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Paraxial theory of slow self-focusing
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We present a theory of slow self-focusing that is paraxial in nature, gives the field including the phase and
eikonal explicitly, while it also agrees with the results of variational and moments theories. After presenting the
features of the theory, particularly its similarity to the central force problem, we go on to reformulate the theory
for an absorbing medium. We find that the laser beam focuses to a constant beamwidth with a small phase-front
curvature depending on the extent of absorption. The theory is applicable to a whole range of saturating
nonlinearities although it specializes to two plasma cases, the ponderomotive force based and the relativistic
electron quiver based nonlinearities, for definitive results.
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I. INTRODUCTION cubic nonlinearity. Although there is some analytical tracta-
bility in these theories using the Talanov lens transformation

With the importance of the phenomenon of self-focusing[15] and the original moments theory of Vlaset al. [9],
in the context of modern lasers and their applicatiphg], there is no explicit tracking of the field form including the
its theory continues to attract attention with newer morephase information like the development of the eikonal which
powerful methodologies being brought to bear on it. Unlikeis useful if self-focusing has to be studied in conjunction
the ideal case of the two-dimensional self-focusing with cu-with other nonlinear phenomena of the laser beam.
bic nonlinearity that found the classic solution in terms of the  Among the second category of theories that deal with
inverse-scattering techniqug3, 7], self-focusing of cylindri-  saturating-type nonlinearities, the generalization of the Akh-
cal laser beams does not have such a unique elegant formmanovet al. theory[8] by Sodheet al.[16,17 and Max[18]
lation. To mention a few of the recent theoretical attempts atvere the earliest. It was, however, shown by Latal. [19]
self-focusing, we may broadly divide them into two catego-that these generalizations of the Akhmarmd\al. theories fail
ries: those theories that limit themselves to the cubic ando agree with numerical results and went on to give a better
quintic nonlinearities and those that consider the complet¢heory for self-focusing in a saturating nonlinearity medium
saturation of the nonlinearity and its consequences. using generalization of the moments theory of Viasbal.

In the former category, the first of the recent attempts wg9]. Using another independent approach to self-focusing
mention is the work based on symmetry methods applied ttheory in saturating nonlinear medium, the variational
the nonlinear Schidinger equation, one due to Gagnon andmethod, this generalized theory of moments and the numeri-
Winternitz [4] and the other due to Clarkson and Hd&d. cal results were vindicated by Anderson and co-workers
Although these theories have not only been developed fdr20,21. The moments and the variational theories do not
cubic but also the quintic nonlinearity, no definite conclu-again give the explicit field form including the phase devel-
sions can be yet drawn about the physical nature of selfepment in terms of the eikonal but assume a field intensity
focusing in cylindrical geometry using these theories. An-profile for obtaining the results. These theories are, therefore,
other independent method to tackle the problem of selfunsuitable if other phase-dependent nonlinear processes need
focusing in cylindrical geometry that holds a lot of promise to be studied in conjunction with self-focusing. These two
in the future is that of Kovaleet al.[6] based on the renor- theories also have not been generalized for absorbing media.
malization group theory and has quite some success in thiglany of these shortcomings have been overcome in a recent
category of weak nonlinearities at least as much as the olgtudy that recovers the results of the moments and variational
paraxial theories of Akhmanoet al.[8] and the original mo- theories at least close to self-trapping using an explicit field
ments method due to Vlasat al. [9], both of which were  form by using a proper paraxial field and dielectric constant
developed for the cubic nonlinearity and generalized for theexpansion22]. This theory has been studied for its results
quintic nonlinearity. There is the problem of collapse of theonly partially [23,24] and has not been precisely compared
cubic nonlinearity that is arrested by the quintic nonlinearitywith the moments and the variational theories of Latal.
addressed in all the above papers but reaching maturity in tHd9] and Anderson and Bonned&R0] except for self-
recent works of Luc Berg¢l0O], Malkin [11], Sulem and trapping.

Sulem[12], and Fibich and co-workeffd.3,14]. These theo- Our concern in this paper is to develop a theory for cw
ries include the cubic as well as the quintic nonlinearities andcontinuous-waveself-focusing of laser beams for an arbi-
reach the interesting conclusion that such studies are enougitary saturating nonlinearity for a slowly evolving regime
to account for all saturating nonlinearities since anyway théhased on the quasioptic or the paraxial approximation. The
final beam shape is that of a self-trapped solution of theaim is to develop the theorgb initio in such a manner as to
give exactly the same results as the moments and the varia-
tional theories of Lametal. [19] and Anderson and
*Email address: dsr@ces.iitd.ernet.in Bonnedal 20], respectively and the corrected paraxial theory
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[22] in the absence of absorption of the medium. It goesquations for the intensity and the eikonal of the electromag-
beyond these theories, however, by including the explicinetic wave in the nonlinear medium in the absence of ab-
field form in terms of the eikonal and also generalizes to thesorption:

case of absorbing medium, including both linear and nonlin-

ear absorption. It also elaborates on the surprising similarity _dS (S 2_ 1 . 1 [?Ag 1A,
of the absorption less self-focusing problem to the central <5z " or| ~— ¢ P(AoAg) + kZA,| ar2 T
force problem. (5)

In Sec. Il we go on to set up the explicit field form start-
ing from the paraxial quasioptic wave equation. The self-and
focusing dynamics in an absorptionless medium is discussed
then in Sec. Il including the similarities with the central aAS JS &AS 5 S 1S
force problem. We rederive the theory suitable to absorbing 2z "o 7+ ol 75
as well as nonabsorbing media in Sec. IV. The results of

self-focusing in an absorbing medium are discussed in Se : . :
IV C. The limitations and future directions for deveIopmentsi‘gﬁ;\\%grtgr?hseoer}I;[gﬁf;gihé h?ﬁg s:)dne\}/(e)IgEeﬁrll)cdee:)err(;?\agfgtgr?ce

of the theory are pointed out in Sec. V. of the beam, the first term determines nonlinear refraction
while the second term determines diffraction. The second
Il. FIELD FORM FOR SLOW SELF-FOCUSING equation, Eq(6), determines the evolution of the beam en-
With the original monochromatic wave electric field at v_elo_pe. The method of analysis largely is made deliberately
frequencyw having dependence on space and time as similar to the popular r_nethod by Akhmanev_al.[8] e)-(cept
for the manner in whichb(EE*) is approximated in the
E=A(zr)exdi(wt—k2)], (1) paraxial region that will be dealt with in Sec. Il B below. We
first outline for completeness sake the method of guessing
out the envelope of the beam using E6).

=0. (6)

grz roar

wherek?= €, w?/c? is the square of the linear wave number
for the wave propagating in thedirection, the paraxial qua-
sioptic scalar wave equation [i8,19,20 A. Evolution of the beam profile

For a slightly converging/diverging beam with a spherical

IA [PA 1A\ K . o ,
—2iK—+| =+ — _) — Z ®(AAY)A=0, () wave front of large radius of curvature, it is mathematically
a9z ars r oor €L convenient to assume the following solution for the eikonal:

2

where the intensity-dependent nonlinear dielectric constant r
yaep =5 B(2)+ ¢(2). @)

e(EE*)=¢ —D(EE*) €©)]

The surfaces of constant phase then correspond to surfaces
has, respectively, the linear and nonlinear pastsand  S(X,y) defined in Eq(7) for each value of. The Gaussian
®(EE*), the latter of which saturates in general with the curvature of such a surface will be given [38]
intensity factor EE* =AA*) and is assumed to allow the

Taylor-McLaurin expansion K 1 SuSyy— Sy B4(2) 1
. RRy  (L+S+5)% (14722 RY
*\ — *\N
®(EE) nZl A(EED)" @ wherer?=x?+y? and the subscripts o indicate partial

differentiation;R,= R,(=R) are the principal radii of curva-
The fieldE and its amplitudeA are normalized with respect ture of the surface defined §(x,y) (for a given value of
to a suitable value of the variables derived for the particulaz). For r<pB~ 1, therefore 18(z)=R(z) represents the ra-
nonlinearity (see Sec.II¢C Here we will have a, dius of curvature of the wave front. In addition, we introduce

:(wslwz)a], a form suitable for plasma nonlinearities with the real beam-width functioh(z) defined by the following

the plasma frequency given hy>=4mnge?/m (n, is the equation:
plasma number density aredand m are the electric charge 1 df
and mass of the electron, respectiyeBdso the linear part of =3 (8)
the dielectric constant will be, =1 - w%/[w*(1—iv/w)], ¥ f dz
being the effective collision frequency of the plasma. In an )
absorptionless plasma=0 as in this section. Equation(6) then takes the form
The above generalized nonlinear Salinger equation ) 5
will be used for analyzing self-focusing. Separating the beam acom e K (1 df} y2_ g ©
envelopeA, and the eikonalphase S through the substitu- gz "\ Tdz) ar fdz 0 =

tion A(r,z)=A(r,z)e '*S"? and separation of real and
imaginary parts gives the following two coupled evolution Introducing a new variable= 1/f, we can write
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3A0 1Y as if the laser is introduced in the TEMmode into the
—U—+r—+2A0 0. self-focusing medium. The intensity distribution using Eq.
Ju ar L
(10) reduces to the self-similar form
Further, introducing two more independent variablés 2 _r
:(r/ro)'u, a.ndX'zr/(rou), wherer is the scale length in- A2(r,2)= o x;{ s (13)
the radial direction for the laser beam, the above equation (2) rof<(2)
can be written in the fornp8]
or
dA3
2 2
x— +A5=0 Eo -
d Ap= ex . 14
O f(2) T 2rif(2) (19
or
p B. Beamwidth equation
a—(XAz)ZO Following Refs.[24,25 we next use the corrected power
X series expansion which is not a Taylor series expansion in
or xAZ is equal to an arbitrary function of. Since y  configuration space fo>(EE*) or ¢(EE") (but obtained

=r/(rou)=&/u?, one concludes tha(t§=
Hence we find that the general solution of E2). is a self-

u2F(¢) in general.

using Taylor expansion in a suitable momentum spd#oat
may be written as

similar form of the intensity given as €(EE*)=€y— €12, (15)
A(ZJ:I:__Z?) F( fr , (10) which gives the following expression fab(EE*):
rof(z
of (2 D(EE*) = (e — €0) + &1 2, (16)
whereF is an arbitrary function of its argumentt(z) turns
out from above to be determining two aspects of the beani’here[24,29
envelope. It represents the beamwidth on multiplication with
ro at any arbitrary value dof. f also determines the amplitude — e E a (2n+1)(Ep ) 17)
of the electromagnetic beam in the foff/f at any arbi- oL "(n+1)? ’
trary distancez during propagation and focusing. Equation
(8) may also be considered a result of the conservation of the -1 n E2\"
photon numbeN= [AA* 2#7rdr, which is a known invari- €= —2— E le 72—) (18
ant of Eq.(2). =1 (n+1)

The above equation clearly indicates that the intensity on
the axis, i.e., ar=0, increases a$ decreases; hence the
minimum value off? corresponds to the focus where the
intensity is maximum and the beamwidth is a minimum.
Writing out Ay= (Eo/f)F¥4£), from Eq.(10), we can now d2f 2.4

. . . 2 €2k I‘O
write Eq. (5) in the following form (p=2z/krg): —=—
7

specializing to the case of the Gaussian beam. Equ&bion
or (11) then simplifies to the following equation by equating
the coefficient ofr? on both sides:

f+ f7=F(f), (19

o

Where1;=z/kr(2), the propagation distance measured in terms
of the Rayleigh Iengtrkré. This beamwidth equation along
with the field intensity from Eq(13) is exactly the same as
obtained in the moments and variational theofi&8—21]
and will be used for further computations in the following
(11 section.

The determining equation fas(z) can be obtained from

where ¢=Kke. This is the equation to be solved in generalgq, (6) or (11) on equating the *independent terms and
for F~<

(F1/2)rr+ é(FI/Z) '

2 +2f2

d_¢:| Fl/2,

d?f Ej
=| 23—+ A q>(—°
¢ d»? dy

: o : gives[26]
It is very suggestive in view of the expansions of the form
in Eq. (16) that are to follow, that a special case of interest d¢ €0— €L 2
(but not the only choice allowed by this theory for a laser 247" o« | ki (20

beam in a nonlinear self-focusing medium; see &d) for
elaboration is when the initial intensity distributiofalong

' ! where ¢=kg. For self-focusing the boundary condition at
the radiu$ may be assumed to be a Gaussian

z=0, f=1, anddf/dz=0 will often be used. The latter
condition implies that the beam is a plane wavezat0

(12  while the former condition defines, as the beamwidth at
z=0.

2 2 -
Aj(r,z=0)=Egex T
0
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In the expressions fog, and e, in Egs. (17) and (18) andm are the charge and mass of an electidris the mass
above, the summations over the power series are related tf an ion,w,= J(4mne?/m is the plasma frequency in the
the power series ob given in Eq.(4) and are convenient for absence of EM wave wherg, is the number density of the
the saturating nonlinearity related calculations for small val-plasma and is the frequency of the electromagnetieM)
ues of the normalized intensity. For a more general expresyave. Throughout this paper, the normalized field intensity
sion valid for all ranges of the normalized intensity, it is factor is simply written a€E*, it being understood that it
convenient to sum up the series at least in an integral form igctually stands forEE*/E3,, and the normalizing field

not in a closed form. The following series and their integralsquare in the denominator has been absorbed into the new
representations will be involved in the evaluationegfand  notation.

€2. The first sum of interest igwith x=EE*) For this nonlinearity, the expression fdr(EE*) of Eq.
" (4) will be
an
X)= —X", 21 ”
0= 2 e 2 02 eeey o 03[ & (-1
D(EE*)= —5(eC BF)—1)= 5| > ——(EE")"
where the summation in the integral form can be written @ @ \n=1 M8

implying term-by-term integration as follows

S<x)=§foxxi,

with ® being defined from Eq4) for the particular nonlin-

earity of interest. If we definé(x)=f§cb(x)dx, we have — -1

S(x)=1/x[51/XS(x)dx. It can be verified for all plasma S(x) = S [=E(X)=y=In(x)+x]=| —1+ ——
nonlinearities for whicha,= w}/w?a, that S(x)—0 asx (24)

—0 andS(x)—>—cof,/w2 asx—o as expected always. An- o N
other series of interest that can be evaluated usipg is ~ Where the exponential integréBl] E;(x) =/, (e */x)dx;

so that for the ponderomotive nonlineari&ﬁ(—l)”/n!
anda,=(w}/w?)a,.

We may also write for the case of ponderomotive nonlin-
earity with some effort using Eq22), S(x)=(w§/w2)§(x)

j o (x"ydx'|dx’ (22)
0

E(x)

S,(X)=3r_,a,n/(n+1)>x"=xdgx)/dx. Specific cases of 3’:9{577 ..., Euler's constant and E(x)=[g[(1
evaluation are given beloy27]. —e )/t]dt=E;(x) + y+In(x). We find S(x) -0 asx—0
and S(x) — — X[ —E4(X) — y—In(X) +Xx]——1 asx— oo,
C. Two specific plasma nonlinearities One also can easily evaluaig=xd S dx explicitly as
The explicit calculations in this paper are performed for 1—e E
two nonlinearities of interest in plasma physics although the Sy(x)= w — _(X) (25)
theory remains valid for any steady state nonlinearity that X X

has a relaxation time much smaller than the laser pulse

length. Since anyway the theory is for cw laser beams, thi®ne may verify thatS,—0 asx—0 as well as wherx
requirement is easily met. — oo,

1. The ponderomotive nonlinearity 2. The relativistic nonlinearity

‘The first of the considered nonlinearities is that which  he relativistic nonlinearity arises because of the intense
arises out of the ponderomotive force of the laser radiationyiver of the electron in the field of the strong laser electro-
[29] that expels the electrons from the strong field regions inpagnetic field 30]. The normalization field for the relativis-
the transverse direction thereby creating a low density of;. nonlinearity, E2,= 4m2w?c?/€?, is much higher com-
high refractive index channel for the laser in the plasma. Th%ared to the ponderomotive nonlinearity. The nonlinearity

ponderc;mouv; no nlin_efllnty S_et;‘ in with ahrelaxauon tiMe yets established instantaneously so that it is essentially gov-
7y~ (Fo/va) ~10 °~10 " sec; herer, is the ransverse g ,qq py the rise time of the laser pulse for its manifestation.
beam inhomogeneity scale length andis the speed of the £ \ery short laser pulses such as the femtosecond pulses,

ion acoustic wave. Short high-power laser pulsr:es in theyn1y the relativistic nonlinearity dominates. We assume such
nanosecond to picosecond range are sensitive to the pondetoiy ation where the ponderomotive and relativistic nonlin-
motive mechanism. When the laser pulse width is much largg , rities dominate in different regimes.

compared tor,, the resultant dielectric constant of the o relativistic nonlinearity in a plasma the dielectric con-
plasma will be[29] stant is[30]
2
—1_ ﬂ _ * 2
e=1 ( " exp(—EE*/Eg) (23

2
w
(BEY)=1- 5 =~ ®(EE), (20

where E5;=8mw?kgT/€?, kg is the Boltzmann constarT,
is the common temperature of the electrons and the iens, wherees,_=1—wf,/w2 again and
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CI)(EE*)——’Z; —rl 1 =w—‘% i an(EE*)" T T T T
2 (1+EE*)1 w2 - n ’ 40
(27) 5| ]
where Aol ]
_ 1X3x5 ... x(2r-1) B ]
a,=(-1) : 28 g
2'r! <
E—JZO 1
Note that the field intensity factdEE* has again to be 15 i
reread as E*/E5, with the appropriate value d&2, for the @
relativistic nonlinearity quoted above. In this case the expres- ° 0 ]
sions forS(x) and S,(x) can be worked out to be the fol- ©

lowing, again using Eqg21) and(22): | i

J1T11(1

00 2 4 6 8 10 12 14 16 18 20

14 \/lT)] } Intensity >

FIG. 1. Normalized self- trapped radius,ro/c plotted against
normalized intensityl = E(,/E00 for normal self-trapping based on
Eq. (31) (curve 1 and for self-trapping of the second kind based on
Eq. (37)(curve 2 for relativistic nonlinearityas in Sec. IIC 2 The
exact numerical solution of Eq2) for self-trapping yields curve 3.

2
S(x) = —‘2’ —Zln

It can be verified that in this case al€{x) —0 asx—0 and
S(X)— — wZ/ w*® asx—oo as expected always. Also the series
S,(X)==,_ 1an(n/(n+ 1)?)x"=xdgx)/dx can now be

evaluated for self-trapping. Substituting fo6,(x) for x= E(Z) for the

5 specific nonlinearity either from E@25) for the ponderomo-
_[g(x)+1]+ (30) tive nonlinearity or Eq(30) for the relativistic nonlinearity

1+1+x!| yields the condition for self-trapping explicitly. In Fig. 1 we

have given the result for the relativistic nonlinearity. Also for
comparison is given the exact solution by solving E2).
directly numerically for the self-trapping case. The agree-
ment is reasonable as can be seen.

Sy(x)=

where S(x)=S(x) w3/ w?,S,(x) = Sy(X) w3/ w?.  We find
again for this nonlinearity alsoS,(x)—0 as x—0 and

Sy(X)—0 also asx—. For more discussion on self-trapping, particularly, the
self-trapping of the second kind and most stable self-trapping
Ill. SELF-FOCUSING DYNAMICS values atf*, see the following section.

IN A NONABSORBING MEDIUM

There is much to learn from the absorptionless case of ~ B- The potential function for self-focusing dynamics

slow self-focusing. We present these interesting results in It is possible in the absorptionless case wlefEE*) is

this section using Eqg19) and (20). Before going over to real to write out a first integral of Eq19) in the form of a

the more complicated self-focusing dynamics, we first giveHamiltonian or energy principle that will serve as a key to

the results of the special case of self-trapping of the lasethe analysis and computations. Multiplying E(L9) by

beam that represents the important result of the beam diffractf/d» and integrating, we get the equation

tion exactly balancing out the nonlinear focusing of the

beam. 1 ( df)2
= =—| +U(f)=E, (32
2\dn@

A. Self-trappin
PPing whereE is the constant of |ntegrat|on the Hamiltonian, or

We ask the question whether a Gaussian beam with initiadnergy function andl ()= — fTF(f)df. More explicitly, we
radius (rO/2) with a plane wave front (implying get
(df/dn),-o=0) introduced into the self-focusing medium at

z=0 [as in Eq.(2)] can continue to propagate in a diffrac- fl 1 erg  _n ES noq
tionless manner by balancing the diffraction with nonlinear U(f)= —f T p2 2 a”(n+1)2 Tz + B df
refraction, so thaf =1 for all z in Eq. (14). The question ¢ n=l
gets answered by substituting this constant valud forEq. (33
(19 which immediately implies the right hand side vanishes 0o oin
also as the left hand side, giving us the condition logio o — 1 Eo 1
=5 D a7 wz| toe (34)
2 2 2 1 "(n+1)°\ f 2f
rowp _1
— == (3D
¢ Sy(x) or
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FIG. 2. Variation of the potential function for self-focusing, ~ FIG. 3. Contour plots of constant energyfrom Eqg. (36) gen-
U(f), with f in the case of ponderomotive nonlinearity for various erated for the bottom curveE§/Egy=4, w,ro/c=3) of the poten-
values of normalized intensity=EZ/E3, and normalized self- tial well in Fig. 2 for ponderomotive nonlinearity in thef,¢’
trapping radiusw,r o/c=3.0 from Eq.(35). The well in the poten- ~=df/dz) plane.
tial disappears for low intensities for which self-focusing is not
possible. limits of f. At the bottom of the potential well, there is again
only one point of contact pointing to the possibility of the
beam being able to maintain a fixed valuef diiere. Indeed,

§(E(2)/f2)_ (35) this is the self-trapping situation where=const can be
maintained and it is a stable fixed point of the system since it
is at the bottom of the potential well.

We can easily find thatl(f) —o asf—0 (because of the  \rying the values of and plottingd f/d 7 with f we get
domination of the first term that corresponds to diffractive,q self-trapping contour plots of Fig. 3. We see from these

tendency of the beamand U(f) -0 asf—o because both  ¢,es as we move to the minimum of potential wéltf),
terms on the right hand side tend to zero in this lifitote  \yhere the well is more symmetric, that the curves are closed
that the limit of this potential function evaluated by Ander- ¢\,~es and more circular. This minimum of the potential well
son and Bonned4P0] asf—c was incorrect and could lead o responds to the point where the beam is stable towards
to incorrect conclusionsFigure 2 illustrates the behavior of e ryrhations. For these curves, we fix the value of intensity
U(f) for various values of the parametef5, and forr,  and the self-trapping radius. One may write Et) in the
=wplo/c=3.0in the case of the ponderomotive nonlinearityform

for which S(x) is used from Eq(24). The change of sign of

onN

1w,23r
212t 3

U(f)=

U(f) from positive to negative values goes on to show that a d*f R
potential well occurs only above the self-focusing threshold, d7? df '

i.e., when the parameter values Ix'i)(?J andr—0=wpr0/c are . o _
above the self-trapping threshold curve as in Fig. 1. At the minimum ofU(f) we havedU/df=0 implying that

Writing out the kinetic energy and evaluating the velocity & these points=(f)=0, which goes on to define the fixed
g 9 g ypoint of the system. The fixed point defines the most stable

df of the values off (=f*) for which self-trapping is possible.
ay VZ2[E-U(f)], (36)  Correspondingly, the valuer §f*) will be the value of the
beamwidth for which the system is stable. Figure 4 depicts
one observes that there are three possibilities depending ahe values off* for some value of,. In Sec. Il C 1[Eq.
the values of the total energf. For E>O0, the line (55) and the discussion followingJitve return to show that
E=const intersects the (f) curve for positive values of the the beam executes simple-harmonic motion around these val-
potential at a single point and the velocity could be real butues off* thereby showing stability under small perturbation.
it implies defocusing since in this region the diffraction term  The value of f=1 (as good as any other value of
in 1/f2 dominates the focusing term. The beam can focus tillf = const) of the preceding section is one of the values for
E=const meets th&J(f) curve and then it goes on to defo- which self-trapping can occur although it is not the most
cus indefinitely. In the potential well whefd(f)<0, one stable value. The value df* differs from f=1 in general
needsE<0 values for intersection of thE=const curves and hence one concludes that if the beam is given a chance
with the U(f) curves. The intersection takes place at twosomehow to evolve, it will rather evolve towards the value
points say atf,, and fy,>f,,, and the laser beam is con- f*. This chance to evolve actually is realized in the presence
strained to focus and defocus repeatedly between these tvad at least some effective absorption in the medium as dis-
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1 T T T T T T T T T

kind that comes from Eq31). For finite values ofR, this

ool | self-trapping curve lies below the one shown in Fig. 1 but in
the first quadrant. Note that this self-trapping of the second
kind is unstable in the sense that deviation from the exact
self-trapping conditions could lead to either indefinite defo-
cusing or periodic focusing in the saturating nonlinearity me-
dium. This is unlike the self-trapping of the first kind that is
stable in general and most stable for valuegofdiscussed
above.

The dynamics of self-focusing are often of interest with
the boundary conditiof=1 and df/d»=0 at »=2z=0.
These plots show oscillations above the threshold of the first
kind or the second kind of self-trapping of Fig. 1 and are
depicted in Fig. 5 as phase-space plots. With distance this
implies periodic focusing or defocusing.

Fixed points>
© o o o o
B <) =) ~ 0

o
w
T

o
[N
T

0.1 I \ ) . \ I
0 2 4 6 8 10 12 14 16 18 20

Intensit
nienstly > C. Similarity of self-focusing dynamics

FIG. 4. Fixed pointf* with intensity E3/E3, (w,r o/c=3.0) to the central force problem

_ . In the above section, the potential function just touches on
cu_ssed n Sec. IVC._Note_ that the b_oun@ary conditions alome similarity of the absorptionless slow self-focusing dy-
7=0, f=1 anddf/d»=0 give usU(1)=E in Eq.(36), and  hamics problem in thécorrected paraxial regime with the
these values O for given parameter&3,r, may easily be central force problem with an attractive potential. There are
estimated. surprisingly many more similarities of the potential function

In Fig. 3 we give, corresponding to the ponderomotiveU(f) to that of Kepler or rather the attractive central force
potential of Fig. 2, the contours of velocity variakdd/d » problem—too close to be ignored. One similarity is, of
on a phase-space plot with respect to valuek @e can see course, that the potentid) (f) is dependent on the radial
that forE>0 the beam defocuses even if it started off focus-coordinate adJ(r)—«(r=f) asr or f—0 because of cen-
ing. For E<0 the beam oscillates within the well to give trifugal effective potential andJ(r) or U(f)—0 asr or f
closed curves in phase space. The eye of the closed contours~ because of the nature of the central potential.
corresponds to the bottom of the potential well that is the First, the beamwidth parametemay be identified as the
fixed point of the system for the given system parametergadial coordinate in polar coordinate system. Then one can
E2 ,f_o- also “invent” a polar angle coordinaté; so that ¢, ;) de-

A very special value oE in Fig. 3isE=0, the one on the fine a plane in the polar coordinate system. In a correspond-
separatrix that separates the closed contdfms which E ing Cartesian system of coordinate we introduce the coordi-
<0) from the open ended contouifer which E>0) in the  nates €;,f,) such that
phase plane. On this contour the beam takes infinite distance
to travel, first focusing, if the boundary condition is so cho- =2+ 12, 0f=tan‘1f—2, (39)
sen, and finally defocusing again in infinite distance. Effec- fi
tively, the beam travels unperturbed, i.e., it travels with dif-
fraction exactly canceling nonlinear focusing. The conditionimplying, f;=f cos@), f,=fsin(¢;). The Lagrangian for a
for this diffractionless propagatiofi.e., for f=1) or self-  particle of unit mass may now be defined in ttie ¢) plane

trapping of the second kini$, from Egs.(32) and(35), as the difference between the kinetic enefggnd the poten-
tial energyV(f), L=T—V or explicitly
1 _
- —|==-9S(EY), 1[/df\? dé;\? : :
272 0 _- 22U | _ 17§24 §2)27_
R?/rg L 5 (dn +f (d’r]) V(f)=35[f+°0:]—V(F).

where Eqgs(11) and(12) have been used to express the ra- ) ) .
dius of curvatureR of the wave front and its dimensionless 't follows that the canonical momentum coordinate associ-

= o ated with the angle coordinatg is
form R=R/kr2. In the special circumstance that the wave g @

has a plane wave front impIyir@—m, the condition for this dL )
self-trapping of the second kind reads Py, = £= f20;. (39
o -1 1/2 f
ro=(— > ) (37 The corresponding Lagrange equation is
S(Ep)
This condition has also been plotted in Fig. 1 to show a Pp= i(fzgf): izo_ (40)
comparison with the condition for self-trapping of the first todnp a0
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1 ' ‘ ' ' where we calF(f) the force in thef space just a¥(f) is the
potential. Using the constancy of the angular momentum this

0.8 .
can be rewritten as

0.6} 1
Intensity=0.1 2f |2

2
J d_772:F(f)+f_3:_E[V(f)+W}

0.4

° The first integral of this after multiplying witld f/d» gives

Intensity=19.6 E
|2

£2

fe+ f_2

f'—

+V(f)=E= const.

2
This may be recognized as the energy integral particularly
after rewritingl %/ 2= 26,2. Writing the effective potential

-o.s_ . . 2
fo e > U(f)=V(f)+

FIG. 5. Self-focusing phase-space plot in thef(=df/d»)
plane forwyro/c=3.0 for various intensities. The closed curves and on comparison with Eq&32) and(35), we may identify

212 (44)

indicate oscillations of anddf/d» with 7. ourV(f) as
Hence,6; is a cyclic coordinate and 1, E3
V(=35 Sl 1= (45
Py, = f26;=1=(constant im). (41)
o . . and

This implies conservation of angular momentum in the

(f,6¢) plane. One consequence is that we can always write [=1. (46)
o The latter result is particularly interesting and curious sihce
Or= 2" 42 identifies the origin of thd/f? term, the well-known Gauss-

ian laser-beam diffraction term, as arising on account of a

A suitable value of, the constant angular momentum, is to certain angular momentum conservation in tié, 6;)
be determined later. plane

We may define a three-dimensional spatgf, ;) and In the (f, ) plane, the orbit equation fof(6;) is an-
define in turn an angular momentum vectoand because of other description of self-focusing. This is obtained by noting
the nature of the central potential that does not depenéson that the angular momentum constancy gides= (f2/1)d6;
andy; , we may claim that they derivative ofL, the torque, and hence
vanishes keeping the vectbrconstant. The constancy ifx
direction of L ensures that the motion is restricted to the ﬁ_fiiﬂ__lz 2@ 47)
(f, 6¢) plane that is defined for, say;= /2= const and the dn® f2dé; f2de; do;’ (
magnitude ol =1 constancy has just been shown to imply a
relation betweer; andf2. The proof of the constancy &f ~ Whereu=1/f so that the earlier force equation can now be
will be similar to that given in standard classical mechanicg/ritten as
books e.g., Goldsteif32].

One may proceed also in the usual manner to define an el
infinitesimal area asd A=3f(fd¢;) and an areal velocity as dés

N

dA_lfdef_lfzb_ll 43
a7 2 dy 2 72t “3

whereF (1/u)=F(f). This differential equation fou(6;) or

f(60;) can be integrated to give the orbit for self-focusing in

the (f, 6;) plane. In our case

One then concludes that the constancy of the angular mo-

mentuml implies the constancy of the areal velocity in the ~(1

slow paraxial self-focusing problem in the orbit produced in F u

the (f, 6¢) plane. The main Lagrangian equation is the radial

equation forf and its » derivatives that can now be written An illustrative orbit is given in Fig. 6. We find that as we

down as increase they values, the orbits remain between a minimum

and a maximum value of. This implies that the orbit is

d NV bounded but ergoditsee discussion at the end of Sec. IlIC 1

f_fpl2—_
ay 0= g =F, below.

N 1 d _
=F(f)=—ﬁ:§7§UZES(ESu2). (49)
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FIG. 6. The self-focusing orbit in thef{, f;) plane.wyrqo/c FIG. 7. Energy E plotted against the radial actiod for
=5.0, E¥/E2,=3.0, =0 to 140.0. The orbit is ergodic and space w,ro/c=5.0; E3/E5,=3.0.
filling in the regionf ,<f<f,,.

values ofE>0 actionJ becomes infinite. This corresponds

Note thatd f/d6;=(11)f2(df/d»). Hence the phase plot tq open contours in the phase plots.
(f,df/dp) can easily be converted to these polar plots gpatial frequency of periodic focusing, is given as
through the relationl 6; = (1/f2)d 7. One may calculaté; in
this manner and increment to obtain the orbit in tle,{5) dE AE
plane. The boundary conditions at=0 are f=1 (u=1) V=435 13 (52
anddu/dn=df/d»p=0 ordu/dé;=0.

. . The spatial period can be evaluated from here as
1. Periodicity or focal length for self-focusing P P

for saturating nonlinearities 1 1
The orbit for negative energigs= —|E| has two turning 2’7f:; =mM=5, (53
points in f between its maximum valué&, and minimum
value f,. Also the energy equation, E¢36), defines the \here 7, is the dimensionless focal length or “period

radial momentum as length” for the self-focusing process in the saturating me-
> dium. Using the numerical values obtained EbandJ in the
_ ﬂ_ . \/ 2E_ i_—zs E (50) above graphs we get the variation of focal lengttwith E

P= dgp ~— 273 72 |- for both ponderomotive and relativistic nonlinearities, the

former of which is depicted in Fig. 8.
The action variable is

9 T l T T T T T T T
1 wgl’(z) — :
J= é pdf: é 2E—p—73(f) df. (51 8r
AT
The best manner to evaluate the integral is a numerica |
scheme that recognizes thataction)=J=(areain the Poer
|
phase planer |I_' sl
df fM df % 4t
J= ﬁ; ﬂdf:zf ﬁdf :: NuEmericalE
fm 5 [ S R B ......... .......
fa rd
:ZJ Z[E—U(f)]df -] SEEERRE ......... ......... .......... .......... .......... ...... S A .......... ........ 4
f : :
m k- : ,,,,,,,,,, p
The above integral was evaluated numerically to calculate  Analytical / I R
the values ofd. Values of E on the phase-space orbit are 2 A8 A6 A4 12 1 08 06 04 02 0

those obtained in Fig. 3. It can be seen frems J graphs in
Fig. 7 that as the magnitude Bfincreases or as we move to  FIG. 8. Periodicity lengthy; calculated using Eq53) and Fig.
the minimum of the potentidll(f), the area,) reduces. For 7 for w,ry/c=5.0; Ej/E5=3.0. Analytic result is from Eq(55).
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Focal length could also be plotted as a function of inten-  IV. SELF-FOCUSING IN AN ABSORBING MEDIUM

. 2 . . . .
sity Eg using the following expression: In an absorbing medium, the formulations of Sec. Il and

1/df\2 2 1 the preceding section are not suitable. The general advantage
=_ _) + —0§(E(2))+ . (54)  thatin principle existed in Sec. Il that the beam need not be
2\dn/ _, 2 2 of Gaussian nature at=0 and that Eq(11) can in principle

be directly dealt with, will fully be given up in this section
Analytical evaluation of the actiod is straightforward at  and a theory valid only for a Gaussian beam will be adopted.
the bottom of the potential well. We may write near this Thjs is a compromise necessary at present to build up a self-
point, E=U(f*)+ 6E or SE=E—U(f*)=[U(f*)|—|E| so  focusing theory for an absorbing medium.

that[here 6f = (f —*)], The quasioptic equation, Eq2), is again the starting
2 point but with the value of the propagation constkigiven
2U(F)=2U(f*)+ —| of2 by k?=Kk§eiro and e o=1— wj/w?. We go on to write the
df* |, solution of the scalar wave equation in terms of the Gaussian

' L , self-similar form
where the first derivative is absent because the point where

the power series expansion is being carried out, \iz.,

—E.e1¢@a-r250(2)
=f*, is at the bottom of the potential well. Hence E(rz)=Eee € o (56)

P20 whereg(z) is the complex beamwidth parameter apk) is
J= fﬁ [2E—2U(f)]df= /_2|f* % JaZ— 5f2d sf, the on-axis phase shift. Substituting this field form into the
df quasioptic scalar wave equation and using the dielectric field

expansion of Eq(15) which is still valid if 1/f2 is suitably
replaced by its equivalent given in Sec. IV B belfgf. Eq.
(65], we get two equations as coefficients of the

2 SE r2-independent terms and-dependent terms. The two equa-
J= tions are, respectively,

Vo,
— —1(zdz ko (2
df? ], (D)= | —+ (€o—e)dz  (57)

kriJod  2\e Jo

wherea?=25E/[(d?U/df?)|¢«]. This integral is evaluated
directly to give

Since the phase-space orbit is a circlel2(SE)Y%

[d2U/d 2|1 ] will be its radius. WhersE=0, J=0. for the on-axis phase and the complex beamwidth,
Also R=1/(d?U/df?)|] is the radius of curvatureR _

>1) of the potential curvdJ(f) vs f near f*. Then, R? dg i _,, 21 58

— (R—AE)2=(65f)2 or 2RAE=(5f)2 where|AE|<R im- a7 ;2 LM09 ko~ 1] (58)

plies that AE/[(d2U/df2)|q]=(5F)2/2=J/2m so thatJ 0

= 7r(8f)?. This form ofJ is also obvious from the fact that

the phase-space orbit may be considered to be a circle of A. The ABCD law
radius 6f = f —f*, With »=2z/kr3 we get from Eq(58)
This evaluation of the radial action variable implies that
the radial(spatia) period is given throughusing Eq.(52)] d /1 1. ., 1
KA PP
1 [[du 1 719 g
v=-— — = (55
2m df? ], 2 Let g=—i¢/¢’ where{'=d{/d#. This reduces the above
equation to
The solid straight line independent Bfin Fig. 8 is the de-
piction of z; from this expression at the bottom of the poten- d?¢ 4 1o
tial well. — == ro€2kal. (59
The actionJ in the above analysis is actually thecom- d7

ponent of the action),=J;. There will be a corresponding
6 component,J, = dé; which goes on to define another
p p. di .’Jgfh Sﬁpe'hv f—dE/d\g]] | | the radial ing this simple-harmonic motion equationith »-dependent
(6r) periodicity throug 0 o, IN general, the radia frequency termin ¢ are equivalent. For small , one re-

frequencyr and the angle frequency, are incommensu- gardse,(g,,g;) as a constant and obtains a simple solution.
rate, i.e.,v/vgfaé integer, implying that the orbit in the First, we assume the following approximate solution:

(f, 6¢) plane is ergodic in the annular region between the

Solving the Ricatti-like equation fag, Eq. (58), or solv-

minimum and the maximum values 6fviz., f,, and f,,, ~Asin k 2J” 4B K 2J"7
respectively. This behavior is seen in Fig. 6 with the orbit &) Sif ¥ofo 0 \/E—Zdn c0q Koo 0 \/e_zdn '
filling up the annular region with increasing valuespf (60)
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At =0, g=go and we haveB/A=igo=igoko\e,ra. We

define g=r3\e,gk, so that we can now write using

g:_iglg/,
~ n n
gocos{koréf Jezdn _iSi”{koréf Jestin
~ 0 0
9= _ n n
—igp sin koréf Ve, dn +005{k0r§f Je,dn
0 0
(62)

So theABCD law forE] involves the matrix,

A B
C D
given by
7 7
cos{koréf Je,dp|  —isin k0r§J \/e—zdn}
0 0
. 2|7 2 [7
—isinkor2| Ve dn| cosker2| Vedn
0 0

PHYSICAL REVIEW 68, 066403 (2003

1 1 1df -
o 'y ©9
1 Or 1 df ¢]
z = 2 2! T 3 - 2 2!
f_z gr+gi fd77 gr+gi

where =z/krj. Using these equivalencies in E&8), we
immediately get Eq(19) for f which should work well ife,
is real since we neefito be always real.

Note also thatp= ¢+ ¢,

-1 (zdz ndn ndy
=— —=—f ——ilnf,
f2

=== 66
kr3Jo 9 g (60

b1

where the first term on the right is the Gouy phase and

k z
¢2=2—5J (€0~ €)dz 67)

is the dynamical phase. The field assumes the form

E=E,e 9D 17200 = E o~ 1911626~ 17128(2)
(68)

or

This has the advantage that it can repeatedly be applied for

each optical element and the firalBBCD matrix obtained by

multiplication serves to get the final value gfby substitu-
tion into the bilinear expression, E(1) [33].
Note that the above matrix can be written as

(63

7
Q=09 COi{korcz)f Vexdn
0

7
—ioy sir{korgf Je,dn
0

whereay= (59 ando;=(% }). Q can also be written as

Q=ex;{—i01

so that the neede®iBCD matrix is actually a rotation matrix
at least as long as, is real. Whene, is complex, this be-

n
ot [ "Veztn

) : (64)

comes the Lorentz transformation matrix. We can deal with

E(r,n)=E ! -J'”dﬂ —idy —r
r,m)=Epgrexpi| —|e ex
G 2 2r2f2
y —ir21 df
ex -0
2r2 T dy
so that the intensity factor is

E2 —2r2
|E<r,n>|2=—°exp<

f2 2r2f?

(69

E: p(_rz) (70
=—exp 55|
2 rgf2

Equation(69) shows that the phase in E@O) is now recov
ered wheneverg, is real. (If ¢, is complex, e %2
=e 'Y2re?2i and

EZ [-r?
|E(r,n)|2=—0ex;{ —) e?%a,

2 r5f2

(71)

the self-focusing medium as a piecewise linear medium, each

piece A 5 in thickness. The local value ofe, is used for
each of these slabs of thickness;. Also theQ’s commute
with each other so we just add exponents sim¢€ommutes
with itself. (e"eB=e**B if [A,B]=0.) Using this we can

The last term ing,; should have the correct sign in the
exponent to show decay min an absorbing medium giving
the nonlinear Lambert’s layv.

We also sometimes need the relations fprand g; in

have a fast and useful algorithm for self-focusing calculaterms off and its derivative which can easily be worked out

tions.

B. Connecting with the absorptionless case

At least when there is no absorption, it is convenient to
switch over to the {,df/d») variables. We have the equiva-

lency

to be
1 1 df
= r ——?_77 72
9=1 71ar 2 971 j1arz 2
T dy P\ fay
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o 51 g g g g g g The focus itself is situated at the fixed point of the com-
5 5 : : : : : : plex beamwidth equation, E¢58). Equating the right hand
side to zero gives the fixed point as

1

*:
¥ ke "

|
=g
o
T

I

which is now complex wheia, is complex. Since, is non-

linear and involveg andg, this complex equation is equiva-
lent to two simultaneous nonlinear equations to be solved
together. One manner of solving them is by iteration. The
iteration can be done on any path on the compgxXane
that terminates at the fixed point and has some suitable initial
guess on thg-plane, provided there is no irreversibility on
the complexg-plane introduced by the nonanalyticity of the

o o5 I L DU S functions involvede.g., e, is a function of bothy andg that
o makes it nonanalytic irg). Of all the possible paths we
FIG. 9. Phase-space orbits in the complgplane for self-  chose for iteration the actual beamwidth development path
fo_cusmg correspondlr_wg to the plots of real beamwidth parameter iy theg-plane by solving the complex beamwidth equation,
Fig. 5 for the absorptionless casgro/c=3.0. Eq. (58) and verifying that as;— o the iterates ofj are such
fixed point has been reached through iteration as in Fig. 10
along the actual path followed by the complex beamwidth.

: . The location of the fixed point and hence the values of
replaced by the equivalent termsgp andg;) has been nu- * o*) d d h tent of ab " ; th
merically solved to obtain the orbit of the focusing beam on(gr 97 epend on he extent of absorption, 1.€., on the
the complexg plane. The expression fe from Sec. I C for value ofv/w. This in turn implies a certain bear_nW|dth and a
ponderomotive nonlinearity is used withoﬁlwz) replaced constant smaII. phase-front curvature to which the beam
suitably by v/ w?)(1—iv/w) * for the absorbing plasma, €VoIves for sufficiently large; (~160).
wherev is the plasma collision frequency. Figure 9 gives first
the orbits in the compleg-plane in the absence of absorp- V. CONCLUSIONS AND DISCUSSION
tion that are equivalent to Fig. 5 for the phase plotsf of
obtained now with the help of E¢72). Figure 10 gives for . L
the same parameters the gompgg;xla)ne ogrbit wheg absorp- for the phase evolution, E@20), are valid in general for all

tion is present. The result that the center point in phase spa sorptionle$s sa_tgrating nonlinearities. The speciglization to
of the absorptionless case that gave a closed orbit is no asma nonlinearities has shown that these equations can be

converted to a focus in the presence of absorption is a ver xploited to study self-focusing in an absorptionless medium

significant result that is important for all realistic media suchthSlng tttw)le potefntlall]l ffunct|_on In Sec.blll B.t_Thle 5|mllagt_y Oft
as an absorbing plasma. e problem of self-focusing in an absorptionless medium to

the problem of dynamics in a central potential in Sec. llI C is
too close to ignore. In particular, the identification of the
problem of diffraction to the conservation of angular mo-
mentum in the {, ;) space in Sec. Il C remains a curious
result. This result is reminiscent of a similar result in the
context of a more direct development of the problem of the
time- or »-dependent harmonic oscillator in the classic work
of Lewis and Riesenfeli34]. Note that with a potential or
rather the dielectric constant of the form of E{5), the
present theory also deals with a time- grdependent har-
monic oscillator problem although our aim had been to ex-
tract only the information on the field envelope and phase
unlike the direct calculation of the eigenfunctions as in
Lewis and Riesenfelfi34]. To our knowledge, the possibili-
ties of self-trapping of the second kind pointed out in Sec.
IIB is new. The method of evaluating the period of self-
focusing oscillations in Sec Il C using action variable should
prove useful.

FIG. 10. Self-focusing phase plot in complgsplane with ab- The practical problem of self-focusing in an absorbing
sorption w,ro/c=3.0, v/o=0.4. Notice the convergence to the medium needed a complete reformulation of the self-
fixed point dictated by Eq(73) suggesting beam self-organization. focusing problem in Sec. IV in terms of the complex beam-

—————————

9
L

The complex beamwidth equation, E8), along with
the nonlinear Lambert’s law in Eq71) (with the f terms

The self-focusing beamwidth equation, E#9), and that

e
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width parameter that reduced to the earlier absorptionleswe choose®=—1 andb?= — (4m-+2) in Eq.(74) (cf. Ref.
case involving only the real beamwidth paramétend its  [31], p. 781, Table 22)6 The choicem=0 then gives the
derivative in Sec. IV B. The results of the section obtained byGaussian solution given in the paper with the beamwidth
numerical solution of the complex beamwidth equation inequation and axial phase equations given by Ef§j9. and
Sec. IV C in an absorbing medium are indeed very impres¢20), respectively. The higher-order solutions can go on to
sive in the sense that they always indicate the convergence gfve the self-focusing description of the higher-order laser
the beam to a focus in phase space. This existence of anodes if they are introduced into the nonlinear plasma, pro-
attractor point in phase space indicates that the complexided the on-axis beam phase equation is taken according to
beamwidth converges to some constant value after propag#he conditionb?= —(4m+2). This topic will not be elabo-
tion through several Rayleigh lengths and is qualitativelyrated here further. All these solutions including the Gaussian
supportive of the experimental result on damage tracks left isolution of this paper, however, could be rendered unstable
self-focusing media that are seen to have constant radius fawing to the fact that Eq(11) demands that a§—x, &
long distance$§35]. The beam phase front need not be plane—0 since F¥?>—0 there and®(0)=0 by definition from
but has a small curvature as witnessed from the fact thaEgs.(3) and(4). This in turn demands that EZ4) be modi-
g #0 for the attractor. The presence of the attractor in phaséed to a similar equation with a new definition of
space is also indicative of the general self-organization of th@?= — f3(d?f/d »?) in the regioné— . This, along with the
self-focusing beam. conditiona?= —1 andb?= — (4m+2) necessary for bound
The result of the absorbing medium is interesting alscsolutions given earlier, gives a beamwidth equation in the
from the point of view that any effective absorption that getsregion {—« that simply indicates laser beam diffraction.
introduced in terms of the radiation of the beam will imply Combining also with the fact that the beam wave front dic-
asymptotically to constant beamwidth situations indicative oftated by the eikonal of Eq.7) also becomes plane as¢
self-organization of the self-focusing beam in an absorption-—« as the curvature formula indicatfthat is given in the
less medium. The estimation of radiation by not using thesquation after Eq.7)], the beam tends to be diffracting plane
gaussian ansatz for the beam profile but the full beam equavave front in this region. This leads to energy leakage from
tion that results in Sec. [Eq.(11)] then should give a quan- the central portion of the beam that is Gausg@mnLaguerre’
titative theory that indicates whether or not such a focusingsaussian in natujeand hence contributes to an instability

to a constant radius situation occurs. that needs to be investigated in future. The reorganization of
To elaborate this further, we note that with the notationthe Gaussian beam is expected because of these develop-
Ao=FY2£12 Eq.(11) can be put into the form ments starting from the description of the beam in the early

stages as in this paper. Energy leakage from the central part

dZKO vr o 1 |- of the beam is expected to contribute an imaginary term into
e, +la“€ —b+ 12 Ap=0, (74 the square bracket in E74). As pointed out in this paper
§ § (Sec. V), this will be similar to adding an effective absorp-
where tion to the central part of the beam that should stabilize the
laser beam towards the bottom of the potential well in any
Ecz) d2f case. This needs detailed analysis in future.
a2:f2kgrg (—2) —f3—2, The present method also gives, in principle, a way to re-
f dn duce the wave equation to a large number of coupled differ-
ential equations, more than two unlike this paper, using
bzzzfzd_¢+f2k2r2(€ “e) higher power expansions of the dielectric constant than Eq.
dzy 0oL RO (15) that can be explored in future. That should be another

) ) method to get rid of the self-similar propagation of the beam
The bound solutions of E¢74) are known in the form of the  and study the details of the reorganization of the beam during
Laguerre’ GaussiansAy=exp(—&/2)¢Y2L (£?) provided  propagation.
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