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Spatial-temporal Gauss-Laguerre waves in dispersive media
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A family of dispersionless and diffractionless spatial-temporal Gauss-Laguerre waves propagating in disper-
sive linear and transparent media is introduced. Contrary to pulsed Bessel beams and envelope-X waves
recently studied in media with normal dispersion, these spatiotemporal Gauss-Laguerre beams may exist both
in the normal and anomalous dispersion spectral regions of the medium.
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[. INTRODUCTION In this paper we show the existence of a family of axially
symmetric propagation-invariant linear localized waves in
Spatial-temporal localization of acoustic or electromag-dispersive materials that may exist both in the normal and in
netic waves capable of propagating undistorted in vacuunihe anomalous dispersion spectral regions of the material.
such as X waves, focus wave modes, pulsed Bessel beamik)e spatial-temporal wave envelope is expressed in terms of
etc., have been the subject of an intense research in the p4a@uss-Laguerre functions and propagates almost at a luminal
few years(see, e.g., Ref$1_9], and references thereimnd group VE|0City. The paper is Organized as follows. In Sec. Il
special attention has been payed to their unusual propertiedle basic grounds on optical wave propagation in dispersive
related to the superlumingé] or subluminal8] propagative media are reviewed, and both an integral and differential
nature, to the construction of finite energy solutiqisge, —representation of dispersionless and diffractionless wave en-
e.g., Ref.[9]), and to their practical implementatioisee, ~Velopes is derived. In Sec. Ill the family of axially invariant
e.g., Ref[10]). Later investigations have predicted the exis-Gauss-Laguerre spatial-temporal beams is introduced, and
tence of localized envelope light waves propagating withougome numerical results are presented. Finally, in Sec. IV the
spreading both in space and time in linear dispersive anfain conclusions are outlined.
transparent media as a result of spatial-temporal coupling
effects [11-17. The potential interest of such localized
waves for applications in optical communications, metrol-!l. DISPERSIONLESS AND DIFFRACTIONLESS OPTICAL
ogy, spectroscopy, and imaging was also pointed out. Re- WAVE ENVELOPES IN DISPERSIVE
cently, some of these localized waves have been shown to TRANSPARENT MEDIA
play an important role in nonlinear optical processes as well
[18-20. The existence of localized propagating light waves ) o )
in dispersive linear media which do not show spreading ef- \We start our analysis by considering optical wave propa-
fects both in space and time was first predicted in M, gation in a linear and transparent medium far from reso-
where localized waves with axial Symmetry were constructedl@ances, with a real-valued refractive index that varies with
as a superposition of monochromatic Bessel beams with §eduencyn=n(w). The most general solution to the scalar
frequency-dependent cone angle. By specializing the gener#ave equation for the electric field(x,y,z,t) is given by
form of polychromatic Bessel beams of Rél1], recent the superposition of monochromatic plane waves at fre-
studies have further introduced special nondiffracting andluencyw and wave vectok= (k,,ky ,k,) satisfying the dis-
nondispersiveenvelope wave solutions, such as pulsed persion relation|k| =k(w)=wn(w)/co, where ¢, is the
Bessel beam§13,15 and luminal envelope-X waved6].  speed of light in vacuum, i.e., one has
For such waves the mechanism underlying cancellation of
temporal spreading due to dispersion and spatial_sprea_ding(x’yyz't):f dwdkxdkydkzﬁ(kx,ky,kz,w)é(kiJr k§+ k2
due to diffraction is possible solely in the normal dispersion
spectral region of the material. For many applications, such
as in optical communications, the optical waves fall however
in the anomalous dispersion region of the material, and it 1)
would be desirable to highlight a mechanism for wave local-
ization independent of the sign of second-order group veloc- R
ity dispersion of the medium. Though it is commonly be-In Eq. (1), E(k,,ky ,k,,) is the spectral amplitude of plane
lieved that angular dispersion of polychromatic Bessel beamwaves, and the integral is extended over the positive-
can only compensate for normal material dispersion, it hagrequency part of the spectrum and to real-valued wave vec-
been very recently shown that material group velocity distors k. Equation(1) describes a propagating nondispersive
persion cancellation can occur in the anomalous spectral r&nd nondiffractingenvelopevave, provided that the longitu-
gion as well in a special class of polychromatic Bessel beamdinal wave numbek, is chosen to be #near function of
[17]. frequencyw. Introducing a reference frequenay, (carrier

A. Integral representation

—k*(w))exdi wt—i(kx+kyy+k,z)]+c.c.
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frequency and settingk,(w) =Kk,o+ kéo(w_ wg), Wherek,q B. Differential equation for the wave envelope
andk;, are_undetermined parameters at this stage, one can |nstead of using the integral representati® of the
formally write wave envelopey, it is worth writing down also a differential

equation fory. To this aim, let us observe that, due to the
E(x,y,z,t)=exdi(wot —Ko2)J(X,y, ) +c.c., (2)  s-Dirac term entering in Eq(3), only the terms satisfying
_ _ _ the conditionk?+kj=k?(Q) contribute to the integral, so
where 7=t—k}yz is a retarded time and/(x,y,7) is the  that one has
wave envelope, given by

i f dQdk,dky[KZ+k5— kT (Q) 19Ky ky Q) SKE+K?
¢(x,y,r)=f dQdk,dky (K, Ky Q) S(k;+ kS
—K2(Q))exiQT—i(kx+kyy)]=0. (10
—K2(Q)exdiQr—i(kx+ky)], (3 _
Since
where we have set
() =Ko ) (K KL @ f dQdkedk,(KZ+k2) g(Ky ky Q) Sk + k5 —k? (Q))
L =K"(wg —(Kzo T Kzp32)™.
o _ xXexgiQr—i(kx+kyy)]
The electric field is then expressed by the product of a carrier
sinusoidal wave at frequenay,, propagating with a phase =-Viy, (13)
velocity vi=wq/k,9, and an envelope) that propagates 2 oo oo )
without distortions, both in space and time, with a groupWhereVi=4g</9x+g°/dy* is the transverse Laplacian, and

velocity vy=1/k;,. A particularly important case, which has

been considered in previous workkl,13,14,18 is that of f dad kxdkykf(ﬂ)l?l(kx,ky,Q)5(k)2(+ ks_kf(g))
wave envelopes with axial symmetry, i.é.= (r,7), where

r=(x?+y% Y2 In this case the envelope spectral amplitude X exgiQr—i(kx+k.y)]

¢ depends ork, andk, throughkZ+kZ, and thes-Dirac g

term in Eq.(3) can be removed after performing the integra- =k2( i i y (12)
tion with respect tc, andk, in cylindrical coordinates. Re- L ar| "’

calling the integral representation &f Bessel function, one
obtains where the operatorkf(—i(?/ar) is defined through the
power series expansion dxﬁ(Q) after the substitutior()

¢(f.7)=f dQAS(Q)JO(kL(Q)r)exp(iQT), 5) ——idldr, from Eqs.(10)—(12) one obtains

. V2 y+k? —ii) ¢=0. (13
whereS(Q)) is an arbitrary spectral amplitude. To avoid the ar

occurrence of evanescent waves, the integral in'Bdas to

be limited to the frequencies for whidh () is real valued.

In particular, for near-monochromatic waves, the expressio
of k, () can be simplified after a power expansion of
k(wot+ Q) aroundwy. By pushing the power expansion up
to second order i) to account for group-velocity dispersion

effects, one has

Equation(13) is the basic partial differential equation that
rt|1as to be satisfied by the envelopeof a dispersionless and
diffractionless wave(see also Ref[16]). In particular, for
narrow-band pulses, for which the power expangi@nfor
kf(Q) holds, Eq.(13) takes the simplified form

V2y+A 'Bé’dl-i-c(?z’/l 0 (14)
—iB—+C—=0,
k?(Q)=A+BOQ—CQ? (6) rAYIB pre
where we have set where the coefficientd, B, andC are given by Eqs(7)—(9).
Note that Eq(5) represents the most general solution to Eq.
A= kg_kgo, (7) (13) with cylindrical symmetry, however Eq13) [or Eq.
(14) in the quasimonochromatic cdse more general and it
— - / includes solutions without axial symmetry. The existence and
B=2(koko~Kaokzo), ® properties of localized solutions to E(.4) depend strongly
e ) on the values of coefficient, B, andC given by Eqs(7)—
C=kzo—ko"—koko, ©) (9), which are determined once the free parameiggsand
, " 2 2 -0, Which fix the phase and group velocities of the wave,
and ko=k(wo), ko=(0k/dw),, ko=(kldw?), . Note  gre assigned. As particular cases, B contains the two-
that, in the case of propagation in vacuum, Ej.s rigorous  dimensional (2D) and 3D elliptic Helmholtz equation
with kg=0 in Eqg.(9). (namely, forB=C=0, A>0 andB=0, A>0, C>0, re-
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spectively, the Schrdinger equation(for A=C=0, B T :
#0), the hyperbolic 2D wave equatiofior A=B=0, C Normal nomalous
<0), and the 2D Klein-Gordon equatidgfor B=0, C<O0,
andA<0).
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A. Gauss-Laguerre waves and their Bessel-beam - A
spectral representation o

Frequency @

Pulsed Bessel bearfit3] and envelope-X wavd4.6] rep- o _ . _
resent special solutions of the envelope wave equdfidh FIG. 1. Qualitative behavior of the spe_ctrtﬂé(la)) of a spatial-
with axial symmetry in the quasimonochromatic approxima-€mporal Gauss-Laguerre wavier n=2) in the anomalous and
tion. In fact, one can easily show that these two families of*°'mal dispersion regimes.
solutions are obtained by imposing=C=0, A>0 for

pulsed Bessel beams ad=B=0, C<O0 for envelopeX 0 |B|r? |BIr?

waves. For the sake of completeness, these types of solutions‘ﬂ(r’T): (roTir)" L " 4(1oFiT) xR d(ro¥iT)|

are briefly reviewed in the Appendix. What is important to 0 (18)
stress here is that these solutions can exist solelykfor

>0, i.e., in the normal dispersion spectral region of the mewheren=0,1,2 ..., Lﬂ is the generalized Laguerre polyno-

dium. In this section we introduce a family of localized en- mial of ordern, 7, is an arbitrary parameter that determines
velope waves with axial symmetry, which can be supportedhe on-axis pulse duration and transverse beam size, and the
both in the normal and anomalous dispersion regions of thepper (lower) sign applies ifB>0 (B<0). Note that the
material. As we will show, these localized waves are ex-on-axis { =0) wave intensity varies with retarded time
pressed in terms of Gauss-Laguerre pulsed beams, argcording to

propagate undistorted with a group velocity which is al-

most luminal, i.e., close to the usual valuegl/ Gauss- )
Laguerre localized waves are the family of solutions with |(0.7)] “m*
axial symmetry of the quasimonochromatic envelope equa- 0

tion (14) when the parametells,, andk;, are chosen such e it describes a localized pulse with an algebraic decay,
thatA=C=0. This occurs by assuming and 7, determines the pulse duration. Spatial localization is

(19

T determined mostly by the Gaussian term; in particularr at
, , oKo =0, the beam spot sizg, of the Gaussian beam turns out to
Ky0=Ko, kzo=k0\/1+k—62 15 e 0
and, in correspondence, the envelope differential equation Woe /ﬁ: 470Ko (20)
reads 0 Bl ViK'
iBa—l/I=Vf¢// (16) It is worth considering the spectru®()) of the Gauss-
ar '

Laguerre localized waves, which can be derived by means of
the Bessel-beam decomposition according to(&g.Indeed,
Note that Eq(16) is formally equivalent to the paraxial wave one can show that the Gauss-Laguerre waves, given by Eq.
equation of diffraction in homogeneous meds®e, for in-  (18), can be obtained from E@5) by setting[22]

stance, Ref[21]), however the propagation distance is here

played by the retarded time=t—z/vy. The expression of 1
the B coefficient in the previous equation is 50)= —r"exp(— 7o), Q>0 (21)
” 0, Q<0
B 2kgh| 1 [ 1+ 2K 1
= 2KoKp k)2 | @D for kp<0, and
The phase velocity of the Gauss-Laguerre waves is given by . il(—Q)”exp( ), Q<0
vi=wql/kg, whereas the groufenvelopeg velocity is given S(Q)=49 N (22
by vy=1/kg,=1/kg (since usuallyjkoky/ky?|<1). The sign 0, Q>0

of the group-velocity dispersion parameter determines the

sign of theB coefficient in Eq.(16), namely, one haB8>0  for ki>0 (see Fig. 1 Gauss-Laguerre waves thus show a
[B<0] for ky<O [kg>0]. A family of solutions with axial one-side spectrum which is blue shiftaslith respect to the
symmetry of Eq(16) is given by the set of Gauss-Laguerre reference carrier frequencin the anomalous dispersion re-
waves[21], which are explicitly given by gime (kg<0) and redshifted in the normal dispersion re-
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gime (kg>0). It should be noted that the analytic form of o.100).

Gauss-Laguerre waves given by Efj8) is exact if one ap-

proximates the dispersion cunkg ()) with its power ex- 07, e N
pansion up to second order iR, i.e., by neglecting third- 06, :\:: I Y 1

order and higher-order dispersion effects. For ultrashort os.

pulses, i.e., when the spectral extent3§f2) is broad, one
should consider the integral representation of Gauss-
Laguerre waves, given by E¢p), after assuming fok, ({2)
the exact expression given by Hdg) and determined by the
exact dispersion relatiok(w) of the material. The existence &0
of Gauss-Laguerre waves requires a nonvanishing group
velocity dispersion parameter, i.é;# 0, so that the under-
lying wave localization mechanism is truly a spatial-
temporal effect involving both diffraction and group-velocity
dispersion effects. No Gauss-Laguerre waves may exist in _ . 2
vacuum. As a final remark, it should be noted that the con- FIG. 2. (f"‘) Space-time plot of envelope intensi(r, )| ('.n

o . . . . arbitrary unitg for a second-order Gauss-Laguerre wame=@) in
dition for group-velocity cancellation achievable with poly- 7 ! ; .

. . . . ._sapphire in the anomalous dispersion reging= 1550 nm). Pulse

chromatic Bessel beams in the anomalous dispersion regi

- . . Mfaration parameter is,= 20 fs. (b) Behavior of normalized trans-
recently considered in Refl7] leads to a rather different verse wave vectok, /ko vs frequencye (solid curve; the dashed

C!ass of !ocal_ized Waves than_ the GaUSS'Laguer_re family COMkurve is the corresponding approximate behavior as given by Eq.
sidered in this work. In fact, if we consider the integral rep-

resentation of localized diffractionless and dispersionles
waves in terms of Bessel beaifisg. (5)] and introduce the

o
~
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0.3 Frequency [10'* rad/s)

Intensity [y

o o
~b
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Intensity

. ) .
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Radial coordinate 7 [pum]

6). The shape of the spectral amplituSéw) is also shown(thin
olid line). (c) Radial behavior of wave intensity(r,0)|? at re-
tarded timer=0 (solid curve and corresponding approximate

cone angled((2) of Bessel beams according [tb7] curve as given by Eq18) (dashed curve, almost overlapped with
the solid ong
Siﬁ@(ﬂ)]=ﬂ COQ{H(Q)]:ﬂ
K(wg+Q)’ K(wot+Q)’ a spectral amplitud&(Q) according to Eq(21). The disper-

(23 sion curvek(w) for sapphire has been calculated by using a
Sellmeier equation for the refractive index according to the
the condition for group-velocity cancellation considered indata of Ref.[23]. Figure Zb) shows the behavior of the
Ref. [17] corresponds tod(Q)= 6+ 05Q22/2, where 65 normalized transverse wave vector /k, as a function of
=kg/(kotan6y) and 6, is a free-family parameter that deter- frequency using the Sellmeier equation and compared with
mines the phase and group velocities of the localized waveghe approximate curve given by E@). The space-time dia-
which are given explicitly byv¢=wq/(kocosép) and v,  gram in Fig. 2a) turns out to be very well fitted by the
=1/(k{cos6p). In correspondence, using E@§) and(7) and analytic expression of the Gauss-Laguerre waves given by
expanding all terms up to second order( one obtains EQ. (18) [see Fig. Z)]. Figure 3 shows the same plots as in
A=k§sir1200, B=2kokjsir?6,, and C= —k(’,zsinzao—kol(é. Fig. 2 but for a carrier wavelengthy=780 nm, which falls
Since A#0 and C#0, such polychromatic waves do not in the normal dispersion region kg=6.0098< 10~
Correspond to Gauss-Laguerre waves. Slrad m, 1/1(6:1.6829< 10° m/s, n(w0)= 1.7607]. Figure
4 shows finally the case of a carrier wavelength
B. Numerical examples
. . 0.10 (b)\ T T
In order to provide some numerical examples of Gauss- ‘ T
Laguerre localized waves in dispersive transparent media, le
us consider beam propagation in sapphire, which shows ¢
transparent range from=300 nm up to=2800 nm and
anomalous dispersion for wavelengths larger thdn3 wm; =
similar results can be of course obtained in other transparenz
dielectric materials, such as fused silica or glasses. In Fig £
2(a) a typical space-time diagram of the envelope intensity ~
|(r,7)|? is shown for a Gauss-Laguerre wave of the second
order (h=2) at the carrier wavelengtliin vacuum X\,
=2mColwg=1.55um of optical communications, where
the material dispersion is anomaloug)=—3.2477<10 %
Siradm, 1k{=1.6918<10° m/s, n(wy)=1.7462]. The
diagram has been obtained by using the integral representa-
tion of Gauss-Laguerre waves in terms of Bessel bdd&igs FIG. 3. Same as Fig. 2, but in the normal dispersion region
(5)] with the exact dispersion curve f&r (1) and assuming (\,=780 nm). Pulse duration parameterrig=20 fs.

L T
16 18 20 22 24 26
Frequency [10'* rad/s)

5 10 15
Radial coordinate # [um]
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b . chromatic Bessel beams has been also presented, and their
~~~~~~~~~~~~~ distinctive features as compared to previously studied pulsed
oot T ] Bessel beams and envelope-X waves have been discussed.
As a final comment, it is worth observing that, though most
of previous studies on spatiotemporal wave localization have
been concerned with solutions showing an axadial)
© Frequency [10" rad/s] symmetry and thus representable as a superposition of mono-

‘ — chromatic Bessel beams, the differential approach to the
problem of spatial-temporal wave localization in dispersive
media, developed in Sec. Il, allows one to easily predict the
existence of families of waves with broken axial symmetry.
N For instance, though we have limited our analysis to the
0 25 50 95100 radially symmetric solutions to Eq16), it is well known

Radial coordinate r [pm] that there exist families of solutions with broken axial invari-

ance, such as elliptic Gaussian waves or Gauss-Hermite
FIG. 4. Same as Fig. 2, but for a carrier wavelength close to thgygves.

zero group-velocity dispersion poink¢=1290 nm). Pulse dura-
tion parameter is(=20 fs.
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APPENDIX: PULSED BESSEL BEAMS

AND ENVELOPE-X WAVES
=1290 nm close to the zero dispersion pdjif,=2.9485

x10°27  Zrafm 1k)=1.6927x10° m/s, n(wp) In the case of a material witmormal dispersion(kg
=1.7507]. Note that, in this case, the behavior of the trans=0), WO types of solutions to Eq(5) in the near-
verse wave numbek, versus frequency differs substantially monochromatic qas[@r, equivalently, to Eq(14)] have been
from the approximate expression obtained by neglecting€cently found in Refs[13,16, namely, dispersion-free
higher-order dispersion effects. In addition, there exists novpulsed Bessel beand3] and luminal envelope-X waves
a cutoff frequency below whick, becomes purely imagi- 16]. Thepulsed Bessel bearht3] are obtained by assuming
i i i i B=C=0, ie., Ko=koky/(ks’+kokg)™? and kj,= (kg
nary. Since Eq(5) yields a spatially localized wave, pro- Ny » K20~ RoRo/\Ro oo 20 0
vided thatk, remains real, the spectrui{w) has been trun- . Koko) ™ SO t?f:},t IQIZIS Ind”eplelzndent of frequency and
cated and set equal to zero below the cutoff frequdsep  91ven by k. =[koko/(kg"+koko) ™. In this case from Eq.
Fig. 4b)]. Note that, due to the large deviation of the disper-(3) one obtains y(r,7)=Jo(k r)s(r), where s(7)
sion curves in Fig. @), the Gauss-Laguerre wave turns out = JdQS())exp({17) is an arbitrary temporal pulse profile.
to remarkably deviate from the analytical expression giverWe thus have a pulsed Bessel beam that propagates without

by Eq. (18) [see Fig. 4c)]. temporal spreading at a group velocity,=1/k;,=1/k,
(since in typical caselkg 6|<k(’)2; for more details, see Ref.
IV. CONCLUSION AND DISCUSSION [13)).

The envelope-X waveEl6], propagating at a group ve-
In this paper we have introduced a class of localized oMoty 4 zllkép are instid] opbtari)ngd b;? assur%ingEB
g 1

diffracting and nondispersive localized waves in linear dis-_ . ~. _ r .

persive transparent media that can be supported both in the > € kzo=ko an(,:,i Kzo=ko In this case one h%(r’_ﬂ
normal and anomalous dispersion spectral regions of the maz J 42S(€2)Jo(Vkoks|2])exp(€27), which yields a typical
terial. By neglecting third-order and higher-order dispersionX-shaped wave in ther(r) plane by choosing, e.g., a spec-
effects, such localized waves satisfy the typical paraxiatral amplitudeS(Q)=exp(—7|}|) (see Ref[16] for more
wave equation of diffraction and are expressed in terms ofletaily. Note that both previous types of localized nondis-
Gauss-Laguerre functions. The spectral representation of thgersive and nondiffracting solutions exist solely in the nor-
spatial-temporal Gauss-Laguerre waves in terms of monamal dispersion spectral region.
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