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Wave-function reconstruction of complex fields obeying nonlinear parabolic equations
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We present a generalized Gerchberg-Sax@® algorithm for reconstructing @+ 1)-dimensional complex
scalar wave field which obeys a known nonlinear nondissipative parabolic differential equation, given knowl-
edge of the wave-field modulus at three or more values of an evolution parameter such as time. This algorithm
is used to recover the complex wave function gRa 1)-dimensional Bose-Einstein condensés&C) from
simulated modulus data. The Gross-Pitaveskii equation is used to model the dynamics of the BEC, with the
modulus information being provided by a temporal sequence of simulated absorption images of the condensate.
The efficacy of the generalized GS algorithm is examined for a wide range of simulation conditions, including
strong nonlinearities, vortex states and Poisson noise. The general form of this algorithm, which allows one to
reconstruct a time-dependent wave function, will be useful for studying the phase dynamics of topological
defects in coherent quantum systems.
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I. INTRODUCTION modulus of the wave field at three or more values of a given
evolution parameter. This evolution parameter is typically
The celebrated “phase problem” poses the question okither timet or propagation distancg we refer to the evo-
determining the phase of a complex function using informadution parameter as “time” for the remainder of the paper.
tion about its modulus, supplemented by any relewapti- Solution to a given phase problem amounts to obtaining total
ori knowledge. Solutions to particular phase probldires, knowledge of a quantum-mechanical complex wave fiak
phase retrievalhave been studied in fields as diverse as as€ncoded in the complex scalar wave function, macroscopic
tronomical imaging 1], crystallography[2], optical micros- ~ Wave function, or order paramejeor of a classical scalar
copy|[3], electron microscopy4], point projection imaging adiation wave fieldas encoded in its complex analytic sig-
[5], and x-ray diffraction[6]. These examples deal with the nal[16]), given as data the modulus of the wave over certain

problem of phase retrieval for matter or radiation wave fieldsf#n;aces |E.space tane. \{'Ve_wnl rer:‘er to suc.h modullps dﬁt? as
whose evolution is governed by linear partial differential olographic snapshots,” since they constitute in-line holo-

equations. However, not all systems are governed by line#"@ms in the sense originally formulated by Gapts].

equations. For example, nonlinear electromagnetic wave '_I'bhe ﬁu“'?e qfhthef pa[r)]er 'rS] as follo_ws.llnfSec. I Wg d_e-
phenomena such as solitofig have long been studied by SCiPe the algorithm for the phase retrieval of waves obeying

the nonlinear optics community. Nonlinear evolution also Oc_knowr) nonlinear parabolic equations, given a set of holo-
curs for water wave$8], acoustic wave$9], and plasmas graphic snapsho_ts: These snapshgts may be supplemented by
[10]. A topical example of nonlinear wave-field evolution is NV rélevana priori knowledge which places constraints on

Bose-Einstein condensation, the dynamics of which are mo he value of the wave function on the surfaces over which the

eled at zero temperature by a nonlinear parabolic partial dif* Qlog_raphlc snapshots are taken. This algo.rlthm IS a gener-
ferential equation for the complex order parameter—thea"zat'on of the famous method of phase retrieval due to Ger-

Gross-Pitaevskii equatioil-13 chberg and Saxtofi7,19. As an example of the application
There is emerging interest i'n the problem of phase repf these ideas to a strongly nonlinear vortex-riddled system,
trieval for wave fields which obey nonlinear equatidsse, S_ec. lll gives a _robust_ means for recovering the wave fu_nc-
e.g., Ref.[14,15). Such studies have made first steps to-tion of a(2+1)-dimensional Bose-Einstein condensate which
Waras the gdal of routinely determining phase for strong| evolves according to the Gross-Pitaevskii equation, given

nonlinear systems. An important motivation for these studieér']r‘m'”"’ltecj Images of ;[/f\}e rrpoﬁlgllﬁs ﬁf thfi. wave ;‘uuctloln at
is the fact that the canonical method of phase reconstructioﬁ. ree or more tlme's. € nighiig tthe e icacy o the algo-
namely, interferometry16], is not applicable to strongly rithm and discuss its applicability to experimental observa-

nonlinear systems. Interferometric phase determination faillons- We offer a discussion in Sec. IV, and conclude with
because the superposition principle does not hold for nonlin= ec. V.

ear wave fields: the superposition of the “reference wave”

and the wave field under study is not a valid solution to a||. GENERALIZED GERCHBERG-SAXTON ALGORITHM

given nonlinear equation, even if the two wave fields sepa- . )

The aim of this paper is to derive a phase-retrievalknown solution to the following phase problem: given the
method, applicable to nonlinear complex fields, which genModulus|¥(r,)| of a complex scalar function of two space
eralizes the Gerchberg-Saxt¢69) algorithm[17]. This is  variablesr, =(x,y), together with the modulug={W¥ (r )}|
applied to the reconstruction of complex wave fields thatof its Fourier transform with respect tg , can one recon-
obey known (2+1)-dimensional nondissipative nonlinear struct the complex wave functioW (r,)? This phase prob-
parabolic partial differential equations, given as data thdem, now known as the “Pauli problem,” was first consid-
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ered by Pauli in the context of quantum mechah3. plication of a modified GS algorithm with Fourier transforms
In its original and simplest form17], the Gerchberg- replaced by Fresnel transforms, namely
Saxton algorithm claims the following iterative solution to o
the Pauli problem: W(r, ,ty)=lim (P;U51P,U35,P3U, P, U1 )N W (r, 1)),
N— o
— im (D E-1D F\N 3)
W(r,)=lim (PF*P,F) W (r ). D
N=e yielded extremely robust and stagnation-free convergence
to the correct solution for a wide variety of numerical

Here,N is the number of iterations of the algorithitaken to experiments. Here, the Fresnel transfor’&}n,n (time-

be sufficiently large for convergence to be attaindd de- . . ) N
notes the operator for Fourier transformation with respect g§volution operatrfor Eg. (2) is deﬂgedl byUm,nflf(r.L L)
=v¥(r, ,t,), wherem,n=1,2,3, andP,, is a projection op-

r,, F~1is the inverse Fourier transforrﬁ’,l is a projection ! ; .
operator which replaces the modulus of the function Onerator which replaces the modulus of the function on which

L , P it acts by the known functiop¥ (r, ,t,)|. The robustness of
which it acts by the known functioft¥(r,)[, andP; is @  is aig0rithm, when applied to three or more images, was
projection operator which replaces the modulus of the funcyjintained even in the presence of spontaneously-generated
tion on which it acts by the known functidfk ¥ (r,)|. Note  wave field vortices.

that all operators in Eq1) act from right to left on the initial Both Egs.(1) and (3) apply an iterated sequence of op-
estimatef W (r, )| for the reconstructed wave function, which erators(projection operator, unitary operator, projection op-
has the correct modulus and a constant phase. erator, unitary operatoetc) to an initial estimate for the

Convergence of this algorithm is often problematic, withreconstructed wave function which has the correct modulus
stagnation being a common problefil]. Modifications  and a constant phase. The three images employed if3Eq.
such as those due to Fien{@1] may be used to achieve a were found to lead to considerably greater robustness in nu-
more robust algorithm for attacking a given Pauli problem,merical experiments when compared to reconstructions
although one might argue that such modifications lack théased on two images. This robustness was maintained when
compelling simplicity of Gerchberg and Saxton’s original the Fresnel transform in E43) was replaced with a more
proposal. For recent work employing the Gerchberg-Saxtongeneral class of linear unitary operators describing coherent
Fienup algorithm, see Weierstadt al. [22] and references  shift-invariant linear imaging systeni80].
therein. In the context of the present paper, we explore generalized

In this article, we do not follow Fienup and others in ¢5.ms of Eq.(3) which replaceU with a unitary nonlinear

seeking modified forms of the Gerchberg-Saxton algorithmyqytion operator. Consider the following class of nonlinear
which better solve the Pauli problem. Rather, we turn OUMondissipative parabolic equatiofe. Ref.[15])

attention to a class of related but different phase problems,

which make use of slightly larger datasets of three or more (iadlot+yV2 +B+V+E(|¥])¥=0, (%)
images. With this in mind, note that the Fourier transform

operator, which appears in E€l), is unitary. This unitary wherea,,y are real numberd/=V(r, ,t) is a real poten-
operator may be replaced by a different unitary operf@8},  tjal, fis a real function of a real variable, aHt=W¥(r  ,t) is
such as the Fresnel transfof@4] (which evolves a solution g complex function of two space variables=(x,y) and

to the linear parabolic equation forwards or backwards ingne evolution parametér Special cases of our class of non-
time); note that the Fresnel transform is formally identical todissipative nonlinear equations include thé2+1)-

the time evolution operator for th@+1)-dimensional free-  dimensional linear and nonlinear Sctinger equationf31],
space time-dependent Sctioger equation. One is therefore the paraxial equation of classical scalar opfi29], the (2

led to a variant of the GS algorithm using a sequencet 1)-dimensional Gross-Pitaevskii equatigii—13, and the

of two-dimensional images related to one another bycubic-quintic parabolic equation for “liquid light{32].

the Fresnel transform[25]. Superior results may be  we address the following nonlinear phase problem:
obtained when more than two images are incorporated int@iven a consecutive serie§W(r, ,t))|,|¥(r, ,ty)|, ...,
this algorithm[26]. In particular, Allenet al. [27,28 used |y (r t,)[} of M=3 holographic snapshots, where
a through focal series(TFS) {|W(r,.t))|,|¥(r. ,t2)],  W(r, ,t) obeys a known equation which is a special case of
|W(r, ,ts)],-- -} of three or more images to demonstrate thegq. (4), can we reconstruct the full complex wave function
robustness of the GS algorithm in the presence of both nois¢ (r, t)? The wave function is to be reconstructed for all
and vortices; they did this for the case of a wave functiontjmes lying in the time interval e (t;— A;,ty +A,), where

obeying the linear Schdinger equation the positive real number&; and A, are sufficiently small
. ) that, at the numerical accuracy to which the wave function is
(fadlot+VI)W(r, ,t)=0, (2)  approximated and the modulus data measured, the value of

the wave function for anyte (t;—Aq,t;) or te(ty,tu
where « is a constant,Vf is the Laplacian in the two- +A,) may be accurately obtained from the boundary
dimensional plane containing , andt is the propagation values ¥(r, ,t;) and ¥(r, ,ty), respectively. Similarly
distance for a time-independent paraxial beam along a nom|t,,—t, 1|, wherem=1,2,... M—1, must be sufficiently
nal optic axis[29]. When three images were employed, ap-small that, at the numerical accuracy to which the wave func-
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tion is approximated and the modulus data measureds(x,y). The simulated BEC is confined in a trap modeled
W(r, ,t) for anyte (t,,tme1) may be accurately obtained by a harmonic oscillator potentigB9]
from either of the respective boundary valugs¢r, ,t,) or L 92
V(r, ,tme1)- Virap(rL) =zme Ty, (6)
We postulate that the following generalized Gerchberg-

Saxton (GGS algorithm gives a solution to our nonlinear wherem is the mass of the atomic species=|r, |2, and
phase problentcf. Ref.[30]): wy,w, are oscillator frequencies which determine the trap
frequency viaw= \/wxz+ wyz_ We now introduce dimension-
less harmonic oscillator unifg0] in which the unit of length
a,, corresponds to the average width of the Gaussian
(5) ground-state wave functiora,,,= Vi/(Mwy,), where wy,

= Joywy is the geometric mean of the oscillator frequencies.
Since the class of Eq$4) is nondissipative, the associ- Using rescaled variables for Whi(zb\gol, ano, andfiiwy,, are

ated nonlinear time evolution operatdrwill be unitary: we  the units of time, length, and energy, respectively, the time-
define this operator via the equatiof,,W(r, t,) dependent GP equation may be written as

=W(r, ,t,), with U being such that’ is a solution to Eq. 3

(4). If no a priori knowledge is assumed, thét,=Pp,. If, V=~ Iv24ir21v(w)v, 7
however, additional constraints on any or each of the wave

. . S/ BB N
_functmns‘lf(rL ’tm) are given, therPy, = Pum_, wherePy, . where¥=W¥(r, ,t) is the condensate wave function normal-
is an operator which projects the wave function upon whlchIzed to unity. andv2 is the Laplacian in thecy plane. We
it acts into the space of wave functions consistent with the Y L P Y P '

, o . identify the nonlinear ternv(|¥|)=g|¥|? with atomic in-
givena priori knowledge. For exampl&, might be used 0 (o actions in the Bose gas, wheges the coupling constant

impose sucta priori knowledge as finite support for a given (sejt-interaction coefficient This constant is related to the

value oft. , , _ swave scattering lengtta, of a binary collision byg
Equation(5) contains as special cases the GS algorlthm:4WNas/aho, whereN is the number of atoms in the con-
[17] of Eq. (1), Misell's algorithm[25], the TFS algorithm of densatd40].

Eqg. (3), and variations of the TFS used in R¢80]. This To simulate the BEC, Eq7) was evolved through time
algorithm retains the compelling simplicity of Gerchberg a”dusing a fourth order Runge-Kutta method with spatial step

Saxton’s original proposal, as Ed4) and(5) both comprise  yj—( 15 and time stept=0.003. These parameters were

an iterated sequence of unitary evolution and projection OPpgnosen to ensure stability of the numerical integration

erators, which is applied to an initial estimate of the reCON-cheme, and were used for all simulations in this paper. In

structed wave function that has the correct modulus and a6 simulations, the initial condition used was the ground
constant phase. state wave function of the condensate in the given trapping
potential. This ground state was calculated by using the time-
lll. RECOVERING THE WAVE FUNCTION independent GP equation that follows from substituting
OF A BOSE-EINSTEIN CONDENSATE W(r, ,t)=W(r,)e "“into Eq.(7), wherey is a real energy

Bose-Einstein condensatd83,34] give an interesting 23;1?38{3(2?3?'g?/legog;m'al The time-independent GP

arena for retrieving the phase distribution of a wave function
whose underlying dynamics are nonlinear. Such condensates

provide the opportunity to engineer a complex-valued mac- pW(r)=[=3VE+3ri+gW(r)F1¥(r). (8
roscopic wave functiorforder parameter For example, ro-

tating a Bose-Einstein condens&BEC) gives rise to quan- Equation(8) was solved for the ground-state wave function
tized vortices [35,36 which can be observed using using a diffusion Monte Carlo methdd1], which finds the
absorption or dispersive imaging techniqu&y]. In this ~ minimum energy configuration using a steepest descent ap-
context, phase retrieval gives a useful tool for studying theoroach. In the absence of interactiorg—<0), Eq. (8) re-
dynamics of topological phase defe¢88]. In this section, duces to that for the quantum harmonic oscillator, whose
we apply a special case of E() to the problem of recon- ground state is a Gaussian wave function. However,gfor
structing the wave function of &+1)-dimensional Bose- >0 the condensate is broadened relative togthd® case, as
Einstein condensate. a result of repulsive atomic interactions.

M—-1 2 N
W(r, ,ty)=lim |=H1 lAji/lAJi+1,ii1=_[M P/O_q;| [W(r, ty)l.

N—s o0

A. Modeling of a (2+1)-dimensional BEC B. Absorption imaging of a BEC

To simulate a BEC we employ a mean-field approach us- BECs can be imaged using absorption, fluorescence, and
ing the Gross-PitaevskiiGP) equation[11-13, neglecting dispersive technique89]. We shall consider simulated ab-
guantum and thermal fluctuations. We assume confinemembrption images as input to the GGS algorithm in Es).
of the BEC in thez direction, which allows us to describe the However, we emphasize that dispersive imaging is equally
condensate in the two-dimensional transverse plane well suited to the phase-retrieval methodology described
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here, provided that one is able to use a dispersive image to
compute the probability density which forms the input to the
GGS algorithm[37].

Here, we assume a thin lens approximation and consider
the case where coherent laser probe light, propagating in the
z direction, arrives perpendicular to tiey plane containing
the condensate. The probe light field is assumed to be uni-
form immediately upstream of this plane, and the condensate
is assumed to be well approximated by two-level atoms un-
der the rotating-wave approximation. The intensity of the
probe light at the exit surface of the BEC is the&9]

r =lpexp —
Lo 1+ &2

wherel , is the incident intensity of the probe bean, is the

resonant scattering cross sectiogs [n(r, ,z)dz is the inte-
grated number density of atoms in the condensate,isd
the detuning factor measured in half linewidths of the probe
laser. This detuning factor is defined a$=(w
—wo)/((1/2)I"), wherewy is the resonant frequency of the
BEC, w is the frequency of the probe light, ald is the

linewidth of the laser. Note that we identify(r, ,t) with
N|W(r, b))%

In all simulations presented in this paper, E®).was used
to model the process of forming an absorption image. Before
being used as input into Ed5), each series of simulated
absorption images was digitized to 16 bits. This was
achieved by adjusting the detuning parameitemhich ap-

: ©)

pears in the normalized absorption coefficient/ (1+ .52), _ FIG. 1. Grayscale plots df) simulated modulus anb) phase
to ensure that the range of digitized transmitted intensityof two overlapping BECs, 300 time steps after a double-well trap
signals lies within the range 500—-65 000 counts. has been turned off and the condensate allowed to expgnd (

=1000). (c) Phase retrieved witiN=300 iterations of Eq(5),
using as input data the five simulated absorption images$ at
=100, 150, 200, 250, and 300 time steps after the trap was turned

We first consider the situation where two spatially sepawff. In all phase maps, which are modular2black denotes a phase
rated BECs are created in a double-well trapping potentialgf 0 and white denotes2.

and then allowed to expand and overlap after the trap is

turned off[42] (“Case I”). This double well potential was tions, equal to the spatial steph=0.15; the time step was
modeled by replacing the trap potential (¥/2)in EQ. (7)  in all cases equal tdt=0.003.
with (1/2)r? +Viaser, WhereViase, is the potential associ-  Using the double-well potential (1/83 + Vjaser, and 2"
ated with a thin static sheet of laser light bisecting the trap— 256 pixels, the BEC was modeled with three different self-
We modeled the potential of this sheet with the Gaussian jnteraction coefficientsgy=0, g=100, andg=1000. The
_ 2 2 latter two values foig correspond to a high degree of non-

Viaser= @ €X{L = Bx(X—=X0)"= By(y=yo)°]. (10 linearity. The initial conditionground stateof the BEC was
generated for each value gfusing the procedure described
wherea=100 is the peak value of the potentig,=0.306  in Sec. Ill A. Figs. 1a) and Xb) show the modulus and phase
andp,=0.010 are inversely proportional to the width of the of the g= 1000 case of the interference of two spatially sepa-
laser beam in thex andy directions, and Xo,Y0) =(0,0)  rated BECs, respectively=300 time steps after the trap has
gives the centroid of the beam. been switched off, allowing the BEC pair to expand and

In this and all subsequent simulations, the Cartesian coopyerlap. Note that Fig. (t) will be discussed in Sec. IIl E.
dinate systemx,y) is mapped onto a square lattice of 2

x 2™ pixels, wherem is a positive integer. The originx(y)
=(0,0) of Cartesian coordinates is identified with the “cen-
tral” pixel, whose location is reached by first moving'2 We next consider stirring a BEC with a tightly focused
—1 pixels to the right of the bottom-left pixel, and then blue-detuned laser beaf#3,44 (“Case II"). This blue-
moving 2"~ 1—1 pixels above the resulting lattice point. The detuned laser light was modeled by a moving Gaussian po-
physical width and height of each pixel was, in all simula-tential

C. Case |I—Interference of two BECs

D. Case II—Stirred condensate
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F T e the laser stirring, these being evident as screw dislocations in
(O) the multivalued phask88] of the wave function in Fig. ().
Figure Zc) will be discussed in the following section.

E. Phase Retrieval of the BEC Wave function

Here, we model the phase retrieval of a BEC wave func-
tion using Eq.(5), in which the nonlinear unitary time evo-

lution operatorU is determined by Eq(7). The input to the
GGS algorithm in Eq(5) is obtained from three or more
sequential absorption images of the BEC. To synthesize these
absorption images the condensate is modeled according to
either Case | or IlI, allowed to evolve for a fixed time, and
then imaged according to E¢Q). The natural logarithm of
each of these absorption images is proportional to the modu-
lus of the condensate wave function.

Since the condensate is disturbed by the absorptive imag-
ing process, experimental recording of the multiple images
used in Eq(5) requires identical systems to be prepared and
evolved for different times before being imaged. In this way
it is possible to record the dynamics of an evolving BEC
[45], and hence obtain the necessary data for wave function
reconstruction using Eq(5). Alternatively, one may use
quantitative dispersive imaging techniques such as those de-
scribed by Turneet al. [37] to nondestructively obtain such
a series of images using a single condensate.

Figure 1 shows the phase reconstruction for the nonlinear
double-well simulation described in Sec. IlIC. Here a se-
quence of five images, at100,150,200,250, and 300 time
steps after switching off the double-well trap, was used as
FIG. 2. Grayscale plots ofa) modulus and(b) phase of a input for Eq. (5). This noise-free simulation required 300

simulated BEC, 4600 time steps after completing stirring of theite€rations of Eq.(5) to yield the reconstructed phase tat

ground state of a harmonic trap with a moving laser sppt ( =300, as shown in Fig..(_ﬂ:). Since the retrieved phase is
:100) (C) Phase retrieved witN =20 iterations of Eq(s)’ using Only known up to an additive Constant, the phase of both the

as input data the nine simulated absorption imagestat true and reconstructed wave functions have been setdb
=3800, 3900, 4000, 4100, 4200, 4300, 4400, 4500, and 460the central pixel.
time steps after stirring was commenced. In all phase maps, which Qualitatively, the phase in Fig.(d) is well reconstructed
are modulo 2r, black denotes a phase of 0 and white denotes 2 over all parts of the image for which the probability density
is non-negligible. However, to give a quantitative measure of
Viaser=a eXf — Bx(X—Xo— vxt) 2= By(Y—Yo— vyt)?]. the closeness of thith iterate W (X of the reconstructed
(11 wave function to the true wave functiok, we calculate the
normalized root-mean-squafBMS) error by

The centroid of this potential has initial coordinatesg /o),

with this centroid being swept through the condensate with 2M—1 2M—1
velocity (v ,vy). The Gaussian potential of the moving laser 2 2 |q,ij(t)_q‘,i(jk)(t)|2
beam was again incorporated into the GP equationby i=0 j=0

using the potential (1/2f + V| se;. The parameters used in 2M-12M-1 '
Eq. (11) were =30, By=pB,=3, (Xo.Yo)=(—1,—11), > 2 w2

(v, v,)=(0,2). The ground-state initial condition was gen- =0 =0

erated over a 128128 pixel grid without the laser beam,

with g=100. We then “switched on” the moving laser po- wherei,j denote the grid coordinates in th&22™ pixel
tential att=0. The parameters chosen for the potential inimage. Using this error metric, the RMS error in the wave
Eq. (11) are such that the stirring laser beam, which is ini-function reconstruction of Fig. 1 is 2710 3. Having com-
tially outside the simulation frame, is passed through thepleted theg=1000 “Case I” reconstruction, the analysis was
condensate before leaving the simulation framé=aR900 repeated for two further values @ namely,g=0 andg
timesteps. Figures(a) and 2b) show the modulus and phase =100. Theg=0 version of Case |, with three imagestat
of the condensate wave function, respectively, 4600 time=400, 600, and 800 time steps after switching off the trap,
steps after the stirring was completed. A number of counterrequired 498 iterations to yield a RMS reconstruction error
propagating quantized vortex pairs have been nucleated hyf 6.9x10 3. The g=100 version of Case I, with five im-

o= (12)
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TABLE I. RMS error o) of the wave function reconstruction
in the presence of noise. The error was measured lafterations,
at which point the algorithm had converged. All simulations, with
the exception of those indicated with an asterisk, were vortex free.

& g 3 o k o

L

2 0 0.028 0.32 498 0.38

® 100 0.028 0.22 498 0.30
1000 0.028 0.19 200 0.21
100* 0.028 0.21 20 0.25

amounts of noise in the simulated absorption-contrast im-

° 100 zoﬁmﬁon:oo 400 ages. This noise was added by taking the noise-free 16-bit
absorption images described in Sec. 11l B, and then replacing

FIG. 3. RMS errora{? in wave function reconstruction, calcu- the intensity at each pixel with a random number drawn from
lated using Eq(12), vs iteration numbek. Case Ig=0 (solid line);  a Poisson distribution; this distribution had a mean given by
Case I,g=100(dotted ling; Case |,g=1000(dashed ling Case I,  the noise-free photon count at each particular pixel, with the
g=100 (dot-dashed ling photon count being proportional to the noise-free signal in
each pixel. The noise added to a given image is fixed once

ages att=400,500,600,700, and 800 time steps, requirecfjlnd _for all _by Spec'fy'”g the RMS Poisson r.loge_,en the the

498 iterations to yield a RMS reconstruction error of 5.5MaXIMum intensity of the noise-free image; this corresponds
x 1073, All of these RMS reconstruction errors compare fa-to a ray of the laser probe beam which does not pass through

. . N the condensate. Evidently, the RMS noise lewglin the
vorably with the RMS error of approximately {2™~4 absorption image will be greatdpossibly much greatgr

%102 which was introduced by the 16-bit digitization of than¢. Table | summarizes the RMS erroﬂ,‘) in the recon-
the simulated absorption images, as described at the end Ql}ructi.on with=2.8x 1072, for the four scenarios investi-
Sec._ IS . gated in this papeifi.e., Case | withg=0,100,1000 and Case
Figure 2 shows the phase reconstruction for theyith g=100). All of these RMS errors compare favorably
stired BEC (“Case II") in the presence of multiple \yith the RMS ‘erroro, introduced in simulating each of the

vortices created using the procedure described ifygisy absorption images, with a maximum “noise amplifica-
Sec. IlID. A sequence of nine images, at tion factor”ofa$’/a§~1.36.

=3800, 3900, 4000, 4100, 4200, 4300, 4400, 4500, and \ye close this series of simulations by studying the influ-

4600 time steps after commencing the stirring, was used @nce, upon the rate of convergence of the wave function
input for Eq. (5). This noise-free simulation required 20 it- reconstruction, of changing botli) the number of images
erations of Eq.(5) to yield the reconstructed phase tat ygsed, and(ii) the number of time steps allowed to elapse
=4600 time steps, as shown in Figcp The phase of both  petween consecutive images. For this final numerical study,
the true and reconstructed wave functions was set&bthe e work with Case | using/= 1000. The numerical results
central pixel. Using the error metric in EQL2), the errorin gre shown in Fig. 4. We see that the algorithm converges
the wave function reconstruction of Fig. 2 is 8207%  exponentially rapidly to the “noise floor” for five out of the
Again, this compares favorably to the RMS error in the inputsix studies presented there. We also note, from Fig. 4, that
data. the algorithm’s exponential rate of convergence is increased
To give more insight into the convergence properties Ofyhen one increases the number of images, while keeping
wave function reconstruction using EG), Fig. 3 plots the  constant the number of time steps between each of these
RMS erroray) versus iteration numbék for the four sce-  images. Convergence was not achieved for the study which
narios described previously(i.e., Case | with g  had both the largest number of time steps between images
=0,100,1000 and Case Il with=100). We see that, in all and the smallest number of imagé@kree images, 100 time
cases, the RMS error exponentially approaches a value corgteps in between For this nonconvergent case, keeping the
parable to the RMS error¢4 x 10~ %) which was introduced number of images fixed while decreasing the number of time
into the input data by the 16-bit digitization of the simulated steps between imagésom 100 to 50 led to convergence.
absorption images. Interestingly, the case with multiple vor- Why did the algorithm fail to converge when the number
tices has a significantly more rapid convergence than thef time steps between images were too large? This is a mani-
three vortex-free cases. Of the vortex-free cases, it was thestation of the well-known “finite memory” of nonlinear
most strongly nonlinearg=1000) that had the most rapid systems: sensitive dependence on initial conditions implies
convergence. that too great an elapsed time, between a pair of finite-
Since the act of imaging a BEC perturbs the condensate, firecision numerically evolved wave functions, precludes ac-
is preferable to use as few probe photons as possible in forneurately tracing a direct causal link between the two. The
ing an image of this quantum state: too many absorbed ph@gresence of positive Lyapunov exponents in a volume-
tons will destroy the condensate. In this context, we investipreserving phase-space flow implies that the ball of initial
gate the performance of E() in the presence of significant conditions, each consistent with the finite precision to which
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dynamics. This includes the topological phase dynamics as-
sociated with the nucleation and coalescence of quantized
vortices[38].

B. Interference versus interferometry for nonlinear fields

o
-
[=]
o

The GP equation is nonlinear and therefore does not obey
the superposition principle: i#,(r, ,t) and ¥,(r, ,t) are
both solutions to Eq4), thenW(r, ,t)+W,(r, ,t) will not
in general be a solution. Therefore use of the term “interfer-
ence” to describe the fringes of Fig.(d, while accurate,
must not be visualized as arising from the linear superposi-
tion of two BEC wave functions that are separately valid
0.001 . . . . . solutions to Eq(4). Notwithstanding this, we make the el-
0 0 0 “er:,?i?m 200 20 ementary remark that the concept of interference transcends
the linearity assumption upon which the superposition prin-
FIG. 4. RMS erroro{{ of the reconstructed wave function as a ciple is predicated.
function of iteration numbek. The different lines represent differ- The essence of interference is this: when two spatially
ent retrieval parameters for Case | wigh- 1000, using: three im- separated wave functions are allowed to come into contact
ages with 100 time steps between imagesg dasl; five images  with one another, the square modulus of the resulting distur-
with 25 time steps between imagetash ellipsig nine images with  pance is not equal to the sum of the squared moduli of each
25 time steps(dash dox, three images with 50 time steggsolid  separate disturbance. The difference between the sum of the
line); five images with 50 time stefglotted ling; nine images with squared moduli of each separate disturbance, and the square
50 time stepgshort dash In all cases, the first image corresponded adulus of the resulting disturbance, is the ‘“interference
to t=100 time steps after turning off the double-well trap. term.” In this context let us consider, as an initial condition,

. - . . a pair of (2+1)-dimensional wave function¥,(r, ,t) and
the wave function is specified, will be folded/mixed throughll,i)(rI t)( whizzhl are Ispatia\lll\;yv segaralted z(t:lto ) ie
1 1] Ly

the accessible phase space during the flow governed by tl]eﬂq, (f, to)Wo(r | ,to)|dr, ~0
. . . : \t»to) ¥2ll1»to 1LY
00”"”“-“”“ evolution equ_at|oﬁ46]. Too great an ev_olut|on Linear case:If the evolution of these initially separated
time between hplogra}phlc.snapshots W.'” therefore imply thaEiisturbances is governed by a linear equation, then interfer-
the reconstruction fails, since in evolving from snapshot toence effects occur ifW ()| 2+ W, (t)| 2 | W (t),+\If (1|2
1 2 1 2

ey e P el i someater it Here, (0, (1), and V(0
gy p y +W,(t) are all solutions to the relevant linear equation, and

the system. functional dependence on has been dropped for clarity.
The associated linear interference ternt) is

RMS error

0.010

IV. DISCUSSION

A. Wave function movies IL(O=[W1(1) + PO 2= [P (D)]P= [ Po(D)[?

The algorithm of Eq.(5) reconstructs the wave func- =2| W (1)]| V(1) |cog (1) — ¢(D)], (14)
tion W(r, ,t;) corresponding to time;, given the moduli  where Wi (t)=|V;(t)|expli ¢;(t)) and ¢;(t)=arg¥;(t),
of the wave function at all times in the ordered setyith j=1,2. Linear interferometric phase determination aims
{t,tz,- - ,ty}. Having obtained¥(r, ,t;), one can obtain to obtain the phase difference @g(t)— ¢o(t)] from mea-
W(r, ,ty) viaW(r, ,tp)=P,U;,¥(r, ,t;), a procedure that surements of _(t),|W4(t)|, and|¥,(t)|; typically, one of

can be recursively applied to give the wave phasesay, ¢4(t)] is a known “reference” wave
1 front and one seeks to determigg(t).
W(r, t)= IT (P 0, )¥(r, ty),2<j<M. Nonlinear caself, instead, our initially separated distur-
i=j-1 ' bances are governed by a nonlinear equation, then interfer-

(13)  ence effects occur when| W (t)|2+ W (t)|2#|W4(t)
One therefore reconstructs the ordered wave function set ¥2(t) <[ W1(1), W5(1)]|?, where Wy(t), W,(t), and
quence¥ (r, t;), j=1,--,M corresponding to all times in lIfl(t)Jr\Ifz_(t)Jr K[\Ifl(F),\Ifz(.t)] are all solutlons_ to the rel-
the set{t;,t,,---,ty}. Moreover, one may also obtain a €vantnonlinear equation, witk ¥y (t),V(t)] being an ap-
wave function “movie” by reconstructing the said wave Propriate interaction term which is generated whea(t)
function at any number of timeslying in the continuumt andflfz(t) are not spatially ;eparated. The associated nonlin-
e(t;— Ay ty+A,) (see Sec. )l To reconstruct the wave €' interference terrhy () is

function W¥(r, ,t;;) at any given timet;,e(t;—Aq,ty Lo (D =W (D) +Wo(t) + 1 WL (1) W (1)]]12= | W, (1)]2
+A,), first choose a membedy, of {t;,ts,---,tu}, which N =) 22( ARAEURE O 0]
minimizes [t —ty,/, and then form U W(r, ,t) — W50

=v(r, ,t;/). This allows one to reconstruct a temporal se- =1 (1) + 2RE k* [ (1) W)W (1) + Wt
guence of complex wave functions, which is useful in the Lt & [P (), VoD J1Pa (1) 2]
context of studying both nonlinear and linear wave function +|k[W4(1),¥,(1)]]% (15
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which reduces to Eq14) whenx=0. Whenx+#0, Eq.(15) Um,n{q’j(rdvtm)}:{q,j(rd!tn)}’ such that{W¥(ry,t)} is a
could, in principle, be used as a starting point for nonlinear
interferometric phase determination; however, the resultin
nonlinear equations are likely to be difficult to solve.
For both linear and nonlinear interferometry, the mea-
eured interference term is eensitive to the pha_se of_the wave ﬁi{gj(rd 4 ={|W(rg.t)|expli arggj(rq.t))}. (18
field, allowing one to consider the problem of inferring this
phase from measurements of the wave field modulus. This is
the idea behind interferogram analysis, at least for the lineafdditional a priori knowledge may be incorporated by ap-
case, and it is motivated by the fact that it is probability propriate generalization of the method given in Sec. Il
density(or intensity rather than phase which is measured bywhereP; is replaced byP/P; .
existing detectors of high-frequency fields. (b) We have restricted ourselves to the problem of phase
Rather than seeking an interferometric solution to theretrieval for nondissipative nonlinear fields, for which the
problem of phase reconstruction, the phase-retrieval viewtime-evolution operator is unitary and therefore norm pre-
point of this paper eliminates the need for a reference waveerving. If a field whether it be linear or nonlinear, obeys a
front. This can be done because the modulus of the wavéissipativeequation—such as might be obtained by making
field at timet is a function of both the modulus and phase of o, 8, ,V or f complex in Eq.(4)—then the associated time-
the wave field at earlier and later times. Measurement of thevolution operator will not be unitary. If such a nonunitary
wave-field moduli at more than one time therefore yieldstime-evolution operator is used in E¢p), under what cir-
information about both the modulus and phase of the waveumstances will the resulting attempt at wave function re-
field, without the need for interference with a referenceconstruction be successful? If the method is successful, how
wave. much dissipation can be tolerated before the method breaks
down for a given level of noise in the data?

olution to Eq.(16), and P; is a projection operator defined

C. Some open questions

(a) A viable approach to the phase retrieval of both linear
and nonlinear multicomponent wave functions may be of
utility in the study of topological structures such as skyrmi-  We developed and demonstrated a robust noninterfero-
ons[47,48. Can the methods of this paper be generalized tanetric algorithm for reconstructing the wave function of a
the case of multicomponent wave functions, denoted by:omplex field which obeys a know@+ 1)-dimensional non-
{¥;((rg,t))}, which comprise a set oK complex scalar dissipative nonlinear parabolic partial differential equation,
wave functionsW;=W(rq,t),j=1,... K, whererqe R  given as input data the modulus of the wave function at three
andd=2? This @+ 1)-dimensional multicomponent wave or more values of the specified evolution parameteg.,
function might obey a system of coupled nonlinear nondistime). As a special case of this formalism we gave a numeri-
sipative parabolic equations such as cal study of the reconstruction of the complex macroscopic

K wave function associated with @+1)-dimensional Bose-

. 2 Einstein condensate, given a series of absorption images as

'aja/at+71vd+ﬂj+v+kzl fi (1) | ¥ =0, (16 input into the algorithr?w. In this numerical sttf)dy, the agljgo-
rithm converged exponentially quickly to the noise floor im-
wherea;,Bj,v; are real numbersVﬁ is the d-dimensional posed by the input data: the root-mean-square error of the
Laplacian, f,; is a real function of a real variablé,j are reconstructed wave function was in all cases similar to the
integers lying between 1 and the numlbeof complex sca- RMS error in the input data. The presence of both strong
lar components¥; in the multicomponent wave function, nonlinearities and quantized vortices was seen to increase the
andV=V(rq,t) is a known real potential. In this context, the rate of convergence of the algorithm. The algorithm opens up
phase problem consists of reconstructing the multicompothe possibility of recovering a movie of the time-dependent
nent wave function, given the modulus of each component ahacroscopic wave function of a BEC, and thus elucidating

V. CONCLUSION

a number of given times. the phase dynamics of the condensate under experimental
For a first assault on this problem, one might try conditions. This includes situations where the wave function
possesses topological defects. The method is also applicable
{Wi(rg,t)} to a number of other nonlinear complex wave fields, such as
N those encountered in paraxial nonlinear optics using both

M—1 2
. PPN PPN radiation and matter waves.
= lim I]Jl PiUi+1,ii1=1A Uiz | {IP(rg.tpl}-

N—c
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