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Paraxial theory of slow self-focusing
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Center for Energy Studies, Indian Institute of Technology Delhi, New Delhi 110016, India
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We present a theory of slow self-focusing that is paraxial in nature, gives the field including the phase and
eikonal explicitly, while it also agrees with the results of variational and moments theories. After presenting the
features of the theory, particularly its similarity to the central force problem, we go on to reformulate the theory
for an absorbing medium. We find that the laser beam focuses to a constant beamwidth with a small phase-front
curvature depending on the extent of absorption. The theory is applicable to a whole range of saturating
nonlinearities although it specializes to two plasma cases, the ponderomotive force based and the relativistic
electron quiver based nonlinearities, for definitive results.
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I. INTRODUCTION

With the importance of the phenomenon of self-focus
in the context of modern lasers and their applications@1,2#,
its theory continues to attract attention with newer mo
powerful methodologies being brought to bear on it. Unli
the ideal case of the two-dimensional self-focusing with
bic nonlinearity that found the classic solution in terms of t
inverse-scattering techniques@3,7#, self-focusing of cylindri-
cal laser beams does not have such a unique elegant fo
lation. To mention a few of the recent theoretical attempts
self-focusing, we may broadly divide them into two categ
ries: those theories that limit themselves to the cubic
quintic nonlinearities and those that consider the comp
saturation of the nonlinearity and its consequences.

In the former category, the first of the recent attempts
mention is the work based on symmetry methods applie
the nonlinear Schro¨dinger equation, one due to Gagnon a
Winternitz @4# and the other due to Clarkson and Hood@5#.
Although these theories have not only been developed
cubic but also the quintic nonlinearity, no definite conc
sions can be yet drawn about the physical nature of s
focusing in cylindrical geometry using these theories. A
other independent method to tackle the problem of s
focusing in cylindrical geometry that holds a lot of promi
in the future is that of Kovalevet al. @6# based on the renor
malization group theory and has quite some success in
category of weak nonlinearities at least as much as the
paraxial theories of Akhmanovet al. @8# and the original mo-
ments method due to Vlasovet al. @9#, both of which were
developed for the cubic nonlinearity and generalized for
quintic nonlinearity. There is the problem of collapse of t
cubic nonlinearity that is arrested by the quintic nonlinear
addressed in all the above papers but reaching maturity in
recent works of Luc Berge@10#, Malkin @11#, Sulem and
Sulem@12#, and Fibich and co-workers@13,14#. These theo-
ries include the cubic as well as the quintic nonlinearities a
reach the interesting conclusion that such studies are en
to account for all saturating nonlinearities since anyway
final beam shape is that of a self-trapped solution of
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cubic nonlinearity. Although there is some analytical trac
bility in these theories using the Talanov lens transformat
@15# and the original moments theory of Vlasovet al. @9#,
there is no explicit tracking of the field form including th
phase information like the development of the eikonal wh
is useful if self-focusing has to be studied in conjuncti
with other nonlinear phenomena of the laser beam.

Among the second category of theories that deal w
saturating-type nonlinearities, the generalization of the A
manovet al. theory@8# by Sodhaet al. @16,17# and Max@18#
were the earliest. It was, however, shown by Lamet al. @19#
that these generalizations of the Akhmanovet al. theories fail
to agree with numerical results and went on to give a be
theory for self-focusing in a saturating nonlinearity mediu
using generalization of the moments theory of Vlasovet al.
@9#. Using another independent approach to self-focus
theory in saturating nonlinear medium, the variation
method, this generalized theory of moments and the num
cal results were vindicated by Anderson and co-work
@20,21#. The moments and the variational theories do n
again give the explicit field form including the phase dev
opment in terms of the eikonal but assume a field inten
profile for obtaining the results. These theories are, theref
unsuitable if other phase-dependent nonlinear processes
to be studied in conjunction with self-focusing. These tw
theories also have not been generalized for absorbing me
Many of these shortcomings have been overcome in a re
study that recovers the results of the moments and variati
theories at least close to self-trapping using an explicit fi
form by using a proper paraxial field and dielectric const
expansion@22#. This theory has been studied for its resu
only partially @23,24# and has not been precisely compar
with the moments and the variational theories of Lamet al.
@19# and Anderson and Bonnedal@20# except for self-
trapping.

Our concern in this paper is to develop a theory for
~continuous-wave! self-focusing of laser beams for an arb
trary saturating nonlinearity for a slowly evolving regim
based on the quasioptic or the paraxial approximation. T
aim is to develop the theoryab initio in such a manner as to
give exactly the same results as the moments and the v
tional theories of Lamet al. @19# and Anderson and
Bonnedal@20#, respectively and the corrected paraxial theo
©2003 The American Physical Society03-1
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@22# in the absence of absorption of the medium. It go
beyond these theories, however, by including the exp
field form in terms of the eikonal and also generalizes to
case of absorbing medium, including both linear and non
ear absorption. It also elaborates on the surprising simila
of the absorption less self-focusing problem to the cen
force problem.

In Sec. II we go on to set up the explicit field form sta
ing from the paraxial quasioptic wave equation. The se
focusing dynamics in an absorptionless medium is discus
then in Sec. III including the similarities with the centr
force problem. We rederive the theory suitable to absorb
as well as nonabsorbing media in Sec. IV. The results
self-focusing in an absorbing medium are discussed in S
IV C. The limitations and future directions for developmen
of the theory are pointed out in Sec. V.

II. FIELD FORM FOR SLOW SELF-FOCUSING

With the original monochromatic wave electric field
frequencyv having dependence on space and time as

E5A~z,r !exp@ i ~vt2kz!#, ~1!

wherek25eLv2/c2 is the square of the linear wave numb
for the wave propagating in thez direction, the paraxial qua
sioptic scalar wave equation is@8,19,20#

22ik
]A

]z
1S ]2A

]r 2 1
1

r

]A

]r D2
k2

eL
F~AA* !A50, ~2!

where the intensity-dependent nonlinear dielectric consta

e~EE* !5eL2F~EE* ! ~3!

has, respectively, the linear and nonlinear partseL and
F(EE* ), the latter of which saturates in general with t
intensity factor (EE* 5AA* ) and is assumed to allow th
Taylor-McLaurin expansion

F~EE* !5 (
n51

`

an~EE* !n. ~4!

The fieldE and its amplitudeA are normalized with respec
to a suitable value of the variables derived for the particu
nonlinearity ~see Sec. II C!. Here we will have an

5(vp
2/v2)ān , a form suitable for plasma nonlinearities wi

the plasma frequency given byvp
254pn0e2/m (n0 is the

plasma number density ande and m are the electric charge
and mass of the electron, respectively!. Also the linear part of
the dielectric constant will beeL512vp

2/@v2(12 in/v)#,n
being the effective collision frequency of the plasma. In
absorptionless plasma,n50 as in this section.

The above generalized nonlinear Schro¨dinger equation
will be used for analyzing self-focusing. Separating the be
envelopeA0 and the eikonal~phase! S through the substitu-
tion A(r ,z)5A0(r ,z)e2 ikS(r ,z) and separation of real an
imaginary parts gives the following two coupled evolutio
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equations for the intensity and the eikonal of the electrom
netic wave in the nonlinear medium in the absence of
sorption:

2
]S

]z
1S ]S

]r D 2

52
1

eL
F~A0A0* !1

1

k2A0
S ]2A0

]r 2 1
1

r

]A0

]r D
~5!

and

]A0
2

]z
1

]S

]r

]A0
2

]r
1A0

2S ]2S

]r 2
1

1

r

]S

]r D 50. ~6!

The two terms on the right hand side of Eq.~5! determine the
behavior of the eikonalS, i.e., the convergence or divergenc
of the beam, the first term determines nonlinear refract
while the second term determines diffraction. The seco
equation, Eq.~6!, determines the evolution of the beam e
velope. The method of analysis largely is made delibera
similar to the popular method by Akhmanovet al. @8# except
for the manner in whichF(EE* ) is approximated in the
paraxial region that will be dealt with in Sec. II B below. W
first outline for completeness sake the method of guess
out the envelope of the beam using Eq.~6!.

A. Evolution of the beam profile

For a slightly converging/diverging beam with a spheric
wave front of large radius of curvature, it is mathematica
convenient to assume the following solution for the eikon

S5
r 2

2
b~z!1w~z!. ~7!

The surfaces of constant phase then correspond to surf
S(x,y) defined in Eq.~7! for each value ofz. The Gaussian
curvature of such a surface will be given by@28#

K5
1

RxRy
5

SxxSyy2Sxy
2

~11Sx
21Sy

2!2 5
b2~z!

~11b2r 2!2
5

1

R2 ,

where r 25x21y2 and the subscripts onS indicate partial
differentiation;Rx5Ry(5R) are the principal radii of curva-
ture of the surface defined byS(x,y) ~for a given value of
z). For r !b21, therefore 1/b(z)5R(z) represents the ra
dius of curvature of the wave front. In addition, we introdu
the real beam-width functionf (z) defined by the following
equation:

1

f

d f

dz
5b. ~8!

Equation~6! then takes the form

]A0
2

]z
1r S 1

f

d f

dzD ]A0
2

]r
12S 1

f

d f

dzDA0
250. ~9!

Introducing a new variableu51/f , we can write
3-2
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2u
]A0

2

]u
1r

]A0
2

]r
12A0

250.

Further, introducing two more independent variablesj
5(r /r 0)u, andx5r /(r 0u), wherer 0 is the scale length in
the radial direction for the laser beam, the above equa
can be written in the form@8#

x
]A0

2

]x
1A0

250

or

]

]x
~xA0

2!50

or xA0
2 is equal to an arbitrary function ofj. Since x

5r /(r 0u)5j/u2, one concludes thatA0
25u2F(j) in general.

Hence we find that the general solution of Eq.~2! is a self-
similar form of the intensity given as

A0
25

E0
2

f 2 FS r

r 0f ~z! D , ~10!

whereF is an arbitrary function of its argument.f (z) turns
out from above to be determining two aspects of the be
envelope. It represents the beamwidth on multiplication w
r 0 at any arbitrary value ofz. f also determines the amplitud
of the electromagnetic beam in the formE0 / f at any arbi-
trary distancez during propagation and focusing. Equatio
~8! may also be considered a result of the conservation of
photon numberN5*AA* 2prdr , which is a known invari-
ant of Eq.~2!.

The above equation clearly indicates that the intensity
the axis, i.e., atr 50, increases asf decreases; hence th
minimum value of f 2 corresponds to the focus where th
intensity is maximum and the beamwidth is a minimu
Writing out A05(E0 / f )F1/2(j), from Eq. ~10!, we can now
write Eq. ~5! in the following form (h5z/kr0

2):

~F1/2!91
1

j
~F1/2!8

5Fj2f 3
d2f

dh2 1 f 2k0
2r 0

2FS E0
2

f 2 FD 12 f 2
df

dh GF1/2,

~11!

wheref5kw. This is the equation to be solved in gene
for F1/2.

It is very suggestive in view of the expansions of the fo
in Eq. ~16! that are to follow, that a special case of intere
~but not the only choice allowed by this theory for a las
beam in a nonlinear self-focusing medium; see Eq.~74! for
elaboration! is when the initial intensity distribution~along
the radius! may be assumed to be a Gaussian

A0
2~r ,z50!5E0

2expF2r 2

r 0
2 G ~12!
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as if the laser is introduced in the TEM00 mode into the
self-focusing medium. The intensity distribution using E
~10! reduces to the self-similar form

A0
2~r ,z!5

E0
2

f 2~z!
expF 2r 2

r 0
2f 2~z!G ~13!

or

A05
E0

f ~z!
expF 2r 2

2r 0
2f 2~z!G . ~14!

B. Beamwidth equation

Following Refs.@24,25# we next use the corrected powe
series expansion which is not a Taylor series expansion
configuration space forF(EE* ) or e(EE* ) ~but obtained
using Taylor expansion in a suitable momentum space! that
may be written as

e~EE* !.e02e2r 2, ~15!

which gives the following expression forF(EE* ):

F~EE* !5~eL2e0!1e2r 2, ~16!

where@24,25#

e05eL2 (
n51

`

an

~2n11!

~n11!2 S E0
2

f 2 D n

, ~17!

e25
21

r 0
2f 2 (

n51

`

an

n

~n11!2 S E0
2

f 2 D n

~18!

specializing to the case of the Gaussian beam. Equation~5!
or ~11! then simplifies to the following equation by equatin
the coefficient ofr 2 on both sides:

d2f

dh2 52
e2k2r 0

4

eL
f 1

1

f 3 5F~ f !, ~19!

whereh5z/kr0
2, the propagation distance measured in ter

of the Rayleigh lengthkr0
2. This beamwidth equation alon

with the field intensity from Eq.~13! is exactly the same a
obtained in the moments and variational theories@19–21#
and will be used for further computations in the followin
section.

The determining equation forw(z) can be obtained from
Eq. ~6! or ~11! on equating ther 2-independent terms an
gives @26#

2
df

dz
5kS e02eL

eL
D2

2

kr0
2f 2 , ~20!

wheref5kw. For self-focusing the boundary condition
z50, f 51, and d f /dz50 will often be used. The latte
condition implies that the beam is a plane wave atz50
while the former condition definesr 0 as the beamwidth a
z50.
3-3



d
r
a
re
is
m
ra

en

-

f

fo
th
ha
ls

th

ch
tio

i
o
h
e

th
de
rg
e

s,

e

ity
t

new

in-

nse
ro-
-

ity
gov-
on.
lses,
ch

lin-

n-

SUBBARAO, BATRA, AND UMA PHYSICAL REVIEW E 68, 066403 ~2003!
In the expressions fore0 and e2 in Eqs. ~17! and ~18!
above, the summations over the power series are relate
the power series ofF given in Eq.~4! and are convenient fo
the saturating nonlinearity related calculations for small v
ues of the normalized intensity. For a more general exp
sion valid for all ranges of the normalized intensity, it
convenient to sum up the series at least in an integral for
not in a closed form. The following series and their integ
representations will be involved in the evaluation ofe0 and
e2. The first sum of interest is~with x5EE* )

S~x!5 (
n51

`
an

~n11!2 xn, ~21!

where the summation in the integral form can be writt
implying term-by-term integration as follows

S~x!5
1

xE0

x 1

x8
F E

0

x8
F~x9!dx9Gdx8 ~22!

with F being defined from Eq.~4! for the particular nonlin-
earity of interest. If we defineS̃(x)5*0

xF(x)dx, we have

S(x)51/x*0
x1/xS̃(x)dx. It can be verified for all plasma

nonlinearities for whichan5vp
2/v2ān that S(x)→0 as x

→0 andS(x)→2vp
2/v2 asx→` as expected always. An

other series of interest that can be evaluated usingS(x) is
S2(x)5(n51

` ann/(n11)2xn5xdS(x)/dx. Specific cases o
evaluation are given below@27#.

C. Two specific plasma nonlinearities

The explicit calculations in this paper are performed
two nonlinearities of interest in plasma physics although
theory remains valid for any steady state nonlinearity t
has a relaxation time much smaller than the laser pu
length. Since anyway the theory is for cw laser beams,
requirement is easily met.

1. The ponderomotive nonlinearity

The first of the considered nonlinearities is that whi
arises out of the ponderomotive force of the laser radia
@29# that expels the electrons from the strong field regions
the transverse direction thereby creating a low density
high refractive index channel for the laser in the plasma. T
ponderomotive nonlinearity sets in with a relaxation tim
tp;(r o /va);1029–10211 sec; herer o is the transverse
beam inhomogeneity scale length andva is the speed of the
ion acoustic wave. Short high-power laser pulses in
nanosecond to picosecond range are sensitive to the pon
motive mechanism. When the laser pulse width is much la
compared totp , the resultant dielectric constant of th
plasma will be@29#

e512S vp

v D 2

exp~2EE* /E00
2 ! ~23!

whereE00
2 58mv2kBT/e2, kB is the Boltzmann constant,T

is the common temperature of the electrons and the ione
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andm are the charge and mass of an electron,M is the mass
of an ion,vp5A(4pn0e2/m is the plasma frequency in th
absence of EM wave wheren0 is the number density of the
plasma andv is the frequency of the electromagnetic~EM!
wave. Throughout this paper, the normalized field intens
factor is simply written asEE* , it being understood that i
actually stands forEE* /E00

2 , and the normalizing field
square in the denominator has been absorbed into the
notation.

For this nonlinearity, the expression forF(EE* ) of Eq.
~4! will be

F~EE* !5
vp

2

v2 ~e(2EE* )21!5
vp

2

v2 S (
n51

`
~21!n

n!
~EE* !nD

so that for the ponderomotive nonlinearity,ān5(21)n/n!
andan5(vp

2/v2)ān .
We may also write for the case of ponderomotive nonl

earity with some effort using Eq.~22!, S(x)5(vp
2/v2)S̄(x)

S̄~x!5
21

x
@2E1~x!2g2 ln~x!1x#5F211

E~x!

x G ,
~24!

where the exponential integral@31# E1(x)5*x
`(e2x/x)dx;

g50.577 . . . , Euler’s constant and E(x)5*0
x@(1

2e2t)/t#dt5E1(x)1g1 ln(x). We find S(x)→0 as x→0
andS(x)→21/x@2E1(x)2g2 ln(x)1x#→21 asx→`.

One also can easily evaluateS̄25xdS̄/dx explicitly as

S̄2~x!5F ~12e2x!

x
2

E~x!

x G . ~25!

One may verify thatS̄2→0 as x→0 as well as whenx
→`.

2. The relativistic nonlinearity

The relativistic nonlinearity arises because of the inte
quiver of the electron in the field of the strong laser elect
magnetic field@30#. The normalization field for the relativis
tic nonlinearity, E00

2 54m0
2v2c2/e2, is much higher com-

pared to the ponderomotive nonlinearity. The nonlinear
gets established instantaneously so that it is essentially
erned by the rise time of the laser pulse for its manifestati
For very short laser pulses such as the femtosecond pu
only the relativistic nonlinearity dominates. We assume su
a situation where the ponderomotive and relativistic non
earities dominate in different regimes.

For relativistic nonlinearity in a plasma the dielectric co
stant is@30#

e~EE* !512
vp

2

v2

1

~11EE* !1/25eL2F~EE* !, ~26!

whereeL512vp
2/v2 again and
3-4
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F~EE* !5
vp

2

v2 F 1

~11EE* !1/221G5
vp

2

v2 F (
n51

`

ān~EE* !nG ,

~27!

where

ār5~21!r
133353 . . . 3~2r 21!

2r r !
. ~28!

Note that the field intensity factorEE* has again to be
reread asEE* /E00

2 with the appropriate value ofE00
2 for the

relativistic nonlinearity quoted above. In this case the expr
sions forS(x) and S2(x) can be worked out to be the fo
lowing, again using Eqs.~21! and ~22!:

S~x!5
vp

2

v2 F4H SA11x21

x
2

1

x
lnS 1

2D ~11A11x!J 21G .
~29!

It can be verified that in this case also,S(x)→0 asx→0 and
S(x)→2vp

2/v2 asx→` as expected always. Also the seri
S2(x)5(n51

` an(n/(n11)2)xn5xdS(x)/dx can now be
evaluated

S̄2~x!5F2@S̄~x!11#1
2

11A11x
G , ~30!

where S̄(x)5S(x)vp
2/v2,S2(x)5S̄2(x)vp

2/v2. We find
again for this nonlinearity also,S2(x)→0 as x→0 and
S2(x)→0 also asx→`.

III. SELF-FOCUSING DYNAMICS
IN A NONABSORBING MEDIUM

There is much to learn from the absorptionless case
slow self-focusing. We present these interesting results
this section using Eqs.~19! and ~20!. Before going over to
the more complicated self-focusing dynamics, we first g
the results of the special case of self-trapping of the la
beam that represents the important result of the beam diff
tion exactly balancing out the nonlinear focusing of t
beam.

A. Self-trapping

We ask the question whether a Gaussian beam with in
radius (r 0

2/2) with a plane wave front ~implying
(d f /dh)z5050) introduced into the self-focusing medium
z50 @as in Eq.~2!# can continue to propagate in a diffra
tionless manner by balancing the diffraction with nonline
refraction, so thatf 51 for all z in Eq. ~14!. The question
gets answered by substituting this constant value forf in Eq.
~19! which immediately implies the right hand side vanish
also as the left hand side, giving us the condition

r 0vp

c
5S 21

S̄2~x!
D 1/2

~31!
06640
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for self-trapping. Substituting forS2(x) for x5E0
2 for the

specific nonlinearity either from Eq.~25! for the ponderomo-
tive nonlinearity or Eq.~30! for the relativistic nonlinearity
yields the condition for self-trapping explicitly. In Fig. 1 w
have given the result for the relativistic nonlinearity. Also f
comparison is given the exact solution by solving Eq.~2!
directly numerically for the self-trapping case. The agre
ment is reasonable as can be seen.

For more discussion on self-trapping, particularly, t
self-trapping of the second kind and most stable self-trapp
values atf * , see the following section.

B. The potential function for self-focusing dynamics

It is possible in the absorptionless case whene2(EE* ) is
real to write out a first integral of Eq.~19! in the form of a
Hamiltonian or energy principle that will serve as a key
the analysis and computations. Multiplying Eq.~19! by
d f /dh and integrating, we get the equation

1

2 S d f

dh D 2

1U~ f !5E, ~32!

whereE is the constant of integration, the Hamiltonian,
energy function andU( f )52* fF( f )d f . More explicitly, we
get

U~ f !52E f F1

f

vp
2r 0

2

c2 (
n51

`

ān

n

~n11!2 S E0
2

f 2 D n

1
1

f 3Gd f

~33!

5
1

2

vp
2r 0

2

c2 (
n51

`

ān

1

~n11!2 S E0
2

f 2 D n

1
1

2 f 2 ~34!

or

FIG. 1. Normalized self-trapped radiusvpr 0 /c plotted against
normalized intensityI 5E0

2/E00
2 for normal self-trapping based o

Eq. ~31! ~curve 1! and for self-trapping of the second kind based
Eq. ~37!~curve 2! for relativistic nonlinearity~as in Sec. II C 2!. The
exact numerical solution of Eq.~2! for self-trapping yields curve 3.
3-5
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U~ f !5
1

2 f 2 1
1

2

vp
2r 0

2

c2
S̄~E0

2/ f 2!. ~35!

We can easily find thatU( f )→` as f→0 ~because of the
domination of the first term that corresponds to diffracti
tendency of the beam! andU( f )→0 as f→` because both
terms on the right hand side tend to zero in this limit.~Note
that the limit of this potential function evaluated by Ande
son and Bonnedal@20# as f→` was incorrect and could lea
to incorrect conclusions.! Figure 2 illustrates the behavior o
U( f ) for various values of the parameters,E0

2, and for r̄ 0

5vpr 0 /c53.0 in the case of the ponderomotive nonlinear
for which S(x) is used from Eq.~24!. The change of sign o
U( f ) from positive to negative values goes on to show tha
potential well occurs only above the self-focusing thresho
i.e., when the parameter values ofE0

2 and r̄ 05vpr 0 /c are
above the self-trapping threshold curve as in Fig. 1.

Writing out the kinetic energy and evaluating the veloc

d f

dh
56A2@E2U~ f !#, ~36!

one observes that there are three possibilities dependin
the values of the total energyE. For E.0, the line
E5const intersects theU( f ) curve for positive values of the
potential at a single point and the velocity could be real
it implies defocusing since in this region the diffraction ter
in 1/f 2 dominates the focusing term. The beam can focus
E5const meets theU( f ) curve and then it goes on to defo
cus indefinitely. In the potential well whereU( f ),0, one
needsE,0 values for intersection of theE5const curves
with the U( f ) curves. The intersection takes place at tw
points say at,f m and f M. f m , and the laser beam is con
strained to focus and defocus repeatedly between these

FIG. 2. Variation of the potential function for self-focusing
U( f ), with f in the case of ponderomotive nonlinearity for vario
values of normalized intensityI 5E0

2/E00
2 and normalized self-

trapping radiusvpr 0 /c53.0 from Eq.~35!. The well in the poten-
tial disappears for low intensities for which self-focusing is n
possible.
06640
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limits of f. At the bottom of the potential well, there is aga
only one point of contact pointing to the possibility of th
beam being able to maintain a fixed value off there. Indeed,
this is the self-trapping situation wheref 5const can be
maintained and it is a stable fixed point of the system sinc
is at the bottom of the potential well.

Varying the values ofE and plottingd f /dh with f we get
the self-trapping contour plots of Fig. 3. We see from the
curves as we move to the minimum of potential well,U( f ),
where the well is more symmetric, that the curves are clo
curves and more circular. This minimum of the potential w
corresponds to the point where the beam is stable tow
perturbations. For these curves, we fix the value of inten
and the self-trapping radius. One may write Eq.~19! in the
form

d2f

dh2 52
dU

d f
5F~ f !.

At the minimum ofU( f ) we havedU/d f50 implying that
at these pointsF( f )50, which goes on to define the fixe
point of the system. The fixed point defines the most sta
of the values off (5 f * ) for which self-trapping is possible
Correspondingly, the value (r 0f * ) will be the value of the
beamwidth for which the system is stable. Figure 4 dep
the values off * for some value ofr̄ 0. In Sec. III C 1 @Eq.
~55! and the discussion following it# we return to show that
the beam executes simple-harmonic motion around these
ues off * thereby showing stability under small perturbatio

The value of f 51 ~as good as any other value o
f 5const) of the preceding section is one of the values
which self-trapping can occur although it is not the mo
stable value. The value off * differs from f 51 in general
and hence one concludes that if the beam is given a cha
somehow to evolve, it will rather evolve towards the val
f * . This chance to evolve actually is realized in the prese
of at least some effective absorption in the medium as

t

FIG. 3. Contour plots of constant energyE from Eq. ~36! gen-
erated for the bottom curve (E0

2/E00
2 54, vpr 0 /c53) of the poten-

tial well in Fig. 2 for ponderomotive nonlinearity in the (f , f 8
5d f /dh) plane.
3-6



a

ive

s
e
to
th
te

n
o
ec
if
on

ra
s

ve

st

in
nd
act
fo-
e-
is

ith

first
re
this

on
y-

are
n

ce
of
l

-

can

nd-
rdi-

ci-

PARAXIAL THEORY OF SLOW SELF-FOCUSING PHYSICAL REVIEW E68, 066403 ~2003!
cussed in Sec. IV C. Note that the boundary conditions
h50, f 51 andd f /dh50 give usU(1)5E in Eq. ~36!, and
these values ofE for given parametersE0

2 , r̄ 0 may easily be
estimated.

In Fig. 3 we give, corresponding to the ponderomot
potential of Fig. 2, the contours of velocity variabled f /dh
on a phase-space plot with respect to values off. We can see
that forE.0 the beam defocuses even if it started off focu
ing. For E,0 the beam oscillates within the well to giv
closed curves in phase space. The eye of the closed con
corresponds to the bottom of the potential well that is
fixed point of the system for the given system parame
E0

2 , r̄ 0.
A very special value ofE in Fig. 3 isE50, the one on the

separatrix that separates the closed contours~for which E
,0) from the open ended contours~for which E.0) in the
phase plane. On this contour the beam takes infinite dista
to travel, first focusing, if the boundary condition is so ch
sen, and finally defocusing again in infinite distance. Eff
tively, the beam travels unperturbed, i.e., it travels with d
fraction exactly canceling nonlinear focusing. The conditi
for this diffractionless propagation~i.e., for f 51) or self-
trapping of the second kindis, from Eqs.~32! and ~35!,

S 12
1

R̄2D 1

r̄ 0
2

52S̄~E0
2!,

where Eqs.~11! and ~12! have been used to express the
dius of curvatureR of the wave front and its dimensionles

form R̄5R/kr0
2. In the special circumstance that the wa

has a plane wave front implyingR̄→`, the condition for this
self-trapping of the second kind reads

r̄ 05S 21

S̄~E0
2!

D 1/2

~37!

This condition has also been plotted in Fig. 1 to show
comparison with the condition for self-trapping of the fir

FIG. 4. Fixed pointf * with intensityE0
2/E00

2 (vpr 0 /c53.0)
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kind that comes from Eq.~31!. For finite values ofR̄, this
self-trapping curve lies below the one shown in Fig. 1 but
the first quadrant. Note that this self-trapping of the seco
kind is unstable in the sense that deviation from the ex
self-trapping conditions could lead to either indefinite de
cusing or periodic focusing in the saturating nonlinearity m
dium. This is unlike the self-trapping of the first kind that
stable in general and most stable for values off * discussed
above.

The dynamics of self-focusing are often of interest w
the boundary conditionf 51 and d f /dh50 at h5z50.
These plots show oscillations above the threshold of the
kind or the second kind of self-trapping of Fig. 1 and a
depicted in Fig. 5 as phase-space plots. With distance
implies periodic focusing or defocusing.

C. Similarity of self-focusing dynamics
to the central force problem

In the above section, the potential function just touches
some similarity of the absorptionless slow self-focusing d
namics problem in the~corrected! paraxial regime with the
central force problem with an attractive potential. There
surprisingly many more similarities of the potential functio
U( f ) to that of Kepler or rather the attractive central for
problem—too close to be ignored. One similarity is,
course, that the potentialU( f ) is dependent on the radia
coordinate asU(r )→`(r 5 f ) as r or f→0 because of cen
trifugal effective potential andU(r ) or U( f )→0 as r or f
→` because of the nature of the central potential.

First, the beamwidth parameterf may be identified as the
radial coordinate in polar coordinate system. Then one
also ‘‘invent’’ a polar angle coordinateu f so that (f ,u f) de-
fine a plane in the polar coordinate system. In a correspo
ing Cartesian system of coordinate we introduce the coo
nates (f 1 , f 2) such that

f 5Af 1
21 f 2

2, u f5tan21
f 2

f 1
, ~38!

implying, f 15 f cos(uf), f25f sin(uf). The Lagrangian for a
particle of unit mass may now be defined in the (f , u f) plane
as the difference between the kinetic energyT and the poten-
tial energyV( f ), L5T2V or explicitly

L5
1

2 F S d f

dh D 2

1 f 2S du f

dh D 2G2V~ f !5 1
2 @ ḟ 21 f 2u̇ f

2#2V~ f !.

It follows that the canonical momentum coordinate asso
ated with the angle coordinateu f is

pu f
5

dL

du ḟ

5 f 2u̇ f . ~39!

The corresponding Lagrange equation is

ṗu f
5

d

dh
~ f 2u̇ f !5

]L

]u f
50. ~40!
3-7
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Hence,u f is a cyclic coordinate and

pu f
5 f 2u̇ f5 l 5~constant inh!. ~41!

This implies conservation of angular momentum in t
( f ,u f) plane. One consequence is that we can always w

u̇ f5
l

f 2 . ~42!

A suitable value ofl, the constant angular momentum, is
be determined later.

We may define a three-dimensional space (f ,u f ,c f) and
define in turn an angular momentum vectorL and because o
the nature of the central potential that does not depend ou f
andc f , we may claim that theh derivative ofL , the torque,
vanishes keeping the vectorL constant. The constancy inc f
direction of L ensures that the motion is restricted to t
( f , u f) plane that is defined for, say,c f5p/25const and the
magnitude ofL5 l constancy has just been shown to imply
relation betweenu̇ f and f 2. The proof of the constancy ofL
will be similar to that given in standard classical mechan
books e.g., Goldstein@32#.

One may proceed also in the usual manner to define
infinitesimal area asdA5 1

2 f ( f du f) and an areal velocity a

dA

dh
5

1

2
f 2

du f

dh
5

1

2
f 2u̇ f5

1

2
l . ~43!

One then concludes that the constancy of the angular
mentuml implies the constancy of the areal velocity in th
slow paraxial self-focusing problem in the orbit produced
the (f , u f) plane. The main Lagrangian equation is the rad
equation forf and itsh derivatives that can now be writte
down as

d

dh
ḟ 2 f u̇ f

252
]V

] f
5F~ f !,

FIG. 5. Self-focusing phase-space plot in the (f , f 85d f /dh)
plane for vpr 0 /c53.0 for various intensities. The closed curv
indicate oscillations off andd f /dh with h.
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where we callF( f ) the force in thef space just asV( f ) is the
potential. Using the constancy of the angular momentum
can be rewritten as

d2f

dh2 5F~ f !1
l 2

f 352
d

d f FV~ f !1
l 2

2 f 2G .
The first integral of this after multiplying withd f /dh gives

1

2 S ḟ 21
l 2

f 2D1V~ f !5E5 const.

This may be recognized as the energy integral particula
after rewritingl 2/ f 25 f 2u̇ f

2. Writing the effective potential

U~ f !5V~ f !1
l 2

2 f 2 ~44!

and on comparison with Eqs.~32! and~35!, we may identify
our V( f ) as

V~ f !5
1

2
r̄ 0

2 S̄S E0
2

f 2 D ~45!

and

l 51. ~46!

The latter result is particularly interesting and curious sincit
identifies the origin of the1/f 2 term, the well-known Gauss
ian laser-beam diffraction term, as arising on account of
certain angular momentum conservation in the( f , u f)
plane.

In the (f , u f) plane, the orbit equation forf (u f) is an-
other description of self-focusing. This is obtained by noti
that the angular momentum constancy givesdh5( f 2/ l )du f
and hence

d2f

dh2 5
l 2

f 2

d

du f

1

f 2

d f

du f
52 l 2u2

d2u

du f
2 , ~47!

whereu51/f so that the earlier force equation can now
written as

d2u

du f
2 1u52

1

l 2u2 F̃S 1

uD , ~48!

whereF̃(1/u)5F( f ). This differential equation foru(u f) or
f (u f) can be integrated to give the orbit for self-focusing
the (f , u f) plane. In our case

F̃S 1

uD5F~ f !52
]V

] f
5

1

2
r̄ 0

2u2
d

du
S̄~E0

2u2!. ~49!

An illustrative orbit is given in Fig. 6. We find that as w
increase theh values, the orbits remain between a minimu
and a maximum value off. This implies that the orbit is
bounded but ergodic~see discussion at the end of Sec. III C
below!.
3-8
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PARAXIAL THEORY OF SLOW SELF-FOCUSING PHYSICAL REVIEW E68, 066403 ~2003!
Note thatd f /du f5(1/l ) f 2(d f /dh). Hence the phase plo
( f ,d f /dh) can easily be converted to these polar pl
through the relationdu f5( l / f 2)dh. One may calculateu f in
this manner and increment to obtain the orbit in the (f 1 , f 2)
plane. The boundary conditions ath50 are f 51 (u51)
anddu/dh5d f /dh50 or du/du f50.

1. Periodicity or focal length for self-focusing
for saturating nonlinearities

The orbit for negative energiesE52uEu has two turning
points in f between its maximum valuef M and minimum
value f m . Also the energy equation, Eq.~36!, defines the
radial momentum as

p5
d f

dh
56AF2E2

1

f 2 2 r̄ 0
2S̄S E0

2

f 2 D G . ~50!

The action variable is

J5 R pd f5 RAS 2E2
1

f 22
vp

2r 0
2

c2 S~ f ! Dd f . ~51!

The best manner to evaluate the integral is a numer
scheme that recognizes that~action)5J5(area in the
phase planeor

J5 R d f

dh
d f52E

f m

f M d f

dh
d f

52E
f m

f MA2@E2U~ f !#d f .

The above integral was evaluated numerically to calcu
the values ofJ. Values of E on the phase-space orbit a
those obtained in Fig. 3. It can be seen fromE vs J graphs in
Fig. 7 that as the magnitude ofE increases or as we move t
the minimum of the potentialU( f ), the area,J reduces. For

1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1
1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1

f
1

>

f 2
>

FIG. 6. The self-focusing orbit in the (f 1 , f 2) plane.vpr 0 /c
55.0, E0

2/E00
2 53.0, h50 to 140.0. The orbit is ergodic and spa

filling in the region f m, f , f M .
06640
s
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te

values ofE.0 actionJ becomes infinite. This correspond
to open contours in the phase plots.

Spatial frequency of periodic focusing,n, is given as

n5
dE

dJ
>

DE

DJ
, ~52!

The spatial period can be evaluated from here as

2h f5
1

n
⇒h f5

1

2n
, ~53!

where h f is the dimensionless focal length or ‘‘perio
length’’ for the self-focusing process in the saturating m
dium. Using the numerical values obtained forE andJ in the
above graphs we get the variation of focal lengthzf with E
for both ponderomotive and relativistic nonlinearities, t
former of which is depicted in Fig. 8.

FIG. 7. Energy E plotted against the radial actionJ for
vpr 0 /c55.0; E0

2/E00
2 53.0.

FIG. 8. Periodicity lengthh f calculated using Eq.~53! and Fig.
7 for vpr 0 /c55.0; E0

2/E00
2 53.0. Analytic result is from Eq.~55!.
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Focal length could also be plotted as a function of inte
sity E0

2 using the following expression:

E5
1

2 S d f

dh D
h50

2

1
r̄ 0

2

2
S̄~E0

2!1
1

2
. ~54!

Analytical evaluation of the actionJ is straightforward at
the bottom of the potential well. We may write near th
point, E5U( f * )1dE or dE5E2U( f * )5uU( f * )u2uEu so
that @hered f 5( f 2 f * )],

2U~ f !52U~ f * !1
d2U

d f2 U
f*

d f 2,

where the first derivative is absent because the point wh
the power series expansion is being carried out, viz.f
5 f * , is at the bottom of the potential well. Hence

J5 R A@2E22U~ f !#d f5Ad2U

d f2 u f* R Aa22d f 2dd f ,

wherea252dE/@(d2U/d f2)u f* #. This integral is evaluated
directly to give

J5
2pdE

AFd2U

d f2 G
f*

.

Since the phase-space orbit is a circle,A2(dE)1/2/
@d2U/d f2u f* #1/4 will be its radius. WhendE50, J50.

Also R51/@(d2U/d f2)u f* # is the radius of curvature (R
@1) of the potential curveU( f ) vs f near f * . Then, R2

2(R2DE)25(d f )2 or 2RDE.(d f )2 where uDEu!R im-
plies that DE/@(d2U/d f2)u f* #.(d f )2/25J/2p so that J
5p(d f )2. This form of J is also obvious from the fact tha
the phase-space orbit may be considered to be a circl
radiusd f 5 f 2 f * .

This evaluation of the radial action variable implies th
the radial~spatial! period is given through@using Eq.~52!#

n5
1

2pAFd2U

d f2 G
f*

5
1

2h f
. ~55!

The solid straight line independent ofE in Fig. 8 is the de-
piction of zf from this expression at the bottom of the pote
tial well.

The actionJ in the above analysis is actually ther com-
ponent of the action,Jr5Jf . There will be a corresponding
u component,Ju f

5rpu f
du f which goes on to define anothe

(u f) periodicity throughnu f
5dE/dJu f

. In general, the radia

frequencyn and the angle frequencynu f
are incommensu-

rate, i.e., n/nu f
Þ integer, implying that the orbit in the

( f , u f) plane is ergodic in the annular region between
minimum and the maximum values off viz., f m and f M ,
respectively. This behavior is seen in Fig. 6 with the or
filling up the annular region with increasing values ofh.
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IV. SELF-FOCUSING IN AN ABSORBING MEDIUM

In an absorbing medium, the formulations of Sec. II a
the preceding section are not suitable. The general advan
that in principle existed in Sec. II that the beam need not
of Gaussian nature atz50 and that Eq.~11! can in principle
be directly dealt with, will fully be given up in this sectio
and a theory valid only for a Gaussian beam will be adopt
This is a compromise necessary at present to build up a
focusing theory for an absorbing medium.

The quasioptic equation, Eq.~2!, is again the starting
point but with the value of the propagation constantk given
by k25k0

2eLr0 andeLr0512vp
2/v2. We go on to write the

solution of the scalar wave equation in terms of the Gauss
self-similar form

E~r ,z!5E0e2 if(z)e2r 2/2r 0
2g(z), ~56!

whereg(z) is the complex beamwidth parameter andf(z) is
the on-axis phase shift. Substituting this field form into t
quasioptic scalar wave equation and using the dielectric fi
expansion of Eq.~15! which is still valid if 1/f 2 is suitably
replaced by its equivalent given in Sec. IV B below@cf. Eq.
~65!#, we get two equations as coefficients of th
r 2-independent terms andr 2-dependent terms. The two equ
tions are, respectively,

f~z!5
21

kr0
2E0

zdz

g
1

k0

2AeL
E

0

z

~e02eL!dz ~57!

for the on-axis phase and the complex beamwidth,g,

dg

dz
5

i

r 0
2k

@r 0
4g2e2k0

221#. ~58!

A. The ABCD law

With h5z/kr0
2 we get from Eq.~58!

d

dh S 1

gD52 i F r 0
4e2k0

22
1

g2G .

Let g52 i z/z8 wherez85dz/dh. This reduces the abov
equation to

d2z

dh2
52r 0

4e2k0
2z. ~59!

Solving the Ricatti-like equation forg, Eq. ~58!, or solv-
ing this simple-harmonic motion equation~with h-dependent
frequency term! in z are equivalent. For smallDh, one re-
gardse2(gr ,gi) as a constant and obtains a simple solutio
First, we assume the following approximate solution:

z~h!>A sinFk0r 0
2E

0

h
Ae2dhG1B cosFk0r 0

2E
0

h
Ae2dhG .

~60!
3-10
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At h50, g5g0 and we haveB/A5 ig 0̃5 ig0k0Ae2r 0
2. We

define g̃5r 0
2Ae2gk0 so that we can now write usin

g52 i z/z8,

g̃5

g0̃ cosFk0r 0
2E

0

h
Ae2dhG2 i sinFk0r 0

2E
0

h
Ae2dhG

2 ig 0̃ sinFk0r 0
2E

0

h
Ae2dhG1cosFk0r 0

2E
0

h
Ae2dhG

~61!

So theABCD law for g̃ involves the matrix,

S A B

C DD
given by

S cosFk0r 0
2E

0

h
Ae2dhG 2 i sinFk0r 0

2E
0

h
Ae2dhG

2 i sinFk0r 0
2E

0

h
Ae2dhG cosFk0r 0

2E
0

h
Ae2dhG D .

~62!

This has the advantage that it can repeatedly be applied
each optical element and the finalABCD matrix obtained by
multiplication serves to get the final value ofg̃ by substitu-
tion into the bilinear expression, Eq.~61! @33#.

Note that the above matrix can be written as

Q5s0 cosFk0r 0
2E

0

h
Ae2dhG2 is1 sinFk0r 0

2E
0

h
Ae2dhG ,

~63!

wheres05(0 1
1 0) ands15(1 0

0 1). Q can also be written as

Q5expS 2 is1Fk0r 0
2E

0

h
Ae2dhG D , ~64!

so that the neededABCDmatrix is actually a rotation matrix
at least as long ase2 is real. Whene2 is complex, this be-
comes the Lorentz transformation matrix. We can deal w
the self-focusing medium as a piecewise linear medium, e
pieceDh in thickness. The local value ofAe2 is used for
each of these slabs of thicknessDh. Also theQ’s commute
with each other so we just add exponents sinces1 commutes
with itself. (eAeB5eA1B if @A,B#50.! Using this we can
have a fast and useful algorithm for self-focusing calcu
tions.

B. Connecting with the absorptionless case

At least when there is no absorption, it is convenient
switch over to the (f ,d f /dh) variables. We have the equiva
lency
06640
for
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1

g
5

1

f 2
1 i

1

f

d f

dh
~65!

⇒ 1

f 2 5
gr

gr
21gi

2 ,
1

f

d f

dh
52

gi

gr
21gi

2 ,

whereh5z/kr0
2 . Using these equivalencies in Eq.~58!, we

immediately get Eq.~19! for f which should work well ife2
is real since we needf to be always real.

Note also thatf5f11f2,

f15
21

kr0
2E0

zdz

g
52Ehdh

g
52Eh dh

f 2
2 i ln f , ~66!

where the first term on the right is the Gouy phase and

f25
k0

2eL
Ez

~e02eL!dz ~67!

is the dynamical phase. The field assumes the form

E5E0e2 if(z)e2r 2/2r 0
2g(z)5E0e2 if1e2 if2e2r 2/2r 0

2g(z)

~68!

or

E~r ,h!5E0

1

f
expS i Eh dh

f 2 D e2 if2 expS 2r 2

2r 0
2f 2D

3expS 2 ir 2

2r 0
2

1

f

d f

dh D ~69!

so that the intensity factor is

uE~r ,h!u25
E0

2

f 2
expS 22r 2

2r 0
2f 2D 5

E0
2

f 2
expS 2r 2

r 0
2f 2D . ~70!

Equation~69! shows that the phase in Eq.~20! is now recov-
ered wheneverf2 is real. ~If f2 is complex, e2 if2

5e2 if2ref2i and

uE~r ,h!u25
E0

2

f 2
expS 2r 2

r 0
2f 2D e2f2i. ~71!

The last term inf2i should have the correct sign in th
exponent to show decay inz in an absorbing medium giving
the nonlinear Lambert’s law.!

We also sometimes need the relations forgr and gi in
terms off and its derivative which can easily be worked o
to be

gr5

1

f 2

1

f 4 1S 1

f

d f

dh D 2 , gi5

2
1

f

d f

dh

1

f 4 1S 1

f

d f

dh D 2 . ~72!
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C. Self-focusing dynamics in an absorbing medium

The complex beamwidth equation, Eq.~58!, along with
the nonlinear Lambert’s law in Eq.~71! ~with the f terms
replaced by the equivalent terms ingr andgi) has been nu-
merically solved to obtain the orbit of the focusing beam
the complexg plane. The expression fore2 from Sec. II C for
ponderomotive nonlinearity is used with (vp

2/v2) replaced
suitably by vp

2/v2)(12 in/v)21 for the absorbing plasma
wheren is the plasma collision frequency. Figure 9 gives fi
the orbits in the complexg-plane in the absence of absor
tion that are equivalent to Fig. 5 for the phase plots of
obtained now with the help of Eq.~72!. Figure 10 gives for
the same parameters the complexg plane orbit when absorp
tion is present. The result that the center point in phase sp
of the absorptionless case that gave a closed orbit is
converted to a focus in the presence of absorption is a v
significant result that is important for all realistic media su
as an absorbing plasma.

FIG. 9. Phase-space orbits in the complexg-plane for self-
focusing corresponding to the plots of real beamwidth paramete
Fig. 5 for the absorptionless casevpr 0 /c53.0.

FIG. 10. Self-focusing phase plot in complexg-plane with ab-
sorption vpr 0 /c53.0, n/v50.4. Notice the convergence to th
fixed point dictated by Eq.~73! suggesting beam self-organizatio
06640
t

ce
w
ry

The focus itself is situated at the fixed point of the co
plex beamwidth equation, Eq.~58!. Equating the right hand
side to zero gives the fixed point as

g* 5
1

k0r 0
2e2

1/2, ~73!

which is now complex whene2 is complex. Sincee2 is non-
linear and involvesg andḡ, this complex equation is equiva
lent to two simultaneous nonlinear equations to be sol
together. One manner of solving them is by iteration. T
iteration can be done on any path on the complexg-plane
that terminates at the fixed point and has some suitable in
guess on theg-plane, provided there is no irreversibility o
the complexg-plane introduced by the nonanalyticity of th
functions involved~e.g.,e2 is a function of bothg andḡ that
makes it nonanalytic ing). Of all the possible paths we
chose for iteration the actual beamwidth development p
on theg-plane by solving the complex beamwidth equatio
Eq. ~58! and verifying that ash→` the iterates ofg are such
that both sides of the equation vanish. That ensures tha
fixed point has been reached through iteration as in Fig.
along the actual path followed by the complex beamwid
The location of the fixed point and hence the values
(gr* ,gi* ) depend on the extent of absorption, i.e., on t
value ofn/v. This in turn implies a certain beamwidth and
constant small phase-front curvature to which the be
evolves for sufficiently largeh (;160).

V. CONCLUSIONS AND DISCUSSION

The self-focusing beamwidth equation, Eq.~19!, and that
for the phase evolution, Eq.~20!, are valid in general for all
absorptionless saturating nonlinearities. The specializatio
plasma nonlinearities has shown that these equations ca
exploited to study self-focusing in an absorptionless medi
using the potential function in Sec. III B. The similarity o
the problem of self-focusing in an absorptionless medium
the problem of dynamics in a central potential in Sec. III C
too close to ignore. In particular, the identification of th
problem of diffraction to the conservation of angular m
mentum in the (f ,u f) space in Sec. III C remains a curiou
result. This result is reminiscent of a similar result in t
context of a more direct development of the problem of
time- orh-dependent harmonic oscillator in the classic wo
of Lewis and Riesenfeld@34#. Note that with a potential or
rather the dielectric constant of the form of Eq.~15!, the
present theory also deals with a time- orh-dependent har-
monic oscillator problem although our aim had been to
tract only the information on the field envelope and pha
unlike the direct calculation of the eigenfunctions as
Lewis and Riesenfeld@34#. To our knowledge, the possibili
ties of self-trapping of the second kind pointed out in S
III B is new. The method of evaluating the period of se
focusing oscillations in Sec III C using action variable shou
prove useful.

The practical problem of self-focusing in an absorbi
medium needed a complete reformulation of the se
focusing problem in Sec. IV in terms of the complex bea

in
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width parameter that reduced to the earlier absorption
case involving only the real beamwidth parameterf and its
derivative in Sec. IV B. The results of the section obtained
numerical solution of the complex beamwidth equation
Sec. IV C in an absorbing medium are indeed very impr
sive in the sense that they always indicate the convergenc
the beam to a focus in phase space. This existence o
attractor point in phase space indicates that the com
beamwidth converges to some constant value after prop
tion through several Rayleigh lengths and is qualitativ
supportive of the experimental result on damage tracks le
self-focusing media that are seen to have constant radiu
long distances@35#. The beam phase front need not be pla
but has a small curvature as witnessed from the fact
gi* Þ0 for the attractor. The presence of the attractor in ph
space is also indicative of the general self-organization of
self-focusing beam.

The result of the absorbing medium is interesting a
from the point of view that any effective absorption that g
introduced in terms of the radiation of the beam will imp
asymptotically to constant beamwidth situations indicative
self-organization of the self-focusing beam in an absorpti
less medium. The estimation of radiation by not using
gaussian ansatz for the beam profile but the full beam eq
tion that results in Sec. II@Eq. ~11!# then should give a quan
titative theory that indicates whether or not such a focus
to a constant radius situation occurs.

To elaborate this further, we note that with the notati
Ã05F1/2j1/2, Eq. ~11! can be put into the form

d2Ã0

dj2
1Fa2j22b21

1

4j2G Ã050, ~74!

where

a25 f 2k0
2r 0

2S2S E0
2

f 2 D 2 f 3
d2f

dh2
,

b252 f 2
df

dh
1 f 2k0

2r 0
2~eL2e0!.

The bound solutions of Eq.~74! are known in the form of the
Laguerre’ Gaussians,Ã05exp(2j2/2)j1/2Lm(j2) provided
D.

s.
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we choosea2521 andb252(4m12) in Eq.~74! ~cf. Ref.
@31#, p. 781, Table 22.6!. The choicem50 then gives the
Gaussian solution given in the paper with the beamwi
equation and axial phase equations given by Eqs.~19! and
~20!, respectively. The higher-orderm solutions can go on to
give the self-focusing description of the higher-order la
modes if they are introduced into the nonlinear plasma, p
vided the on-axis beam phase equation is taken accordin
the conditionb252(4m12). This topic will not be elabo-
rated here further. All these solutions including the Gauss
solution of this paper, however, could be rendered unsta
owing to the fact that Eq.~11! demands that asj→`, F
→0 sinceF1/2→0 there andF(0)50 by definition from
Eqs.~3! and~4!. This in turn demands that Eq.~74! be modi-
fied to a similar equation with a new definition o
a252 f 3(d2f /dh2) in the regionj→`. This, along with the
conditiona2521 andb252(4m12) necessary for bound
solutions given earlier, gives a beamwidth equation in
region j→` that simply indicates laser beam diffractio
Combining also with the fact that the beam wave front d
tated by the eikonal of Eq.~7! also becomes plane asr ,j
→` as the curvature formula indicates@that is given in the
equation after Eq.~7!#, the beam tends to be diffracting plan
wave front in this region. This leads to energy leakage fr
the central portion of the beam that is Gaussian~or Laguerre’
Gaussian in nature! and hence contributes to an instabili
that needs to be investigated in future. The reorganizatio
the Gaussian beam is expected because of these dev
ments starting from the description of the beam in the ea
stages as in this paper. Energy leakage from the central
of the beam is expected to contribute an imaginary term i
the square bracket in Eq.~74!. As pointed out in this pape
~Sec. IV!, this will be similar to adding an effective absorp
tion to the central part of the beam that should stabilize
laser beam towards the bottom of the potential well in a
case. This needs detailed analysis in future.

The present method also gives, in principle, a way to
duce the wave equation to a large number of coupled dif
ential equations, more than two unlike this paper, us
higher power expansions of the dielectric constant than
~15! that can be explored in future. That should be anot
method to get rid of the self-similar propagation of the be
and study the details of the reorganization of the beam du
propagation.
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