose among them as a functiondyfin order to guarantee wg=2. (47)
numerical stability. In addition, these results are superseded
by the results of the following section. It is easy to check that €x;<3, —7/2<xo=<3/2, and

—12<sk_1=<3/2 for 0= ,4=<1, i.e., these coefficients have
values outside the interv@l— 1,1] for some values of.

For general flows, the relation betwedn, anddqqjq is  Although we do not have solid stability analysis for the
not known a priori and the Dirichlet boundary condition, boundary conditions, we have found numerically that values
exact up to second order, outside[ —1,1] very often lead to numerical instabilities.

E. General flows
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Noticing that the macroscopic closure relati@9) is not for 0<8,<1. (52)
changed, at least up to third order, under the following trans-
formation: Choosing the parameter* =2— ky and introducing the

following polynomials ofé:
k1— (k11— k) (k+1), kog—(kot2k)(k+1)
Ke=3+23,,
k_1—(k_1—K)(k+1), k_1—(k_1+2K)(k+1),
Ks=1+635,+48;,
K_g—(K_p— k) (k+1),
K= (Kt k) 12=2(1+ 8)%, (53

pe | pe
Wq—Wo/(k+1),  Fr—FT(k+1), 49 ihe family of coefficients derived from E@47) with trans-

where k is an arbitrary constant, a one-parameter family offormatlon (48) can be written as

coefficient can be constructed. In order to show this result,

one has to use the projected stationary Navier-Stokes equa- K* Ks
tion: K== -1,
S
Jal : =0
N ~q q — q . (49) Ko 2 K",

*

K,1=(Kf—Kt+2)K——l,
S

For instance, taking

k=—3(1-28,—57) (50)
- — K* Ky
leads to a new set of coefficients K_1=2— ,
Ks
K1= 1,
*
K_2=(Kk—2)——1,
. 1-25,-28 s
KO: — K_ :—2
(1+ 5q) 4K*
Wg= . (54)
82 s
. B
K_1 -2 (1+ 5q)2* Constraintg52) are satisfied provided that
K 2k
__ 4 max 1—|<k*<-—. (55)
Wq= 2 (51 K “
(1+6q)

which stay in the intervall —1,1] for 0=5,=<1. This set of The upper bound corresponds to solutidl). The lower

coefficients share some properties of the bounce-back con(})Ound Is 1 for B=0q=do (xo=1) and «s/x; for so=5q
tion. On the positive side the higher-order erréience the =1 (k-1=1), with 50—(\/§ 1)/2 (when 84= &y, Ki= Ky
permeability are found independent of the viscosity for =¥
fixed values ofA2. On the negative side the corresponding For =0 the interval reduces ta”*=1 and x;=xo
boundary condition for the staggered invariants is a free-slipg=1, x-1=—-1, and xk_;=«x_,=0. For §;=1, «*
condition, i.e., the staggered invariants are not damped by [11/5,11/4 and Ko reach a maximal Va|U90m_ —1/5 for
the boundary when they appear. Ai forébounce biaN, k*=11/5 (k,=3/5, k_1=0, k_1=1, and«_ ,=—2/5).
this effect can be killed by using,(r,+cq,t) instead of When §,= &, interval (55) is [1,2] and is the largest
q(rb+Cq,t+l) in Eq.(21). available. K*—l gives xk3=0, ko=k_1=1, k_1=3
A probably better way to avoid staggered invariants is to—2/3, and«_ »=2(\3=2); k*=3/2 givesk;=ko=K_;
derive an other set of coefficients with #1 for 5,>0 and  —q1/p k_1=5-343, andx_,=(6y3—11)/2; andx* =2

the following constraints: gives k=1, ko=x_1=0, andk_,= —x_,=7— 43,

Among the infinite set of functiong™(J,) that satisfy
0<k;=<1 and{kq,k_ 1K1 K ote[—1,1], (55), we have chosen to use in Sec. VB
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TABLE Il. Valid range for §,, coefficientsky, kg, k_1, ?,1, ;,2, Wq, and F%C for the different boundary conditions: bounce back
(BB); upwind and downwind linear interpolatiquLl and DLI); upwind and downwind quadratic interpolatioddQl and DQ); multire-
flection (MR).

BB uLl DLI uaQl DQI MR
1
% 2 [05] [3,+2[ [03] (3.1 (0.1
l *
K1 1 28, o So(1+28%) _ .
3 5(28,+1) Ks
Ko 0 1-25, 0 1-45; 0 2—k*
K_ 1 0 0 0 —84(1-25y) 0 Ki—K_p—1
_ 26,-1 26,-1 K* Ky
K1 0 0 0 2—
24, Py Ke
— 25,—1 K* (1= 2)
0 0 0 0 -4 _—t =
-2 1+25, PR
w, 2 2 ! 2 _2 ol
g & 5,26,+1) Ks
* AT
L 0 0 0 0 0 |
q t5 v
Ky 3+26,
Ks 1+68,+45;
K 2(1+5,)?
K 2k
max(l,—s]sx*s—s
Kt K¢
MR1 MR2
pe 2«5 L[15+(15+43)8,— (413 3) 2]

Kt

15+ 4\/5 4\/5_3 (4) Linear interpolationg24) and (25) are second-order
5% s 8, (56)  accurate for general flows.

(5) Multireflections with postcorrectiori46) are third-
order kinetic accurate for general flows.

K*(6g)=1

based on the following heuristic: the functiafi(4;) is qua-

dratic in &, increasing, and goes through the points (0,1),
(85,3/2), and (1,11/5). IV. MOMENTUM TRANSFER ON THE BOUNDARY

A. Classical definition
F. Summary N
Let us define the momentum transpbH® on the bound-

Table Il and the following results summarize the previousary in the classical waysee Ref[14,24) as

sections.

(1) The linear LB equation with the bounce-back condi- _ e . SRR ..
tion gives an exact Couette flow if the planes are parallel toM = > (fy(ro)Cq—fqlro)Cy)= 2 [F4(rp) +fq(ro)Icq,
a symmetry plane of the lattice and cut the nonperpendicular as¢ as¢ (57)
links in their middle. The same result applies for Poiseuille
flows if A2 is equal to some particular values: 1/4 if the flow
is along a main axis.

(2) The linear LB equation with the boundary conditions
in Table I, except the bounce-back one, gives the exact so-

where the sum goes through all the cut lirtks C for all the
boundary nodegb. Let us denote

lution for any inclined Couette flow. M o(1) =T (1) + (1), (58)
(3) The linear LB equation with the multireflections gives
the exact solution for any inclined Poiseuille flow. the sum of Eqs(Al) and(A2) gives
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3'2_'2
opy o)
p

Mq(r) =t} +Fq | +(2=N ) D=2, f .

(59

Using Eqgs(27) and(28) and the projected stationary Navier-

Stokes equatior49), it comes

- 3j5—i° .
My(r)=t}| 2P+ = —6vdgjq+ IqP
3-2_'2
+dq b~ —3yaquq>
2p
=MP(r+3cy), (60)
whereM {P)(r) is defined as
0 - 3j5—i7 .
MP(r) =2t} P+ —=——3vdgiq). (61)
p

the right hand side term being takenrat

PHYSICAL REVIEW E68, 066614 (2003

When the external force is constant and the flow is sta-
tionary, it follows from the momentum conservation that

M©O=FV' (65)

where V' is the number of nodes where the force addition
t*c;-F is applied in Eq(2). ConsequentlyM (@ is indepen-
dent of the solution when an external foreas used.

B. Modified definition

Let us now give a modified definition of the momentum
transport on the boundary

. oo
I\/I(”)zqgc MPUTy+ 84Cq)Cq.

(66)
whereM{(r,+ 84¢,) can be computed as

MPU T+ 84Cq) = (5 + ) Mq(Tp) + (3 — ) Mg(Ip—Cq).
(67)

If the pressure, nonlinear terms, and momentum deriva-

tives are constant for afl,+ c,/2, they can be factored in Eg.

(57) to give

jaj,B

M (©) = — —vdgj,
2p p

i 2

J N
P—— 2t*c +

21))‘12630 P

X 2, BU%Ci,CigCy- (62)
geC
For a plane surface going through the poidtg, Aig
=Agot (1,0],), and Ag;=Age+ (0,my,m,), wherel,, I,
my, andm, are integers, it can be shown that

> 2t*c,=AgN,
it P

qzc 6t;CiaCiﬁCi,y:As(na(SB,y+nﬁlsa,y“l‘n,y(sa’g), (63)
els

wheren is the normal to the surface directed outwartlgjs
the area of the plane surfa&limited by the closed path
(Ago,A10,A11,Ap) [With Ajy=Aget+(Ix,my,1,+m,)], and
Csis the set of links cut by. It follows (usingV - j=0) that
M(© restricted toS is given by the classical formula for
incompressible flow$41]

>

MEO=Agl Pn+ @— v+ Vi |,
p

(64)

Wherejn=f~ n and d, is the derivative along the normal to
the surface.

Indeed relation(67) comes from the following property of
any functionf (x):

f(x+8)~3[(1+28)f(x+3)+(1-28)f(x—3)].
(68)

With the modified definition the momentum exchange is
computed on the surface with a second-order accuracy and
not in the middle of the cut links as for the classical defini-
tion. The difference between the first and second definitions
is

MO-—MO= (5,—$)aMP(rc,. (69
q

Note that the modified definition does not verify E65),
in a way similar to the nonconservation of mass by the in-
terpolation and multireflection schemesee Appendix B for
examples

V. NUMERICAL RESULTS FOR STATIC BOUNDARIES

A. Stokes flow
1. Numerical setup

In order to test accuracy of the different boundary condi-
tions, we compare first the results with the quasianalytical
solutions of the stationary Stokes equati@g). At a macro-
scopiclevel with respect to the level of the Stokes equation,
the flow of a single fluid in a porous medium is well de-
scribed by Darcy’s law which relates the flow rate of the

fluid Q to the applied forcing across the medium in a linear
way:
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.1 > - where the subscriph corresponds to the grid spacing, i.e.,
Q=;K(—VP+ F) (70 the inverse of the number of grid points. Because of the
integration errors inherent to relatioiigl), (72), and (57),

qihese global measurements are affected not only by the errors
- coming from the LB method and the boundary discretization,
VP is the mean value of the pressure gradient across it. Theut also by these integration errors. We also compare the
flow rateQ is usually computed as a volume mean value ofsolutions obtained for the velocity or pressure fields with
the momentuny: their reference solutions. The difference between the LB so-

lution for s g={uy,u,,P} and the quasianalytical solutiey

for the same field is computed It? norm:

whereK is the permeability tensor of the porous medium an

.01 .
Q=E;J<r>. (72)

E@(sip)= \/2 (ste—Sa %2 S5 (77)
Here, the summation goes through all the points in the com- . .
putational domain and/; is equal to the volume of the where the sums are taken either over all the boundary points

sample. It can be shown that when the momentum is redd-P” subscripts) or over the fluid points on the whole grid.

i . . = . Let us note once more that the simulations at fixed value
fined as_ in relatlor(g)L Q coincides with the mean centered AZ guarantee the linearity of the the LB Stokes soluii
population mass fluxb:

with respect toF/v for the bounce-back reflection and mul-
tireflection with postcorrectiofb1). For these boundary con-
i 2 BP(F 79 ditions the results are given for one value of the viscosity
Vs < (r), (72) only. With other boundary conditions, the exact position of
boundary at second and/or higher orders still changes with
) the viscosity, leading to abnormal dependency of the perme-
b1 N - ability on the viscosity. The corresponding error reduces
%(r):zqgl [fi(r)+fi(r)]cia- (73 when »—0, but the computation time to reach the steady
state increases then accordingly.

@:

One should keep in mind, however, that expressi@isand
(72) represent crude integration rules which do not take into
account the exact boundary position. The permeability can As was said in Secs. Il C and 1l D, Couette and Poi-
also be derived from the drag® on the solid seuille flows must lead to exact solutions for the linear LB
equation. For the bounce back and linear and quadratic inter-
- polations, this is possible only when the flow is along the
Fd= _ (V_)p_ F). (74)  symmetry axes of the lattice and the walls are located at their
effective placdset for Poiseuille flows by the values Bf,

and approximated by the momentum transpaﬁf) or M(n) and)\z, see Eq(40), OI‘A2 fOI‘ the bounce-baCk rule, see Eq

on the boundary as defined in E&7) or Eq. (66). (42)]. For the multireflections given in Table Il this is true for
o , ) o ——— any inclination of the flows with respect to the axes and any
When the fluid is forced in a given directian, andVP value of\, andX.,.

=0 (e.g., periodic porous medigthe diagonal terms of the oy these flows the differences between the analytical pro-

2. Couette and Poiseuille flows

permeability tensoK can be computed as files and the numerical ones are only due to the round-off
errors. However, it is worth noting that these exact solutions

Q, = require a strict cancellation of the different error terms. They

Kpo=—o, P=0. (75  are therefore extremely sensitive to the details of the actual

Fa algorithm. For instance, the forcing term must be exactly

) _ _ o _ implemented as in Eq2) and the momentum redefined as in
~ In the following sections the main flow is in thedirec-  gq. (9) with 1;=—1/2 (both conditions are not satisfied in
tion and the permeabilitk,, is simply denotedk. For the  the algorithm of Ref[14]). In addition, the nonlinear terms
simulations with an external foroaSecs. VA4, VA5, and  in the equilibrium distribution give nonzero third- and forth-
V B) only the permeabilityk in periodic samples is given. order derivatives for Poiseuille flows, breaking the exact so-
For the simulations without external for¢8ec. V A6 the  |ution obtained for the linear distribution.
results are given for both th@ as defined in Eq.71) and the In our opinion, the merit of these academic flows is, first,

drag forceM(© as defined in Eq(57). The relative error for to illustrate our approach in a simple way, and second, to
any scalar LB variabls, g with respect to its reference value Provide simple tests of the computer implementation of

Sa is Computed as boundary Conditions.
3. Flow around random fibers
EN(sip)= Se _ 1, (76) In qrder to illygtrate the benefit of using a constant value
Sa of A2 in a nontrivial case, we use models of periodic fibrous
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FIG. 2. Fiber materials, from left to right and top to bottota).
porosity ¢~0.965 in a 26 box, (b) porosity $~0.973 in a 50 box,
(c) porosity $~0.941 in a 98 box.

material shown in Figs.(@)—2(c). The fiber web consists of
overlapping cylinder$a single fiber for Fig. @&)] of radius
equal to 2 lattice unitél.u.). The distribution of the cylinder
axes is obtained from a Poisson line prock¥d. The mea-
surements are performed withi3Q15 model having one

eigenvalue\,, for all the even moments and one for all the

odd moments X,); the forcing isF=2x10"¢ and the

boundary condition is the bounce-back rule. We give in Tabl
Il first the permeabilityk,, obtained for the three samples

with v=1/6 andA?=1/4, then the relative difference in per-
meability for the case\?=1/4 and for the BGK case\,
=\,), with k®(\,) given by

kxx()\y) - kxx( 1)

Co=TCm

(78)

PHYSICAL REVIEW E68, 066614 (2003

wherek,,(1) is the value ofk,, for A ,=1 (the choice\,
=1 being rather arbitrajy

First we do not want to let the reader believe that we
measure the permeability of the samples with an accuracy of
few 10 3. We only claim that the viscosity can change by a
factor 60 without changing the measured permeabilities by
more than+3x 10 2 when using a constant value af.

This is to be contrasted with the BGK case where the per-
meability is rapidly increasing with the viscositipy more
than a factor bas expected form the results for Poiseuille
flows. This behavior of the BGK model is in a total contra-
diction with the physics of Stokes flows.

Finally the results have been obtained for a convergence
criteria based on the relative difference between the maxi-
mum and the minimum mass flux, the computation ending
for a relative difference less than 19 Although this criteria
is quite stringent, it probably accounts for the #derror in
the permeability measuremerithis error is a few orders of
magnitude larger than the numerical round-off gnes

4. Cubic array of spheres

The solution for a viscous flow past a cubic array of
sphereg32,33 shows that the drag forde® on the sphere,

exerted by the fluid moving with the average speTadde—
pends on the relative volume solid concentratioss

_67T,LLaU
k*(x)

wherea is the sphere radius arg},,,= 7/6 is the maximal
concentration. The functiok®* (), inverse of the nondimen-

v
k=g K"\ x=(clena™™,

d

(79

esional drag, is tabulated in Table 4.9 of Rg¥4]. For a dense

array, we use their resultb).

We computed the permeability from relatioigl) and
(75) and tested the boundary conditiof®3)—(25), and(51).
The external force i =2x10 °. The results in Tables IV
and V show the relative permeability error with respect to the
reference value computed from E§9) and Ref.[34]. The
permeabilities in Table IV were obtained fer=2, but are
independent of the viscosity. Since this is no longer the case

TABLE IIl. The third line gives the permeability of the three fiber samples shown in Figst@2(c) for
v=1/6. The bottom of the table gives the relative permeability with respect to the previous valug$ for

=1/4 and the BGK model.

20°, ¢~0.965 56, ¢~0.973 96, ¢~0.941
v A, kxx kxx kxx
1/6 1 34.0659875 42.249358 26.150806
krel krel krel
A%=1/4 BGK A%=1/4 BGK A%=1/4 BGK
(10713 (10713 (10713
1/24 8/5 0.1 —-0.077 0.1 —0.094 0.1 —-0.083
1/6 1 0 0.016 0 0.021 0 0.018
1/2 1/2 0.5 0.311 1.1 0.356
716 1/4 1.3 1.243 -0.3 1.123
5/2 1/8 -2.8 4.699 0.3 2.946 -0.1 2.236
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TABLE IV. Comparison of the relative errors on permeability

PHYSICAL REVIEW EB8, 066614 (2003

TABLE V. Comparison of the relative errors on permeability for

for a cubic array of spheres and the bounce-back and multireflectioa cubic array of spheres and the linear boundary conditions for
boundary conditions in a 3%ox.

=2 and 0.6 in a 25box.

Bounce back Multireflection =2 7=0.6
x kK ) [34 EMK) (%) n/100 ED(K) (%) n/100 % EOK) (%) n/100 EMK) (%) n/100
0.5 0.35186 —-1.02 21 —-0.42 22 0.5 4.28 20 0.88 330
0.6 0.25165 —2.96 13 —0.46 15 0.6 3.38 14 0.32 230
0.7 0.16655 —-2.12 9 —-0.44 10 0.7 3.61 9 0.38 150
0.85 0.07330 1.50 5 —-0.35 19 0.85 7.73 5 1.68 80
0.90 0.05220 —4.38 4 —-0.67 4 0.90 8.67 4 0.65 70
0.95 0.03580 —4.28 3 —0.56 5 0.95 10.27 3 1.08 60
for the linear interpolation§24) and(25), the corresponding d —
results are given for=2 and 0.6 in Table V. The tables F_4muU _ Vs, (80)
include the number of time steps required to reach a I k*(c) ' 4ml

change irk less than 10° between 18time steps. Note that
for the linear interpolations, decreasing the viscosity by a
factor 15 increases both the accuracy and the convergengghere| is the cylinder length and is the relative solid

time by almost the same factor.

Despite that, higher accuracy is maintained with the multire

flection with postcorrection for all solid fractions.

Although the precision of the linear interpolations in this
test is quite satisfactory for small viscosities, it deteriorate
when the gap between the spheres approaches 1-2 latti
units. Besides that, the computational time is then 10-2
times higher than for multireflection with postcorrection.

5. Square array of cylinders

on the cylinders per unit length isee Refs[32,34,35)

o square fractiond,,,,= 7/4). The functiork™ (¢c) is tabulated
Note that for the two most dense arrays, situations wherg, Taple VI (from Table 4.12 of Ref[34]).

some boundary nodes have only one fluid neighbor appear. gimylations are similar as above; they are terminated

When a change ik is less than 10%° between 18 time
steps. All computations are done with=0.875, A,=—1
Jcorresponding to Eg43)]. The results with the boundary
conditions in formg23)—(25) and (51) are shown in Tables
for periodic cells 33 and 99.
The results with the coefficient§1) but without the post-
correction(46) and with the coefficient$6) from Ref.[14]

are shown in Table VII. We would like to stress that they are
similar to the results obtained with the linear interpolations,
For a periodic square array of cylinders, the force exertedvhich is not totally surprising since they are all second-order

kinetic accurate.

TABLE VI. Comparison of the relative errors on permeability for a square array of cylinders and the
bounce-back, linear, and full multireflection boundary conditions oh &%l 99 grids; r is the cylinder

radius.
Bounce back Linear Multireflection
c r k* (c) [34] k'™ (%) k'™ (%) k'™ (%)
3% grid
0.2 8.326 —4.49 —-0.04 -0.35
0.3 10.198 —-2.59 0.04 -0.35
0.4 11.775 —-0.48 1.76 0.05
0.5 13.165 —-17.51 —-1.36 —0.99
0.6 14.422 —15.56 0.70 —0.45
0.7 15.577 —6.88 22.49 7.50
99 grid
0.2 24.979 2.43910°! 1.08 0.15 -0.01
0.3 30.593 1.22%10°! -0.73 0.09 0.03
0.4 35.326 5.76%10 2 —-1.43 0.04 -0.02
0.5 39.495 2.36810 2 —-2.83 0.05 —0.03
0.6 43.265 7.12810° 3 —-5.27 0.02 -0.11
0.7 46.732 9.29510 4 0.79 3.79 0.31
0.75 48.372 9.95010 ° —27.18 6.08 0.79
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TABLE VII. Comparison of the relative errors on permeability direction (force, seepage velocity, and,) become larger
for a square array of cylinders and the multireflection without thethan the error of linear interpolation. Finally, for=0.7, r
postcorrec;ion and the quadratic interpolation boundary conditions- 15 57 here and in the previous test, the bounce-back con-
on a 33 grid. dition works surprisingly well. Indeed, when the curvature of
the cylinder is small, the flow in a gap is close to Poiseuille
flow (in the previous te$tand to Couette flowin the current

Multireflection without  Interpolatior(6) from Ref.[14]

1 I, r
¢ correction, EV(k) (%) EO(K) (%) tes). Moreover, here the cylinder boundary is shifted at ap-
0.2 0.68 0.86 proximately §,=1/2 from the last boundary nodgs- + 16
0.3 051 0.92 (sincer=15.57 and cylinder centey,=0). While applied
8-;' iﬁ 283 with A?=1/4, bounce back and linear interpolation give then
06 508 547 quite good results.
0.7 3593 28.63 The errors between the LB results and the reference solu-

tion at the boundary points as a function of their angular
position (measured counterclockwise in radian from the

6. Cylinder between moving flat walls axis) _for 9=0.4 are pIotted.in Fig. 3 for thel pressure and

) o ) velocity fields. The streamlines are plotted in Fig. 4 or
The flow configuration is similar to Ref36]. The box is  — 4 (top row) andc=0.5 (bottom row. The integration of
periodic in thex and z directions. Its dimension i$XW  the velocity fields is done in a similar way for all LB tech-
X L. The axis of the cylinder is along theaxis and cuts the  pjques and quasianalytical solution. Table IX summarizes the
x=0 plane at Y,,2,) referred below as the center of the yegyits based on nori77) of the error for the pressure and
moving in thez direction with velocity—l]w. This setup All the simulations reported above have been done in a
simulates a periodic flow in the direction past an array of fully symmetric numerical setup. The LB lift force is then
cylinders at rest between moving parallel planes. Multipoleequal to zero and no total mass violation happens with the
solution to this problem is discussed in Appendix C.boundary interpolations. When the center of the sphere/
Pressure/velocity/stream function solution is compared witteylinder is shifted from the cell center along the flow direc-
the quasianalytical solution. The lattice Boltzmann resultgion, these properties do not hold any more. As an example,
are obtained with the same parameters as for a periodic arrdgt us move the cylinder center from the symmetric position
of cylinders. The distancé, between the flat boundaries and on the node ¥,,2z,)=(18,15) to a final position y(,Zzp)
their boundary nodes is put equal to 0.5. =(18,15.48) close to the middle of a link, with a step incre-
The relative errors of the force and seepage velocity arenent (8, ,6,)=(0,0.04). The box size is 33nd the cylin-

given in Table VIII. The errors are below 10%; even for theder radius isR=12 (c~0.42). Figure 5 plots the corre-
bounce-back condition, most of them are below 1%, espesponding mass loss per time step for the linear interpolation
cially for the linear interpolation and the multireflection con- and multireflection with postcorrectidthere is no mass loss
ditions. As for a periodic array of cylinders, it happens first atfor the bounce-back conditionWe see that multireflection
the concentration 0.6 that a boundary point lacks one point tavith postcorrection has on average a smaller mass loss than
perform multireflection in a full form. At the concentration the linear interpolation. When mass loss occurs there is no
0.7, in addition, some boundary cells are intersected by bottonger any strictly stationary state. However, we have found
boundarieqflat wall and the cylinder We have found that in our simulations that the momentum field still reaches a
coefficients(56) are more stable in this situation than coef- steady statéwithin a stopping criterion of a relative change
ficients(51). Since the accuracy of coefficien®6) depends per time step smaller than 10). Hereafter we shall use
on the viscosity, we have chosen here to use a bounce-batgtationary regime” for such situations.
condition on a flat wall combined with multireflection on the  Figure 6 shows the relative error in drag force, using its
cylinder forc=0.7. In this way, the multireflection/bounce- value for the symmetric case/{,z,) = (18,15) as reference.
back solution is still controlled by\?, but its errors in flow  The multireflection with postcorrection is much more accu-

TABLE VIIl. Relative error(in %) of the force(left columns and seepage velocityight columng for a
square array of cylinders between moving flat walls and the bounce-back, linear, and full multireflection
boundary conditions on a 33yrid and7=0.875.

c Bounce back Linear Multireflection
0.2 2.14 -1.91 7.2¢1072 -0.12 2.6<10°2 -0.11
0.3 1.33 -1.12 5.6< 1072 -0.17 4.8< 1072 -0.21
0.4 -0.43 0.21 -0.71 0.60 -0.19 8.4 1073
0.5 8.22 -7.91 0.59 -0.93 8.3<10 2 -0.61
0.6 6.14 -6.67 -0.13 -0.15 -0.69 0.16
0.7 0.95 -1.68 1.10 -1.76 5.56 6.39

066614-14



MULTIREFLECTION BOUNDARY CONDITIONS FOR.. .. PHYSICAL REVIEW EB8, 066614 (2003

0.4 : , 0.040
> 0.020 i
. =
g =y
= (]
= 2
w
& . > 0.000 .
Z k=
5 5
= E
=
: -0.020 1
-04 —
0.0 2.0 4.0 6.0 8.0 O'0400.0 2.0 4.0 6.0 8.0
(a) Angle (b) Angle
. |
=
)
=
[ %]
=
[F]
> il
A=
St
(=]
St
Sy
=
) ! 4.0 . 8.0
(c) Angle

FIG. 3. Error between the LB results and the quasianalytical solution at the boundary points as a function of their angulafiposition
radian for c=0.4; (a) bounce back(b) linear interpolation(c) multireflection. Left to right: pressure rescaled by its max vajueand
z-velocity components rescaled Iy, . The data correspond to streamlines in Fig. 4.

rate than bounce back, and the accuracy for the linear inteduces considerably the err¢an order of magnitude com-
polation is usually found between bounce back and multirepared to the linear interpolatiprA better treatment of these

flection. Note that by definition the error foryd,z;)  links is left for future work.
=(18,15) is zero and far away from the values displayed in
Fig. 6: respectively, 8%, 2%, and 0.15% for bounce back, 7. Summary for Stokes flows

linear interpolation, and multireflection. Such large values \ynhen the exact solution of the studied partial differential
are surprisinga priori, but we think their explanation is the equations is not known, a classical estimator of the opor
following. When /0,25) =(18,15), in our simulations the the numerical scheme is given by the Richardson formula:
points (6,15) and (30,15) are considered as solid points of

the cylinder; the corresponding links in tlzedirection are

then cut by the boundarffor instance (30,15) to (30,16)]. p= iln( ¢’n2h_d’nh) 81)
When the cylinder center is shifted by a nonzero multiple of Inn bnn—bn )’

(6y,0,), these nodes become fluid on@gundary nodes

The links that were cut in the symmetric case now connecwhere ¢ is any measured quantity on grids of mesh sizes
two fluid nodes and are considered as fluid links, althougnh, and n?h [see Eq.(3.52 page 59 of Ref[37] for n
some of them are tangent to the cylinddor instance =2]. When the exact solution is known to de the same
(30,15) to (30,16)]. In our opinion, Fig. 6 illustrates the estimate can be computed using only two mesh sizes instead
order of magnitude of the errors caused by a too simplef three, by replacing,, and ¢y, by ® in the numerator and
treatment of the links tangent to the boundary surface. Ithe denominator of the second logarithmic term. In our at-
should be noted that multireflection with postcorrection re-tempt to extract some convergence order, it turns out that the
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FIG. 4. Streamlines for the flow around a cylinder between flat wallscfef.4 (top row) and c=0.5 (bottom row. Left to right:
bounce-back method, linear interpolation, and multireflectsmiid lines compared to the quasianalytical soluti@ashed lines

corresponding differences may become negative and weonvergence is given by Fig. 6 of R¢L4]. It shows that the

have preferred to use a slightly modified convergence estiebserved dispersion of the global errors is very large, even
mator: for a very extensive numerical test. It seems to us that linear
resolutions at least an order of magnitude smaller than ours

EO(k) (three orders more computer tiineould be required in or-
2 —2_nh
nhh="N

_ (82 der to obtain unquestionable convergence factors. It is even
EN(k) plausible that, due to the effects shown in Fig. 6, the next

sentence of Ref.14]—“Monotonic convergence can be ex-
If the accuracy order ip, the value o2, , should ben®~2,  pected only on sufficient fine grids."—is not even true for

and a second-order accuracy should correspon&3p,  our problem and that the convergence will never be mono-
=1. tonic. Then, measuring a convergence order in a reliable way

This convergence estimaté?,, ,(k) for the permeability ~Wwould require a more subtle analysis of the data.

k of the square array of cylindeSec. VA5 is given in Despite the difficulties to in demonstrating obvious con-
Table X forn=3. The convergence factors are rather dis-vergence factors, we hope to have shown in a convincing
perse and their values do not reflect the convergence behaway that the results given in the tables and figures of the

ior when the coarse grid errors change their sign and/or wheprevious sections share the following trends.

they are very close to zero. Note that including the data of (1) The errors are significantly smaller for the bulk than

Table XI (with n=1.5 or 2) does not help. for the boundary points, which supports our assumption that
These results show that the condition stated on page 60 dlfie errors are mostly due to the boundary conditions rather

Ref.[37] is not valid: “The order of convergence estimated than to the approximation of the Stokes equation by the lat-

using Eq.(3.52 is valid only when the convergence is mono- tice Boltzmann scheme itself.

tonic.” In our opinion the best support for a nonmonotonic  (2) The errors are significantly larger for the pressure and
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TABLE IX. Relative error(77) of the pressure and the momenta ~ TABLE X. Convergence estimatoKZ,, for the data in
in the z andy directions(in %) for the parameters given in Table Table VI.
VIII. Left columns, boundary nodes; right columns, bulk.

c Bounce back Linear Multireflection
c Bounce back Linear Multireflection
—0.46 —-0.03 2.65
Pressure 0.3 0.40 0.05 —1.48
0.2 13.5 8.6 4.9 3.6 4.2 34 04 0.04 4.82 -0.32
0.3 21.2 12.1 6.1 4.0 3.6 32 05 0.69 -3.21 3.60
0.4 20.4 15.1 6.5 6.1 3.9 3.9 0.6 0.33 3.21 0.46
0.5 19.0 16.5 25 25 3.5 3.5 0.7 -0.97 0.66 2.65
0.6 7.5 6.2 6.1 5.7 7.1 6.8
0.7 324 28.7 32.0 28.3 30.2 26.7
Momentum in thez direction back condition, while an additional factor 2 is achieved when
the full the multireflection condition is available, i.e., when
0.2 198 18 115 0.09 0.49 0.04  ¢<0.6 for which the channel width is larger than 8<0.6
0.3 17.2 1.47 1.38 0.15 0.55 0.05  for the 32 case.
04 17.5 159 582 075 1.39 0.20 (5) Although the results obtained with linear interpolation
05 24.7 659 285 059 1.02 0.24  can be further improved by decreasing the viscosity, the cor-
0.6 16.1 517 318 1.20 2.24 1.07  responding computational time is increased quite signifi-
0.7 9.8 5.32 8.86 4.64 13.12 6.67 cantly.
Momentum in they direction (6) The bounce-back condition provides very satisfactory
results for tangential velocity when the flow is dominated by
02 20.3 0.8 50 16 2.4 0.9 the flow in very narrow straight channels and is fixed
0.3 arz 21.9 52 23 2.2 0.9 close to the value 1/4which gives the exact Poiseuille so-
0.4 34.6 27.4 8.9 7.0 3.2 2.2 lution).
0.5 39.0 26.1 7.0 3.5 3.9 2.3
83 22(13 122 132 Zg 1632 A;Ai B. Navier-Stokes flow in a square array of cylinders

The flow configuration here is the same as in Sec. V A5.
Navier-Stokes equilibriun{6) is applied in its incompress-
they component of the momentum than for theomponent ible variant[22,23. Solution for a 66 box is computed at
of the momentum. solid fractionsce{0.2,0.6 for Re numbers in the range

(3) Pressurel/velocity fluctuations obtained with the[0,180. This interval has been chosen for comparison with
bounce back rule near the cylinder boundary are similar tahe results computed using a stationary finite elentEf)
those described in Ref10] for inclined Poiseuille flow. The method in Ref[38] and with a nonstationary FE method in
oscillations are considerably smoothed by linear interpolaRef. [39]. Note that these two sets of results differ signifi-
tions and still more by the multireflection. cantly for c=0.5 andc=0.6 (see Fig. 8 According to

(4) The linear interpolation improves the overall accuracyGhaddar{39], these differences may come from “a lack of
by almost an order of magnitude compared to the bounceesolution due possibly to large iteration or/and discretization

2 T T T T T T 6 T T T T T
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AM (10 7 Lu.)
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-10 L L L L 1 L -2 L L L L 1 1
0.00 0.08 0.16 0.24 0.32 0.40 0.48 0.00 0.08 0.16 0.24 0.32 0.40 0.48
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FIG. 5. Mass loss per time step at the stationary regime corresponds to the previous picture. Left: linear interpolation. Right: multire-
flection with postcorrection.
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TABLE XI. Relative permeability errofin %) for the Stokes regime with respect to the reference value

(80).
c Finite elemen{38] Bounce back Linear Multireflection
0.2 2.54 -1.63 5.5 1072 -6.5x107?
0.3 0.53 0.78 0.51 2:810°?
0.4 -0.64 —4.86 0.13 -9.2x10°?
0.5 —2.54 -11 -0.95 -8.9x10°3
0.6 —8.36 -6.9 0.55 —2.1x107!

errors” in Ref.[38]. We have also observed a quite strangegether. They are also very close to Ghaddar’s solution. Un-
feature in the data of their Table I: for any Reynolds numbeffortunately, we have not yet found another reference to com-
the permeabilities foc=0.5 are exactly those foc=0.6  pare with more accurately for nonlinear flows.
divided by 0.291(up to the table accuragyThe LB method Multireflection provides in a regular manner higher Re
with bounce back reflection is also used to simulate this flomhumbers than the linear interpolations. Similarly, bounce
in Ref. [40]. back solution usually gives an underestimated Re numbers.
Table XI gives for this grid size the relative erBf’(k)  This is probably related to the fact that the effective radius
of the Stokes permeabilitits with respect to the reference (square fractionobtained with bounce back is higher than
values computed from Eq80) and Ref.[34]. The Stokes {he expected value. We want also to stress that multireflec-

- - - . 2_ .
solution is obtained withA®=1/4 and solution(43) at 7 {ions with coefficients56) converge much faster to a station-

=1. . . - ary state than solutio51). Whereas in the previous tests
The dimensionless permeabilities are scaled below by thg & .. \/as no total mass violation due to the symmetry, in

quaslltane:clyct;lﬁaldzolutlohfﬁi] in the Sltogebs r?’tg'me’ eg::ekpt the Icurrent tests we observe some loss of mass with respect to
results o addar which are scaled by 1S oWn SIOKES Valg, o initial distribution. For instance, the relative mass loss

ues, being believed “virtually exact{see Table V in Ref. : : . .
AR = per time step at a stationary regime for 0.5, Re=23 is

F’g]z.' Theybare plot;edkm F'Ig;{.7 fou:t—t?].S z;rt\dkO.S. Fo_r theﬁe 4x10"7 by linear interpolation and 2:310" 7 by multire-

ractions, bounce-back solution at Ine SIOKES regime Nas @, ion At Re~174, these values are 420 ° and 6

relatively small errorsee in Table X). We find then that the X 10~ ’. These data show that the mass violation increases

Navier-Stokes results are also rather close together for the. .
three boundary techniques. Foe0.4, the bounce back re- with Re but its absolute values and rates are smaller for the

. s i ) . multireflections. Similar results are obtained in other tests.
sults differ significantly from those obtained with the linear Table XVI in Appendix D gives the dimensionless appar-
interpolations and multireflections. Figures 8 show for each = i
method the effect of scaling the apparent permeability eithef"t Permeabilityk=k/ks values (right columng versus Re
by the quasianalytical solutiofleft curve) or by its own numbers(left columng for the linear interpolations.
value obtained at ReO (right curve. When rescaled by its

own permeabilitjks, the bounce back results approach those VI. MOVING BOUNDARIES
obtained with the boundary interpolations. This comparison
shows that most of the bounce back error is coming from the A. Algorithms
5% error in the Stokes regime. o
For the values ofre[0.53,0.56 used here, the global 1. Definitions

measurements obtained with the linear interpolations and In order to test the robustness of the linear interpolations
multireflections in nonlinear regimes are rather close to{24) and(25) and multireflectiong51) and(56) in situations
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FIG. 6. Relative difference in drag with respect to symmetric cylinder position when its center is shifted alaaxihd.u.). Left to
right: bounce back, linear interpolation, multireflection with postcorrection.
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FIG. 7. Dimensionless permeability values vs Re number=a.3 (left) andc=0.5 (right). In both cases, the quasianalytical solution
[35] in the Stokes regime is used to rescale the apparent permeability.

where the distancé, varies in a natural way, we construct points of both kinds can exchange their status. The only re-
moving boundary algorithms based on these boundary corstriction here is on the velocity of the solid body which must
ditions. be less than 1 l.u. per time step in any direction so that the
The fluid points are defined as in Sec. Il A and the otherfluid/solid points cannot exchange their status without stay-
points are called'solid.” It is then natural to divide the ing at least one time step in the boundary sets.
corresponding solids intéstatic” and “moving” ones, de- Note that in our computer implementation the static solid
pending on the time behavior of their limiting surfaces: apoints are actually not storethllocated, while we have
solid is said static if its limiting surface does not change itsfound simpler to store the moving ones in all the following
position on the lattice, and moving otherwise. The points inalgorithms.
static and moving solids are respectively called static and
moving solid points. Accordinglyat each time step, tthe
boundary (fluid) points, defined as in Sec. Ill A, are also
divided into static and moving boundary points. The ones Starting from any time our main algorithm goes through
which currently have neighbors only in static solids are the following substeps to get the new state at titrel:
calledstatic boundary pointand are handled as described in collision, propagation, boundary conditions, analysis, advec-
Sec. lll. The boundary points that have at least one neighbdion of the moving solids, and reconstruction of new fluid
in a moving solid, at link distancé, (0=<4,<1), are called points. The first four steps are identical to those used in Sec.
moving boundary pointand their treatment is described in V. The solid advection corresponds to a sampling of the po-
the following sections. Fluid, moving solid, and boundary sition of the moving solids at a tim€d=t+Af‘d, with 0

2. Connections to other methods

O Edwards et. al O Edwards et. al
o Bounce-Back o Bounce-Back
o Li > Li
1008 Llnea?r e 1008 Lll‘lei.ll‘ i
i A Multi-reflection , A Multi-reflection
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FIG. 8. Dimensionless permeability values vs Re numbecfo0.4. Left: the permeability is scaled by the quasianalytical solt&h

in the Stokes regime. Right: the permeability for each method is scaled by its own value in the Stokes regime.

066614-19



. GINZBURG AND D. D’HUMIERES PHYSICAL REVIEW E68, 066614 (2003

d . . . . - -
:A? <l AT_;‘ rezult of this Ia_éivec_tl?nbstep SO”f‘Ie _gu'ghpo'r][tslinks T(ry), if ry—Cq is also a new boundary fluid point or

ecome solid and some Solid points become fiuld. The S aR‘fV‘/hen both neighbors,+ ¢4 andr,+c, are solid(i.e., ry is
of these new boundartfluid) points has to be supplied and | N
in the available literature this is done along two main lines.in @ comer or a narrow chanfelNote that7(ry) always

Along the first one(see, for instance, Ref$36,43), contains the zero velocitg,. Otherwise, theﬂnk is a non-
called the LB in fluid technique in the sequel, the LB equa-tangential link and belongs to the sef{r,) [with
tions (1) and (2) are applied only in fluid points. The diffi- C(ry) CT(ry)]
. h . . b. b/1-

culty of this approach is that all the populations in the new ~ The treatment of the nontangential links is exactly the

boundary points have to be reconstructed. In €8], the  same for the LB in fluid and LB in solid algorithms. When
equilibrium distribution with the mean density of the sur- ~

rounding fluid and the velocity of the solid body was used. T fluid plo.lnt, we sefg(ry,t+1) according to the
Ref. [36], all the populations were interpolated from bulk propagation steol):
with second-order schemes. In our implementation we try to
stay as close as possible to the static LB algorithm. We first fo(Mp,t+1)=T4(rp—Cq,t). (83
obtain all possible populations by the advection stép
Then the links opposite to the new cut ones are reconstructeff/hen Fb+ Eq belongs to a solid, we ség(Fb,t+ 1) accord-
using relation(22) with some necessary interpolations dis- ing to the boundary rules. However, since the postcollision
cu;sed in the following_section. Finally, the remaining pOP“'popuIation7q(Fb,t) is not known at the new fluid point, one
lations, called “tangential” below, are reconstructed explic- cannot use directly the bounce-back, linear interpolation or
itly (the second part of the following sectjon multireflection boundary conditions. For the multireflection
Along t_he s_ecgnd lindsee, for instance Ref$25,44), . cases, one could bring the interpolation coefficiento zero
called LB in solid in the sequel, the collision and propagationith the help of transformation@t8) without loss of kinetic
steps are applied in all the fluid and moving solid points,ccyracy. However, the resulting coefficients are not always
(though the populations are recomput(_ed as an (_aqwhbnum_lrﬁound in the “stability interval”’[—1:1]. In order to keep
Relf- [44]) ?ng tt)he r.?tate IOf tme niwdflpldhpomtlsfdls a“tgcrp"?‘t"similar algorithms for all the boundary techniques under con-
cally supplied by the value they had In the solid. In a Itlonsideration, we interpola@(?b,t) from the bulk. For multi-

'g:)emf) eoguzgdegz é:fo S}ﬂtg}?d atl)rgu?gglrlf?nog e?gsjm At] z(g:a:/ne Oir:d reflections, we have also to interpolate the second-order post-

LB in solid implementation the collision and propagation collision term Nofq® [see Eq.(46). The low-order
steps are applied unchanged everywhere. In particular thigterpolations

propagation takes place from fluid points to the solid ones

_according_ to the evol_ution_ equatidf) Whi_ch, in our opin_- Tq(Fb,t)~27q(Fb+ EE,I)—fq(Fb+ Eg,t)+0(62),

ion, supplies the continuation of the solution from the fluid to

the solid. When a solid point becomes a boundary fluid point,

its populations along the links from fluid to solid are already T@(ry, ) ~TP(ry+cy,H+0(e), (84)
obtained from the advection step and the opposite cut links

are reconstructed exactly as in our LB in fluid algorithm are used to keep a minimal number of the communications
above(we have noticed that using the value they had in thesetween the neighboring points. In a similar way, wegsit

?tgl%é?ft‘g; Iti(r)ﬂ(Igrg?er ftlﬁgtuoitl';njngg tgﬁtjg:;;/ﬂizggir?;h?geir relations(6) and(20) equal to the arithmetical mean va}IEe
value from the solid computed from the neighbor valuesp(ry+cy),

We compute the force according to B§7) or Eq. (65 9 C(rp)UZ(ry). In addition, for downwind linear interpo-
during the analysis step, before the points change theirs stéation and multireflection,f(rp,t) is set to fg(r,—cq,t
tus from solid to fluid. This has to be contrasted with the+1). Then the relation$24) or (25 and multireflections
computation of the force contribution from new fluid/solid (51) or (56) can be used to compute the populatidqﬁb)
points described in Ref$43,44]. Note also that in both our according to relatior{22).
moving methods, the boundary conditions are applied only in - pifferences between the LB in fluid and LB in solid algo-
the boundary fluid nodes. rithms The only difference between our two algorithms is

Finally in the examples given in Sec. VI B, the dynamic the treatment of the tangential links. In the LB in solid algo-
of the solid objects does not depend on the computed forcegithm, the tangential populations keep the values they have
i.e., their velocity is prescribed. Further tests are required tebtained in the solid. In the LB in fluid algorithm they are
evaluate our moving algorithm@specially the LB in solid  computed assuming all the tangential links at equilibrium.
ong when the solid dynamics depends on the fluid solutionoyr heuristic assumes an incompressible flow for which the
first-order (27) and second-orde28) corrections off, are
equal to zero. In a similar way, the projection of the momen-

Similarities between the LB in fluid and LB in solid algo- tum derivatives(i.e., the first- and second-order correctipns
rithms The key point of our moving algorithm is the distinc- on the other tangential links can be neglected, otherwise the
tion between the “tangential” and “nontangential” links in connected points would not appear from the solid at the same
the new fluid points. A linky belongs to the set of tangential time.

3. Details of the moving schemes
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TABLE XIl. Comparison for a XX99x 201 box,r=0.875, of linear interpolationsA), multireflections
(B), multireflections without correctiond@), multireflections for the LB in solid algorithmY).

A B C D
E@(p) (%) 2.16 0.81 2.4 5.31
E@(u,) (%) 4.40 2.20 5.4 2.52
E@(uy) (%) 1.81 0.05 0.16 0.05
Force at disk
StaticF, —0.024 —0.024 —0.024 —0.024
StaticF, 0.62 0.62 0.62 0.62
EO(F,) (%) 5.7x10°2 6x10 * 1.6x10°2 0
EO(F,) (%) 0.34 0.26 0.37 0.26
EO(F,) (%) 4.5<10°°3 2.6x10°3 3x10°3 2.6x10°°
EOF,) (%) 2.5 0.56 0.57 0.95
Force at flat
EO(F,) (%) 4.4x10°3 7X1074 1.1x1073 0
EO(F,) (%) 0.29 0.08 3.&10°?2 0.09
Mass loss
per period 2.%10°7 1.4x10°8 3.2x10°7 2.8x1077

In order to compute the equilibrium in the new fluid an impulsively started cylindespherg¢ moves with velocity
points, one has to estimafeandp. A first-order approxima- JW and the outer boundary is at rest. When the moving solid
tion of the velocityu®(r,,t+1) is obtained from the arith- reaches the box boundaries, its position is adjusted by peri-
metical mean of the linear interpolations between the knowrdicity. Hereafter we refer to this setup as the moving solu-

T 2 tion (or simply “m”
I f th I + h
values o t fe ve||00|tw_vvgrb iqc‘l;’t) Zt the blour_1da_ry anc(jj As in Ref.[36], we check for the Galilean invariance of
.U(Ej Cq.’t) oralqe ﬂr?) [the boundary ve 90|ty IS us.e the method by comparing the results of the first and second
if 7(rp) is empty. Assuming then the equilibrium solution setups when the solids move with a constant velocity and the

for the tangenthl links, the unknown density is derived fromposition of their center of masfg is given by
the linear equation:

Fe(t2Y=r (A3 +u,t, t=0. (86)
_ edrq jam | — _1 L=

p[l Equ (1 p)] q%qu zqutqu F. 69 If the flows are Galilean invariant we expect to obtain the

velocity, pressure distributions, and forces as

We have found that relatiof85) leads to slightly smaller

oscillations in the solution than the direct use of the approxi-

mate density value at equilibrium. Noting that the values

U(rp—Cq,t+1) in the “old” fluid points are already known o6 p(s) ang p(™ are the pressure distributions minus
during the recqnstructqn Pf tt‘e tangential links, their valuessome characteristic mean pressures. The forces are computed
could be used instead afr,—cq,t). However, we have not independently, once on the outer boundary and once on the
detected any further improvement of the accuracy with thisnner solid, using the standard definiti¢g7) or the force
change. definition with boundary fitting66). Since no external force
is applied, the sum of the forces on the internal and external
B. Numerical results boundaries is expected to be zero for the stationary solutions.
In order to check relation®@7), we measure the values of the
velocity and pressure when the moving solid is found at the
In the first setup we simulate a periodic flow past a cyl-same position as in thecase. We compare also theforces
inder (spherg at rest, the velocity of flafcylindrical) outer  and their averages during one period with theicounter-
boundary being— Gw- Hereafter refer to this setup as the parts. Here the_ period is defined E_lS the minimal nur_n_ber of
static solution(shortly “s”). In static and linear regimes, a time steps required to move the solid to the same position, up
cylinder between flat walls is considered in Sec. V A 6. Thet0 an integer displacement, with respect to the underlying
guasianalytical Stokes solution for a sphere traveling alondattice (assuming a rational value far,).
the cylinder axis is considered in R¢#i2]. Static LB solu- When the solid body moves, the LB solution is no longer
tions are compared with it in Ref20]. In the second setup, stationary in the lattice frame. Since the unsteady Stokes

GO=GM_G, =~ PO=pm EG=Em (g7

1. Setup for moving boundary tests
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FIG. 9. Relative difference between the moving and static velocities at the boundary points as a function of their angulafiposition

radian for a 1xX 99% 201 box andr=0.875. “Linear Method” and “Multireflection” correspond to linear interpolations and multireflections
for the LB in fluid method; “LB in Solid” corresponds to multireflection for the LB in solid method.

equation does not possess Galilean invariance, we simulageire and velocity. Figures 9 and 10 show velocity and pres-
the Navier-Stokes equation m ands caseqeven for small sure error distributions at boundary points around the
Re numbers In the following sections our attention will be cylinder as a function of their angular positi¢im radian.
mostly focused on the LB in fluid algorithm and comparisonsLinear interpolations lead to larger difference betws@md
with the LB in solid one will be done for the multireflection M solutions. In the case of multireflection, the algorithms

case only.

2. Impulsively started cylinder in a channel

We consider a X 99x 201 channel, periodic in theand
z directions. A cylinder, of radiuR= 12 and axis along the
direction, is moving along the axis with a velocityu,,=
—0.04. The cylinder starts at=0 from the point {,z)
=(53.5,29.65) and the time shift?=0.5.

with and without internal fluid give very close results except
for the points that have just changed their status from solid to
liquid. For the LB in solid algorithm and y(,z.)
=(53.5,29.99), such points happen at the rear of the cylin-
der. The pressure in these points differs strongly from the
bulk value[see Fig. 10, LB in solid1)] and contributes
mainly to the pressure error. When no new point appears, the
pressure fluctuations are twice smalleee Fig. 10, LB in
solid (2)] and the corresponding®)(p) decreases from 5%

Case Re=7. A stationary static solution is obtained for to 3%. The comparison of the columBsandD in Table XII
7=0.875. The corresponding moving solution is comparectonfirms that the reconstruction of the tangential populations
with the static one att=150743 in point Y.,z.) leads to smoother bulk solutions than its “in solid” counter-
=(53.5,29.99), when the cylinder finishes its 30th trip part.
through the channel. Table XII shows the relative error esti- Table XII shows also the values of the forces in the static
mations(77) between static and moving solutions for pres-regime, the force on the flat wall being exactly the opposite

—— Linear Method

——— Multi-reflection
0.04

0.02

0.00

Pressure Error

-0.02

_0.04 1 I 1
0.0 2.0 4.0 6.0 8.0
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I LB In Solid (2)

0.15

0.10
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0.00 |
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FIG. 10. Relative pressure error corresponding to Fig. 9.
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FIG. 11. Drag and lift forces at disk, computed from E§7) (upper row and Eq.(66) (lower row) are plotted during one period.

of the force on the disk. The relative differencé®) be- tern for the dragprobably due to the fact that the cylinder
tween the static and moving forcg”(F,) andE((F,)]  axis is slightly off the middle of the two flat wa)lsand an
and the difference between tkdorce at §/.,z;) and them  almost periodic one for the liftit is difficult to be more
force averaged over one periothere 25 time steps precise since the final regime has not yet been reached at the
[EO(F,) andE®(F,)] are also given. This last comparison end of the simulations The left column in Figs. 12 and 13
is justified if the force changes weakly in the static regimeshows drag and lift forces as functions of time computed
compared with the moving one when the cylinder centewith definition (57) at cylinder boundary and the right one
shifts within one lattice unit. This is the case here as demonshows the same quantities but computed with definitGs.
strated in Fig. 11 where the lift and drag distributions duringSince the flat walls are located at a distance equal to 0.5 of
one period are shown for the moving ca$er comparison the nearest lattice nodes, both force definitions coincide for
the static solution is also given for some cylinder positjons the flat wall. The results are plotted for the static case and
The upper and lower rows correspond, respectively, to théhree moving techniques: linear interpolations and multire-
force definitions(57) and (66). In the static case, as for the flections for the LB in fluid and LB in solid algorithms. The
Stokes results of Sec. V A 5, for¢g7) fluctuations are big- error estimations are also given in Table XIll. Since the so-
ger for the linear interpolations than for the multireflections.lution is nonstationary, the comparison is only done, without
In the moving case, the oscillations of both methods areaveraging, when the cylinder is at the same location for the
similar for the drag. For the lift, they are stronger for the static and moving cases.
linear interpolations than with the multireflections. Also, Some remarks are now in order for R200. First, when
whereas the multireflection solution fluctuates around its corthe forces are computed in the standard way, the multireflec-
responding static value, the linear interpolation solution detion LB in solid algorithm is found to be the most “oscilla-
viates from it. tory” one, followed by the LB in fluid algorithm, the linear
Case Re=200. When r=0.5144, the solution is no interpolation algorithm giving the “smoothest” results.
longer stationary. It appears an almost periodic-doubling patWhen the force distribution with boundary fittin@6) is
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used, the smoothness of all solutions, and especially of thbe smaller than with definitio(57), the modified definition

LB in fluid algorithm with multireflection, is improved dras- improves the computation of forces since the stress values
tically. One technical explanation could be that the forceare approximated on the surface. This is also consistent with
computation (66) involves populations from the next to the fact that the best filtering is achieved for the multireflec-
boundary nodes where the solution fluctuates less. Alsdjon algorithms, which have been designed to be the most
when the surface integration error with E§6) happens to accurate near the boundaries.
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3. Moving sphere in a cylinder moving solution is compared with the static one after 31

We consider a sphere of radil&=16.9 in a periodic cycles across the cylinder. Quasistationary solutions are
motion along thex axis of an outer cylinder of radiug, ~ "€ached in them and s regimes. The results for forces are

=42.5 and lengtlf =189 alongx (in l.u.). The sphere starts Shown in Table XIV. The drag and lift values are rescaled by

from the point &,.,Yo,2o) = (30.65,4.225,0), with respect to the viscous scaling M®©/(67u|d,|RK*), where k*
the cylinder axis, and moves with velocity,= —0.04. The is a function of the ratio between the sphere and cylinder
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TABLE XIlII. Same as Table XII forr=0.5144.

A B C D
Force at disk
StaticF, 1211074 0.281 0.279 0.281
StaticF, 0.86 0.797 0.797 0.797
EO(F,) (%) 1.62x102 1.1x10°%? 3.1x10°? 1.0
EO(F,) (%) 3.6 3.78 15 4.77
Force at flat
StaticF, 3.27x10°%  -0.279 -0.281 —0.278
StaticF, -0.91 -0911 -0911 -0.911
EO(F,) (%) 4.1x10°° 6.7x10 2 0.08 6.7%10°2
EO(F,) (%) 0.21 0.24 0.29 0.24
mass loss
per period 2107 1.9x10°7 52x107 1.6x10°7

PHYSICAL REVIEW E68, 066614 (2003

for arbitrary inclination of the flow with respect to the lattice
axes.

These exact solutions have been confirmed by numerical
simulations of the corresponding flows. In addition several
flows in periodic arrays of spheres or cylinders in the Stokes
regime and of cylinders for the Navier-Stokes one have been
studied. As stated in the Introduction, our goals were set in
the context of moderate resolutions and/or moving bound-
aries and not in the academic context of a convergence factor
for an infinite number of grid points. In this context we have
confirmed that, as has been found in Ré#], the conver-
gence is nonmonotonic and that the usual tools to assess the
accuracy order do not work, at least in theirveimplemen-
tations. However we think to have shown that the linear in-
terpolation improves the overall accuracy over the bounce-
back condition for low viscosities and curved walls. The
multireflection method provides a further improvement in the
accuracy of the hydrodynamics quantities near the walls for

radii given in Refs.[36,42. The table shows that in this @ny combination of the collision eigenvalues.

test the errors on the force are about twice smaller for the

We would like to stress that the bounce-back condition

multireflection algorithm than for the linear interpolation Still has several advantages: it is simple, robust, and obeys a

one.

VII. CONCLUSION

strict mass conservation. This is especially true for simula-
tions in complex geometries such as those coming from
weakly resolved tomography in which the boundary position
is only approximately known. In addition the bounce-back
accuracy can be very satisfactory if the following rules are

We have shown that boundary conditions based on a linkbeyed. First the no-slip condition has to be set in the middle
approach such as Rdfl4] can be analyzed in the spirit of of the cut links. Second the eigenvalues of the collision ma-
Refs.[2—-4,1( and their accuracy can be assessed for simpléix for the odd and even moments must be chosen such that
flows such as Couette or Poiseuille-Hagen ones. From thighe corresponding\? in Eq. (41) is set to a constant value
analysis we have been able to derive new boundary condpetween 1/6 and 1/4: fixedl? ensures viscosity independent
tions for which a third-order kinetic accuracy can be provenmeasurements. Also the overall accuracy of the bounce-back
theoretically for steady linear or nonlinear LB solutions, condition could be improved for macroscopic quantities
leading to the Stokes and Navier-Stokes equations. As a rehrough a careful calibratiofwhen availablgof the effective
sult of this third-order accuracy, linear Couette and Poiseuill&youndary locationgsee, for instance, Reff25]). Note, how-
flows are exact solutions of the lattice Boltzmann equatiorever, that this calibration does not cure the Knudsen layers

TABLE XIV. Comparison between the static and moving solu-
tions for a sphere in a cylinder at=0.55(Re=81) using the linear

interpolation and multireflections LB in fluid algorithms.

Linear
Force at sphere

Multireflection

StaticFy 0.683 0.688
StaticF, —3.02x10°3 ~3.02x10°*
EO(F,) (%) 2.48 1.63
EO(F,) (%) 1.7x1078 0.7x1073
EO(F,) (%)(at spherg 1.2 0.56
EO(F,) (%)(at spherg 4.0x10°3 2.3x10°8
Force at cylinder
StaticF, —-0.682 -0.689
StaticF, 3.02x10°3 3.02x10°3
EO(F,) (%) 2.79 0.54
EO(F,) (%) 8x10 4 3x10°4
mass loss
per period 3.x10°6 1.8x10°8

near the boundary, but only averages their effects.

The present theoretical analysis, done for steady flows,
has to be extended to the unsteady situations. Two theoretical
difficulties have also to be studied in more details. First it
would be useful to go beyond the heuristic arguments used
here to deal with the stability issue. Second it would also be
interesting to find a way to keep the accuracy of the multi-
reflection without any mass loss or at least to further inves-
tigate its effect. So far we did not see any dramatic effects as
long as the quantities rescaled by the density use its actual
value at the measurement time. It should also be noted that
most methods for moving boundaries suffer some mass loss.

The multireflection scheme requires at least three fluid
nodes along a link to be applied. We did not investigate in
full detail what happens when this condition is not fulfilled.
Among the different possible choices we have looked at, the
following recipes have been used. When there are only two
fluid nodes, the missing population is taken from its value at
the previous time stefsee the end of the last paragraph but
one of Sec. lll A; when there is only one fluid node, we use
the bounce back condition. A similar problem, which has
also been left for future work, is the case of links tangent to
the boundary or cut twice between two adjacent nodes. In
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. 3ja—i?
P+jqtIFq+t—=—+F
q q 2

our implementation they are considered as fluid links as long
as the end nodes are fluid ones. The effect of different ?q(Fb—zéq)zt;
choices remains to be investigated.

Finally, the method has been extended to moving bound-
aries. As seen by other authors, we confirm that the main
difficulty of these simulations comes from an unreliable re-
construction of the pressure in the new fluid points, leading —ot*
to numerical fluctuations of the physical quantities. Although .
we have only done a preliminary study, interpolations and

q

+(1-N )P+ (12 fP

3'2_'2
2p

alq

* 9 5 —_ (1)
multireflections exhibit a surprisingly good overall stability + 2t dgal g~ 2(1 =N dgf g (A4)
even in changing geometries.
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APPENDIX A: TAYLOR EXPANSION

4k
FOR BOUNDARY CONDITIONS t

9qP =g qt g

In this section we are giving the Taylor expansion for
steady solutions of the LB equation. To shorten the formulas
the time dependencies are omitted and the right-hand sides

are taken afb. Note also that the second-order derivatives

of P and of the nonlinear terms are neglected since the\PPENDIX B: EXAMPLES OF MOMENTUM TRANSPORT
appear at the same order as the third-order derivatives of the
momentum,

1.
~ 5t daalq=(

1. Noninclined channel

When the force addition in each cell is independent on the
position of the boundaryi.e., effective volume of the cell
the momentum transport definitioi®7) is independent on
+fH_f@ the actual boundary positiofisee relation(65)]. Conse-
q a quently, even if the populatiofy, is constructed to better fit
(A1) the boundary, the forc#i(® will stay the same as for the
bounce-back reflection.
Let us illustrate this by the simple example of Poiseuille

N 3jq—i°
a(rb)—tp P ]q Iqu+—~
2p

3] 2_j2 flow in a channel of widtHH. If the momentum transport is
(rb) t* P+jq+1iFq 4 Fq) calculated with definition(57), k is equal to vQ/(FH"),
2p whereH' is the number of liquid points across the channel.
B (1) B ) Even if the exact valu&H?3/(12v) of the flow rateQ is
A=) T+ (A= A2) g (A2) used, the measured permeability is equal to its exact value
H?/12 only if H=H', whereas the result is always exact with
definition (66).
~ s 3ja—i?
fo(rp—cq)=tp| P+jqtIFq+ qu +Fq 2. Example: Inclined channel
We consider either a Couette flow,
+(1-N )P+ (10 fP
—t*| 9P+ dgjqt 9 3ia* T 5> =0, jx(h")=1, jx(=h")=0, p=po, VP=0,
p| % ala™ % T 9z'?
(BY)
+3t*a iq— (1—X,)a,fD (A3) o
2 Pragtd voata e or a Poisedille flow

066614-27



. GINZBURG AND D. D’HUMIERES

2.
d Jx >

P! jx’(ih’)zov P=Po; VP=0,

(B2)

_FX/:V

in an inclined channel of width?, where the coordinates
are written in a system rotated to align tke axis with the
flow as

!

x'=xcosf+zsingd, z'=-—xsinf+zcosh,

x=x'cosf—2z'sinf, z=x'sinf+z'coshd. (B3)

The exact linear solution is given, for the Couette flow, by
1 djy ]

N CinCiZf

b *] A2 ;
i = + 1Ciyr +
N;i(r) tp[CsPo JxCix N, gz’

(B4)

and, for the Poiseuille flow, by
1 9jy

—Cix/Cjzr

)\'V 9z’

Ni<F>=t;fc2p0+<1xr+lfo,>cixf+

14 t?zjxr 2
- I (1-3¢2 ), |
)\2 &2,2 CIX ( 3C|Z )

0,...by.

(B5)

The substitution of Eqs(B4) and (B5) into Egs. (66) and
(67), with the help of relation(68), yields atz'=+h’ the
exact result

MO(xh)= > 3 2cip,
gqel(=h")
&jx' -
—6v par Cax'Cqz { Cq» (B6)
*h’
with
ajxr 14
v o = —— for Couette flow (B7)
z
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TABLE XV. Scaled drag and seepage velocity for a square array
of cylinders between moving flat walls as functions of the volume

fractionsc.
c F9/ wuy, Q,/puy
0.1 5.34388 0.384425
0.2 6.86103 0.297680
0.3 8.75675 0.232982
0.4 11.4558 0.177666
0.5 15.7519 0.127767
0.6 23.8738 0.0812631
0.7 45.9788 0.0368363
&jx' _ , . .
v =%F,h’ forPoiseuille flow. (B8)
az' |, .,
For the Couette flow, relatio(B6) reads
T 4 h 2 = Ve
MI(£h")=Ag Cspontimls , (B9)

Whereﬁt are the normal vectors af = =h’ as defined in
Sec. IV andi is the unit vector along the flow. For the

Poiseuille flow, relation(B6) reads

MW(+h'")=Agc2pons +Fyh'iy), (B10)

then the total momentum transporiyl™=MM(—h’)
+M™(h")=V®F,,, is equal to the force applied in tred-
fective volume ¥=2h’Ag, whereas it is in the volumg',
independent of the boundary conditions, when using defini-
tion (57).

3. Example: Circular pipe

The solution of the Poisson equation in a circular pipe of
radiusR is

F
YL (r2—R?), r2=x2+7%, O<r<R. (Bl

ly 4y

For this flow the second-order expansion gives also an exact
solution similar to Eq(B5) and relation(66) is also exact.

TABLE XVI. Re numbers and the corresponding dimensionless apparent permelzbildys values for

a 66 box; ks corresponds to E80).

c=0.2 c=0.3 c=04 c=0.5 c=0.6
22.66 0.86 12.06 0.93 13.64 0.93 23.82 0.88 22.33 0.90
29.44 0.84 23.26 0.86 25.28 0.86 28.89 0.86 30.30 0.85
42.56 0.81 43.40 0.80 46.46 0.79 52.34 0.78 47.97 0.77
67.85 0.77 81.18 0.75 56.52 0.77 71.67 0.74 64.10 0.72
102.0 0.74 96.12 0.74 104.0 0.71 95.24 0.71 113.0 0.64
128.4 0.73 124.6 0.72 157.5 0.67 149.9 0.66 124.1 0.62
151.9 0.72 152.8 0.71 171.4 0.66 174.6 0.65 131.4 0.61
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Since the value obd,j, atr=R is —RF,/2, definition A%y=0, (Cy

(66) yields . . . .
and satisfy the no-slip condition on the cylinder and the sym-

M ()~ @szg i*y, (B12)  Metries with respect to its center. The coefficients are then
2 obtained from a least-square fit of boundary conditiong at
) ) ) =H andz=H. In Ref.[35] the boundary conditions ang
where( is the length of the cylinder along theaxis. Then  _1 g3ndw=0 on the planey=H and d,=3d,0=0 on the
the accuracy with the modified definition depends on the)janez=H in order to match the periodic conditions and a
evaluation of the surface integral7R( in Eq. (B12).  scaled seepage velocity. In our calculation the boundary con-
Whereas for definitiort57), relation(65) reads ditions ared, y= —{,, andd,=0 ony=H andP=0 and
d,b=0 onz=H.
|\7|(°):Fyv' ry, (B13) The only difficulty we have found was a severe loss of
o ' accuracy(around one digit per terfrwhen summing the se-
and the precision of the total force computation depends ofies. We have solved the problem by doing the calculation
the accuracy of the discretization of a circle on lattice cellswith the MATHEMATICA software with an intermediate accu-

Ve~ mR2. racy set to twice the number of terms in the sum. The solu-
tion for the dragF{ is normalized as in Eq80) and tabu-
APPENDIX C: MULTIPOLE SOLUTION FOR A FLOW lated in Table XV which contains also the seepage velocity
PAST SQUARE ARRAY OF CYLINDERS BETWEEN value scaled by the wall Ve|ociﬁw_
FLAT WALLS

APPENDIX D: RELATIVE PERMEABILITY OF A SQUARE

A quasianalytical solution is obtained from a modification ARRAY OF CYLINDERS

of the multipole procedurg35] to capture Dirichlet condi-

tions at the flat walls. The method is based on the computa- As reference values, we give in Table XVI the relative
tion of the stream functions as a truncated series of terms permeability obtained by the LB method with the linear in-
which are the solution of terpolation as described in Sec. V B.
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