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Optical bistability and tristability in nonlinear metal /dielectric composite media
of nonspherical particles

Lei Gao>?* Liping Gu?® and Zhenya L%?
1CCAST (World Laboratory), P.O. Box 8730, Beijing 100080, China
Department of Physics, Suzhou University, Suzhou 215006, China
3Department of Physics, Changshu Institute of Technology, Changshu 215500, China
(Received 8 April 2003; revised manuscript received 6 August 2003; published 3 Decembgr 2003

Based on a spectral representation method and a self-consistent mean field theory, we present a general
framework to investigate the optical bistability in a nonlinear two-phase composite, where spheroidal metallic
inclusions are randomly oriented and embedded in a dielectric host. The relation between the spatial average of
the local field squared|E|?); (i=1,2) and the external field squar&] is obtainable through the spectral
density function which is predicted from our recently derived Maxwell-Garnett approximation. In addition to
single optical bistabilit(OB), the appearance of double OB and optical tristabi{l@) is reported, and the
corresponding phase diagram is given. We find that the regions of the single OB, the double OB, and the OT
are dependent on the shape and volume fraction of the metallic particles. Our method allows us to take one step
forward to study some field-dependent effective optical properties, such as the refractive index, extinction
coefficient as well as reflectance. The general framework is also applied to investigate exactly the solvable
composites consisting of nonlinear spheroidal inclusions and linear dielectric host in the dilute limit. To this
end, the present method is shown to be in excellent agreement with the exact solution. In addition, the present
method predicts a larger threshold intensity than the variational approach.
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I. INTRODUCTION and Yu [8] studied the nonlinear composites of coated
spheres, and obtained the optimal conditions for the bistable

Because of its potential applications for optical logic, op-operation by adjusting the thickness of coatings. On the other
tical memory element, and optical switching devices, thehand, it was shown that the threshold intensity for the optical
phenomenon of intrinsic optical bistability in composite me-bistability can also be optimized by the suitable adjustment
dia has received much attentiph—4]. To obtain the optical of the particle shape of ellipsoidal inclusiof¥%9,10. How-
bistable behavior, the composite materials are usually madever, as we know, the ellipsoidal inclusions were assumed to
of a dielectric host and metallior semiconductgrgranular  be randomly distributed but oriented with respect to one an-
inclusions, whose dielectric constant contains a negative realther, and the theoretical results were only valid for a par-
part and a small imaginary part. Moreover, the compasgnt ticular orientation of the particles.
must possess nonlinear dielectric responses. Proposals haveFor realistic composites, the individual granular inclusion
been put forward to decrease the intensity threshold for thé not perfectly aligned and even randomly oriented. We have
bistability by exploiting the field enhancement produced byshown that the effective optical nonlinearity of the weakly
the surface plasmon resonance of the composite medigonlinear composite system of ellipsoidal particles oriented
[2-4]. in the same directiofill] is quite different from that of ran-

In general, the problem of calculating the effective non-domly oriented ellipsoidal particld4.2]. In this paper, based
linear properties in nonlinear composite materials is quiteon a self-consistent mean field approximatid8-15 in
intractable. Thus, the investigations on optical bistable beeombination with a spectral representation methbgl, we
havior were mainly limited to some exactly solvable micro- will put forth a general framework, in an attempt to investi-
structures such as those low density mixtures, parallel slabgate the optical bistable behavior of nonlinear metal/
and so on. In previous work$,6], a variational approach dielectric composite media, in which randomly oriented
was developed to investigate the bistable behavior in &pheroidal particles are distributed in the dielectric host in
weakly nonlinear composite medium. When the applied inthe presence of a strong external applied electric field. In
tensity| Eo|? is strong, the dielectric constant of the nonlineardetail, we will perform numerical calculations with a focus
component will strongly be relevant to the local field within on the relation between the average of the local field squared
it. Therefore, the weak field nonlinearity is not valid any inside the metallic inclusiondE|?), (instead of(|E|); [17])
more. and the external field intensiiﬁg. To our interest, the ap-

In experiment, Neuendost al. [ 7] reported the observa- pearance of double bistability and tristability in contrast to
tion of the bistability of nanometer-sized spherical CdS parsingle bistability will be shown, and the phase diagram be-
ticles coated with silver. Motivated by this observation, Yuentween them is given. Moreover, our method provides an easy

way to study the effective nonlinear optical properties as a
function of the external field, such as the refractive index,
*Email address: Igaophys@pub.sz.jsinfo.net extinction coefficient, and reflectance. For increaskg
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such physical parameters can exhibit quite complex behav- Within the Bergman-Milton spectral representatidr®],

iors. the effective dielectric constart can be written as
(Dyy -1 1
Il THEORY = =gy dre 1- S n(n|(e Vo)
A. Spectral representation theory and self-consistent mean 0 0
field approximation f
_ _ _ _ . =6 1-2 ——|, (®)
Let us first consider a linear two-constituent composite n S—Sy

consisting of one component of dielectric constaptand ) .
volume fractionf, and the other component @, and 1 ~ Where(:--) denotes the spatial average, while the pales

—f and residues,=|(n|z)|? are all confined to the real regions
In the presence of a uniform external applied electric field?=<Sn,fn=1 with 2,f,=1.
Eo=Eoe,, with e, being the vector along the axis, the When the operatoF has a continuous spectrum, E§)

electrostatic potential in the quasistatic limit obeys theshould be replaced with an integral form

Laplace equation:
m(x)
[ 1,
s—X

: C)

€= €7

V-

1
(1—gn(r))V¢(r) =0, 1)

where the spectral density functiom(x) is obtained through
with appropriate boundary conditions, whee=e,/(e,  a limiting process,
—€4) is the material parameter angr) is the characteristic
step function(which is equal to unity in component 1 and
zero in component 2). The electric potentia(r) can be
solved formally

. (10

1 €e .
m(x)= lim —Im|—(s=x+i¢)
§—>O+7T €2
1 Within the spectral representation, the spatial average of the
b(r)=—Eqz+ EJ dr' p(r'" V' G(r—r1')-V(r'), (2) local field squared in component 1 is found to[i6,18

1 1
2y = 2_ —
where G(r—r')=1/(4w|r' —r|) is the free-space Green’s f(IE |>1_vf1dr|E| —VfldrV¢*-V¢
function.

In order to obtain the solution of E¢l), we introduce an 1 |s|2(z|n)(m|z)
_ : _ N S . =5 > > ————————| drV¢}-VoE]
integral-differential Hermitian operatdf, which satisfies VA S (sf—s,)(s—sy) )1 n
r ! ! ! ! ! ! 2f
F¢(r)zf dr’'p(r")V'G(r'—r)-V'¢(r'), 3 => ERE g2 (12)

7 s—s,2 O

and the corresponding inner product Again, for a continuous spectrum, we have

= *. 1 |s|?m(x
(¢ly) f drn(r)Vé*- V. ) f<|E|2>1:f —||i_)f|2)de§. (12

Then Eq.(2) can be simplified to
Similarly, the spatial average of the local field squared inside

1~ component 2 can be expressed 88|
$(1)=—Eqz+ T (1. (5)
(1—F)(E[?),= 1—fl de E5. (13
Lets, and ¢, (r) be thenth eigenfunction and eigenvalue 2 0 |s—x|2 0
of the I' operator. The potentiab(r) can be expanded in a . ) ]
series of eigenfunctions, Equationg(12) and(13) are derived under the assumption
that both components are linear. In the present paper, they
s(n|z) _ will be generalized to treat the composites where the two
p(r)=—2> s $n(NEo incomponentl (6)  components are both nonlinear, and have the local constitu-
" " tive relation between the electric displaceméntand the
and field E as
D= E+ xi|[E[’E= (& + xi|E[?)E. (14
H(r)=—Epz— 2, Sn(n12) #,(r)Eg in component 2
0 n Ss—s, " 0 ' It is worth remarking that, in previous work$,11,12,18,

(7) the relation betwee and E is weakly nonlinear, i.e., the
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contribution of the seconthonlineaj part in the right-hand
side of Eq.(14) is less than that of the firgtinear part. As

an extension, this limit is no longer necessary in the present

paper.

To observe the optical bistable behavior, we must solve

for the local field in both components. Because of the diffi-

culty in finding the local field exactly, we resort to the mean

field approximation, which amounts to approximating the

nonlinear component with dielectric propefty3—13:

€ =€+ xi|El*~ &+ xi(|E[?); . (19

For two-component nonlinear composite media, Efj8)
and(13) are then modified as

1 [3%m(x

f(IE[*)1= fo ||~|_—X(|2)de§, (16)
1([3|2—

<1—f><|E|2>2={1— %dx e, (7

where$=%,/(é,—¢;). Note that(|E|?); in Egs. (16) and
(17) is the average of the local field squared inside nonlinea
component (=1,2). In fact, Eqs(16) and (17) have been
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s, = [3-2f+3L,

+(2f—=3-3L,)?—72(1—f)(1—-L,)L,], (19

s,= 5[3-2f+3L,

—(2f=3-3L,)2-72(1-)(1-L,)L,], (20
and the corresponding residues andF, have the form

f143L,-6s,
"6 s,

f 1+3L,—6s,

$1—S;

and F2—6

Fi
(21
Note that the two residues satisfy the sum rialet F,=f,

as expected.
The substitution of Eq(18) into Egs.(16) and(17) yields

5 ER 3 »
f(IE[%)1=] = Sr1T 2':2 Eo. (22
[B—s [3—s,|
3%—s 32—s
(- 1)(|ER),=| 1- o —tp, B2 e
[3—s4|? [3—s,|?
(23

r
Next, Egs.(22) and (23) can readily be solved in a self-

used to investigate the effective nonlinear response ofonsistent manner fof|E|?); and(|E|?), as a function of
strongly nonlinear composite media, where the linear partireZ and hence the desired optical bistable behavior is ob-

Eq. (14) vanisheqd19], and applied to the study of nonlinear
alternating current response of colloidal suspensi@,
where the linear and nonlinear parts in Efj5) are compa-

rable. In this paper, we shall adopt them to study the optical

bistability of the nonlinear composite media. Fortunately, it

tained.

1. NUMERICAL RESULTS FOR OUTPUT INTENSITY
({|E|%1) AGAINST INPUT INTENSITY (E2)

can self-consistently be solved from a couple of equations We are in a position to perform numerical calculations in

[Egs. (16) and (17)], as long as spectral density function
m(x) is given. As we knowm(x) describes the geometric
information of the composite under consideration. Hence

an attempt to study the features of nonlinear optical proper-
ties. The linear optical parameters are set toebe —7.1
+0.22 and €,=2.0 [9], which leads tos~0.22+0.005.

once a certain microstructure is given, its corresponding-or simplicity, we shall concentrate on two typical cases: one

m(x) can be calculated.

B. Self-consistent mean field approximation
for Maxwell-Garnett type microstructures

is the composite system composed of nonlinear metallic in-
clusions with y;=10"8 esu and linear dielectric host
(namely,y,=0); the other is the system consisting of linear
metallic inclusiongi.e., y;=0) and nonlinear dielectric host
with x,=108 esu. In fact, our formulas hold for a more

_ We shall investigate the_ opt?cal bi_stable b_ehavior ina NONtomplicated case, such as, with both components being non-
linear two-phase composite, in which nonlinear spheroidajjnear.

metallic granular inclusions of volume fractidnare ran-

domly embedded in a nonlinear dielectric host. All the sphe-

roidal particles have different sizes, but are assumed to exi

in the form of the same shape which is characterized b¥)

depolarization factord., along the z axis andL,,=(1
—L,)/2 along thex (or y) axis. Since the axes of the sphe-
roidal particles are randomly distributed in space, the effec
tive nonlinear response will become isotropic.

This kind of microgeometric structure admits the follow-
ing spectral density function in terms of a sum of two
functions[12],

m(X)zF15(X_51)+F25(X_32), (18)
where the poles; ands, are given by

06660

To observe the optical bistability, we should calculate
E|?); in the presence of an external intend&§. However,

e find that, to get the input-output curves, it is easier to
btain the values of the input intensitEi) as a function of
output intensity (|E|?);). For example, for the composite
system with a linear dielectric hoste., x,=0), as Eé is
given, Eq.(16) [or Eq. (22)] is a nonlinear equation for
(|E|?), as a function oE2; however, ag|E|?), is given, itis
quite easy to calculatES directly from Eq.(16) [or Eq.
(22)]. For the composite system with a linear metallic inclu-
sion (y;=0), we can take one step forward to obt4iE|?),
as a function ofES from Eq. (17) [or Eqg. (23)]. Next, we
calculate(|E|?), as a function ofE3 by using Eq.(16) [or
Eqg. (22)].
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FIG. 1. \{|E[%) vs the external field, for y;=10"° esu and

Ya=0 FIG. 3. Three typical behaviors in nonlinear composites for
2_ .

f=0.01 andy,;=10"8 esu. They are, respectivelf]) the single

) ) ) ) bistability for L,=1/3, (2) the double bistability fol.,=0.5, and
V<|E| )1 is plotted against the applied fieBy for x1  (3) The tristability for L,=0.4. The negative slopdashed lings

=10 " esu andy,=0 (Fig. 1), and for ;=0 and x- represents the unsteady state. The dashed lines indicate that at the

=10"® esu(Fig. 2). From the two figures, we find that the field, (|E|?), may admit three or five real roots, signifying the

curves are strongly dependent on the depolarization factajistable or the tristable behaviors.

(or particle shapeof the inclusions, whereas weakly depen-

dent on the volume fraction. The hysteresis loops(f&f?); . . . o
appear always for all,. In the dilute limit, we note that the () single optical bistability(OB), (2) double OB, and(3)

for th —10-8 Fig. it optical tristability (OT), as alsq shown in Fig. 3. To the best
giufpe/resnt?rromethgzzefo?%e case ;E’i[l(;gs i(;i&][l%e 1?:;]8 of our knowledge, the behaviors of the double OB and the

- ; ; : OT are predicted herein for the first time. For these two
For instance, just after the optical hysteresr$LE|2>l de- ) e . .
creases first and then increag@éy. Aa)], while \([E), behawor:s, v;/]htledn ;h(IeCEapplledhfleolfb increases over thefﬂLst
increases monotonically for increasiig [Fig. 1(a)]. From upper threshold field,,, the discontinuous jump of the

Figs. 1 and 2, three typical behaviors are observed: the alchal field takes placg from the lower branch to the middle
9 P! Vi v y branch; asE, further increases up to the second threshold

field Eqy,, we find the other discontinuous jump from the
middle branch to the upper branch. In contrast, afigris
decreased to the lower threshold fidtg, ,, (|E|*); can
not decrease simultaneously, but jump down to the middle
branch and then follow it untiE, is decreased down to the
other lower threshold fiel&,, ;. The difference between the
double bistability and the tristability is in the following. For
: a givenEy, (|E[?); has three real roots within the two
50 o1 02 03 electric field domains, and hence the desired double bistabil-
E, (10° statvotiom) ity. However, it has five real roots in one field region, and
hence the desired tristability.

In Fig. 4, we investigate the phase diagram of the single
bistability, the double bistability, and the tristability in an
L,-f plot. The phase diagram is mainly occupied by single
bistability (see region 1,L,>0.55, L,<0.22, sorL,=1/3
around. In particular, the tristability takes place in region 3,
which includes two parts, one is 02%,<0.32 for f
; ) <0.15 and the other is 0.38.,<0.42 for f<0.08. For
O 02 o2 o6 o8 1o 12 %0 oz Tor o os small f, gradually increasingd., leads to all possible transi-

E, (10° statvoltiom) E, (10° satvoltcm) tions between the single OB, the double OB, and the OT.
However, for larger volume fractions than 0.15, only one
FIG. 2. Same as Fig. 1, but for;=0 and y,=10"8 esu. kind of phase transition appears, hamely, the transition from

(<IEP> )" (10° statvolticm)

04

0.24

(<IEP>,)" (10° statvolticm)
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FIG. 4. Phase diagram for (single bistability, 2 (double bista- Po 02 04 o8 08 1000 oz 04 05 08 10
bility), and 3 (tristability) regions is shown fofa) the nonlinear L. L.
metal component withy;=10"2 esu andb) the nonlinear dielec-
tric component withy, =102 esu. FIG. 5. Poless, ,s, and corresponding residugs ,F, vs L, for
variousf=0.05, 0.12, and 0.20.
the single OB to the double OB, or from the double OB to

the single OB. equation for(|E|?),, which produces five real roots for a
To explain qualitatively the above-mentioned phenom-given applied fieldE,, thus signifying the tristability.
enon in the phase diagram, we plot the polesgnds,) and In Fig. 6, we plot the maximum threshold fiely,

the corresponding residues { andF») as a function of the  (E,\,=Eg, for the single OB, and=E,, for the double
depolarization factorl(,) (Fig. 5). For simplicity, we discuss OB and the OT against_, for f =0.05. It is shown tha
the case where the metallic inclusions are nonlinear only. for the nonlinear dielectric host is much larger than the one
It is found that, at a given volume fraction, the real part offor the nonlinear metallic inclusions. This phenomenon is
s[Re(s)=Ree,/(e,— €;)~0.22] is always smaller thas,,  clearly observed, especially fdar,>0.5. Consequently, we
but larger thars, for 0<L,<0.22 orL,=0.54. In this re- conclude that, nonlinear metallic inclusions are more favor-
gion, as R&¥) =Rd €,/(e,— €1— x1|E|?)] increases gradu- able to reduce the threshold field than nonlinear dielectric
ally with the increase oE,, it becomes near ts; but far  hosts, as in accord with previous observatipfs
away froms,. As a result, the second part of E®2) is
much less than the first part, and thus its contribution to 0.8
({|E|?); can be omitted. In this sense, E&2) will becomes
a cubic equation fof|E|?),, which signifies a single optical
bistable behavior. In the region 024 ,<0.48 (dependent
on volume fractions both poless; ands, are larger than
Re&S. Let us discuss the case of the poles which are well
separated from each oth@.g.,f=0.2). As ReE) becomes
close tos, for increasingE,, the first optical bistability ap-
pears. Furthermore, increasifty, leads to R&)~s,;, and
thus the second optical bistability is observed. However, for
L,~1/3 (spherical particles we will have eithers;~s, for
small volume fractions ofF ;— 0 for large volume fractions.

—8—,=1.0"10%(esu)
06] —O—x,=1.0"10%esu)

5
E,, (10" statvolt/cm)

As a result, only a single bistable behavior exists. To our L
interest, once the poles,ands,) are neither too close nor ‘
too far, both contributions frons; ands, become compa- FIG. 6. Maximal threshold fieldEqy, vs L, for f=0.05, x;

rable. In this situation, Eq22) is a fifth-order polynomial =0, andy,=10"8 esu.
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IV. NUMERICAL RESULTS FOR NONLINEAR
OPTICAL PROPERTIES

Based on our method, it is straightforward to calculate the
effective dielectric constant of nonlinear composite media as

a function of the external applied fieH,. To do so, let's

consider Maxwell-Garnett type microstructures. Substituting

Eq. (18) into Eq.(9), we obtain the effective linear dielectric
constant €.) within the spectral representatipb2]:

Fi
s—s;

Fo
S—S,|

1—- (24)

€= €7

For the nonlinear composite medium, it is supposed that the

effective dielectric constafd, has the same form a5, i.e.,

F2

-5,

Fy

§—5;

(25

%e:%2|: 1—

Since bothé,, €, (included in3) is field dependenfé, can
be changed by adjusting applied fieglg). Moreover, it has
been shown that the variation 8f becomes most strong in
the vicinity of the resonant region, where Re(E=s; (or s,)
is accompanied with small I/8f [21].

Both the effective complex refractive index of nonlinear
compositesi=n+ik (wheren andk are, respectively, the
refractive index and the extinction coeffici¢and the reflec-

PHYSICAL REVIEW E 68, 066601 (2003

w

{=

E, (10° statvoiticm) E, (10" statvoltiom)

FIG. 7. The refractive indexn vs Eq for x;=0 and x,
=108 esu.

V. DILUTE LIMIT CASE AND COMPARISON
WITH THE VARIATIONAL APPROACH

In what follows, we shall discuss a certain composite

tance at normal incidence can be calculated from the followwhich contains nonlinear randomly-oriented spheroids em-

ing equations:

.
|

Re(€e) + V[Re(Ze) ]*+[IM(Ze)]*
2

112
) . (26

—Re(Z,) + [Re(€:) I+ [Im(E.) ]
2

| Vet
e+t

In Figs. 7-9,n, k, andR are plotted as a function &,

k

112
) . (@27

2

(28

respectively. For the sake of simplicity, we show the numeri-

cal results for nonlinear composite media whgre=0 and
x2=10"8 esu only (in fact, for the other case wherg,
=108 esu andy,=0, similar behavior can be fouhdt is
evident that hysteresis loogshown in Fig. 10 for these

nonlinear optical properties occur, which implies that mul-
tiple states do exist for the nonlinear composite media, cor-

responding to different local field distributioiBig. 2). As a

matter of fact, these different states indicate quite different
physical properties that the composites possess. For example,

as far asR is concerned, aEy=3000 statvolt/cm,|L,=0.4
andf=0.2, maxR)/min(R)~9. In view of possible techno-

logical applications, this finding is expected to be very use-

ful. Also, we note thaR exhibits similar behavior as (k) for

small (large f. From these figures, we conclude that oblate

spheroidal metallic inclusions with small volume fractions

bedded in a linear dielectric host, so that we could demon-
strate the validity of our method. The composite under con-
sideration is in the dilute limit, and subject to an external
applied fieldE, along the direction of the axis. It is known
that the local field inside the spheroids is uniform, even for
nonlinear inclusion$22].

Without loss of generality, we take the principal axis of
the spheroid to be oriented at angldo the z axis. In this
case, the local fieldE, inside the nonlinear spheroid is uni-

14

1.2
1.01
0.8
0.6
0.4
0.2

0.0
0.0

x

10 06 12 18

05

0
0.0 24

4
E, (10" statvolt/cm)

4
E, (10" statvoltiom)

are able to play an important role in getting a broader bista-

bility domain. FIG. 8. Similar to Fig. 6, but for extinction coefficiektvs E,.
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FIG. 9. Similar to Fig. 6, but for the reflectance at normal inci-
denceR vs Eg.

form as well, and has the form

€2
E;=————Ecosode,
€2t L (€1~ €r)

€2 .
+ Eg sin 6 cos¢e,

et I-xy(N‘El —€3)

€ Eosindsinge,, (29

e+ Ly (€1—€)

W|th Aé]_EElJF X1|E|2
Then, the local field squarg|?=E? -E, is given by

2
€
[E[2=||———=—— cogs
€2+ L,(€1—€)
. 2
+|——2—— sirto|E2, (30)
€2+ny(€1_62)

In the light of the rule

1 27 (27
(f(0,¢))=ﬂjo fo f(6,¢)sinodod ¢, (3D
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L=0.3

0.81 L=03

04

02
E, (10* statvolticm)

0.1 0.2
E, (10" statvolticm)

0.0 0.6

FIG. 10. Typical hysteresis loops for k, andR at f=0.1, x;
=0, andy,=108 esu.

By using our method, in the dilute limitnamely, f
—0), Egs.(19) and(20) reduce to

$;=L, and s;=L,,. (33

In this case, the residués;, andF, [Eq. (21)] become

F1:

and F,= 3" (34)

3

Then, the substitution of Eq$33) and (34) into Eq. (22
yields the same formula as E@2).

Now, we are in a position to study the optical bistability
of the composite media composedliofear spherical inclu-

the spatial average of the local field squared within the sphesions, which are embedded imanlineardielectric host. To

roidal particles is determined by

2+2
3

€2 €2

1
<|E|2>1: 3

2
]Eg.

(32

€2+ L, (€,—€) e,+L,(€1—€)

compare our method with the variational approach, we set

the relevant parameters to be the same as those used in Ref.

[5]. To this end, our method predicts the onset of the bistable
behavior withE o,set= 726 statvolt/cm(onset applied field

at f~0.0035. This onset field is related to the threshold in-
tensity | ~1.23x 168 W/cn?, which is of about two orders

Note Eq.(32) is exact, and it can be applied to investigatelarger thanl =1.4x 10° W/cn? predicted by the variational
the optical bistability for a dilute suspension of randomly approach. This discrepancy should result from the fact that

oriented spheroidal particles in a linear host.

the present method determines self-consisterilig|?),

066601-7
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rather thar{|E|), while the latter (|E|)) is determined by hibit three different physical states for a giveg, and thus
the variational approacH5], without the use of self- this raises the interesting question of how one state is to be

consistency. selected over another, and how one can switch the system
between these different statez3].
VI. DISCUSSION AND CONCLUSION In addition, since the materials have the advantage of a

. ) low absorption coefficier24], the metallic particles may be
In this work, we have developed a general method in anyacked up to a large volume fraction. In this case, dipole-
attempt to study the optical bistability in two-phase nonlinearyingje interactions should be taken into account. In this re-

composite materials. This method allows us to solve selfy,o .4 the Shalaev-Sarychev thed®p] is expected to help.
consistently the 2relat|_on_ between the average of the locgjy,rk js in progress along this direction, and will be reported
field squared(|E[?); within nonlinear componeritand the  4sewhere.

externa_l field squaredt?, withogt regarding the nonlin_ear To sum up, we have generalized our recently derived
properties as a small perturbation to the linear behavior. Ilaxwell-Garnett approximation to investigate the optical bi-
this connection, it is worth mentioning an alternative work stapility of nonlinear spherical inclusions in a nonlinear di-
[17], in which the authors considered the intrinsic opticalgjectric hos{12,26]. To our great interest, double bistability,

bistability by using the spectral form betweéh);, andEo. o tristability, can be observed by adjusting the appropriate
To determine (E),, the rough approximation(|E|?), parameters.

~|E,|? was adopted. Furthermore, the formula in Ré&f]
was only valid to the composites with a single nonlinear
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