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Multistability of oscillatory thermocapillary convection in a liquid bridge
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A parametric investigation of the onset of chaos in a liquid bridge was numerically carried out for a medium
Prandtl number liquid, P& 4, and unit aspect ratio under zero-gravity conditions. Spatiotemporal patterns of
thermocapillary flow were successively studied beginning from the onset of instability up to the appearance of
the nonperiodic flow and further on. Well-tested numerical code is used for solving the three-dimensional
time-dependent Navier-Stokes equations in cylindrical coordinate system. Two-dimensional steady flow be-
comes oscillatory with azimuthal wave number=2 as a result of Hopf bifurcation at Re=630. A second
independent solution with wave number=3 was found to appear at Reynolds numbef'Re&10. Two
branches of three-dimensional periodic orbits, traveling waves mit2 andm=3, coexist for Re-R€&;' .
Additional stable branches do not connect them. The different flow organizations reveal different behaviors in
the supercritical area. Tha=2 traveling wave always remains periodic, but the mode3 starts exhibiting
chaotic features at Re4200. The onset of temporal nonperiodicity was shown to be associated with devel-
opment of broadband noise in spectra and preceded by a quasiperiodicity. The flow stabilizes back to periodic
with single frequency when Re exceeds a value=B200. The window of periodicity exists up to at least
Re=6000, the largest investigated value of the Reynolds number.
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I. INTRODUCTION oscillatory flow is well comprehended due to the numerical
modeling (see for example Wanschuet al. [1], Leypoldt
Investigation of convective flows in systems with free in- et al. [2], Lappaet al. [3]). These results are supported by
terface attracts a lot of attention, specifically due to theirthe experimental studies, see recent review by Schatz and
relevance to crystal growth processes under microgravitieitzel[4].
conditions. Temperature gradients along the interface be- An increasing number of experimental studies indicates
tween two immiscible fluids cause variations of surface tenthat convection in melt should be turbul¢Bi. Nevertheless,
sion resulting in tangential stresses, which can drive bulkbecause of great complexity of the turbulent flows, all nu-
flow motion. The stability of such thermoconvective flows merical simulations of transport processes were performed
was actively studied in a half-zone model, which corre-assuming laminar flow in the liquid phase. Apart from that,
sponds to floating zoné-2) techniques of a crystal growth. from the more physical side, the hydrodynamics effects in
Although the FZ method seems to be superior with respect tthe half-zone model are of basic interest for the dynamics
the other growth technique due to the absence of contadiccurring in the system, as it is an excellent example of a
with crucible, it has not gained an importance for the crystaldissipative dynamical system. Therefore, the present study is
growth on the earth. The reason for that is the limitation byaimed at investigating time-dependent convective flows in
the hydrostatic pressure, permitting only the growth of crysthe strongly supercritical regimes. The consideration of a lig-
tal of small diameter. This drawback, however, can be overuid bridge from the point of nonlinear physics has been done
come under microgravity conditions. In the half-zone modelonly experimentally under terrestrial conditions. In one of
(liquid bridge) a small volume of liquid is held between two the first publications in such trend Petrewal.[6] have con-
coaxial circular disks, which are kept at different tempera-sidered liquid bridges as a nonlinear dynamical system to
tures,AT=To:— Tcoiqg- AS the applied temperature gradient control an isolated unstable state far away from the critical
is parallel to the interface, motion from the hot to the coldpoint for Prandtl number Pr35.
region appears for any nonzero value¥f. When the tem- The transition from steady flow to chaos has been care-
perature difference between the disks exceeds the criticdlilly traced in experiments by Ueret al.[7] for silicone oils
value,AT>AT,,, unigue for a given set of parameters, theof 1, 2, and 5 cSt. The flow was visualized simultaneously by
flow is three dimensional and/or unsteady. Generally, twawo video cameras and time-dependent temperature was re-
hydrothermal waves propagating in opposite directions bifurcorded by a thermocouple placed slightly inside of the bridge
cate from two-dimensional2D) state at the critical point. at midheight. They observed numerous bifurcations of the
They result in standingSW) or traveling (TW) wave de- flow on the way to chaos: 2D steady SW(1) — TW(1) —
pending on the ratio of their amplitudes. Understanding theransition— SW(2) — TW(2)— chaos— turbulence. Each
evolution of the thermocapillary flows is valuable for mate- of the regimes has been identified through the observation of
rial processing in space. The transition from the steady tehe suspended particle motion, the surface temperature varia-
tion, its Fourier spectrum, and trajectories in phase plane.
The evaluations of the correlation dimension and the maxi-
*Electronic address: vshev@ulb.ac.be; URL:http:// mum Lyapunov exponent have also been done for the differ-
www.ulb.ac.be/polytech/mrc ent flow states.
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For examination of spatiotemporal behavior of the liquids
from laminar flow state up to the onset of chaotic motion, hot
Frank and Schwabf8] have used another approach. In ad-
dition to the optical observation&/iews from above and
from the fronj, up to 15 thermocouples could be placed
around one-half of the free surface without touching it. It d
allowed them to recognize different spatial reasons for qua-
siperiodic and period-doubling temporal behavior and iden-
tify various spatiotemporal chaotic structures. For the liquids
with Pr=7,49,65 they observed such phenomena as splitting
of subharmonics in the Fourier spectrum, locking of quasip-
eriodic modes, the presence of only odd harmonics, fre-
guency skips.

Although, the mentioned above experimentsg] have

been done in tiny liquid bridges, the influence of buoyancyghe governing Navier-Stokes, energy, and continuity equa-
[

A

o=0(T)

a

old

VIRV

[

FIG. 1. Geometry of the problem.

force on the nonlinear behavior is not negligible. The presen ons are written in nondimensional orimitive-variable for-
results are targeting on the study of the nonlinear characte N S . P i
mulation in cylindrical coordinate system:

istics of the flow under zero-gravity conditions. First of all,
the nonlinear system admits regime of bistability. A branch
of SW with azimuthal wave numben=2 bifurcates from NV
the basic branch of axisymmetric steady state; this branch E’LV‘VVZ —VP+2R,SXV(0+2)
remains stable in the considered range of parameters. A sec-
ond stable branch with azimuthal wave numier3 ap- +[1+R,(O+2)]AV, (1)
pears later and above the threshold of instability reveals
other periodic, quasiperiodic, and chaotic attractors. Our lat-
est calculations of the similar problems under gravity condi-
tions demonstrate quite different behavior of the system with
respect to zero-gravity case and will be published elsewhere. 1
To the best of our knowledge, the bifurcation of ther- S TV VO==V,+ 5 A0, 3
mocapillary flow in a liquid bridge in the strongly supercriti-
cal regime has not yet been mapped out. The finite size sys-
tems with an open interface along which Marangoni forcewhere velocity is defined as/=(V,,V,,V,), O¢=(T
acts have been out of focus. The transition to chaos has beenT()/AT is the dimensionless temperature, a@dis the
extensively studied for convective flows in several well-deviation from the linear temperature profle=0,—-z, S
defined systems: Rayleigh-Bard convection or convection = (1/2)(dV;/dx+dV,/dx;) is the strain rate tensor. One
in binary mixtures. Different routes to nonperiodic motion may find the explicit form of these equations in REIQ].
have been identified for convective flows in closed systemdhe scales for time, velocity, and pressure ®g=v,/d,
by Baker and Gollub9]. Besides the examination of the t.,=d? vo, and Pch=p0V§h. The temperature of the cold
multistability properties, one of the goals of this paper is todisk To=T, is used as the reference, sg=v(T,).
identify numerically the bifurcation route to chaos for the At the rigid walls no slip conditions are use¥(r,¢,z
case of pure thermocapillary convection in cylindrical vol- =0t)=0, V(r,¢,z=11t)=0, and constant temperatures are
ume. imposed,®(r,¢,z=0t)=0, O(r,¢,z=11t)=0.
For the particular casé= 7R?d in the absence of gravity
the liquid volume takes an upright cylindrical shape. Here
Il. FORMULATION OF THE PROBLEM the limit of asymptotically large mean surface tensiog, is
considered, therefore the free surface shape is not influenced
by static or dynamic pressufdl]. On the cylindrical free
surface (=1,0s¢p<2m,0=<z<1), due to the kinematic
conditionV,=0 and the stress balances are

V-V=0, (2

A liquid bridge consists of a fluid volume held between
two differentially heated horizontal flat concentric disks of
radius R, separated by a distanak The geometry of the
problem is shown in Fig. 1. The temperaturgs and T,
(T,>T,.) are prescribed at the upper and lower solid-liquid

interfaces, respectively, yielding a temperature difference 1

AT=T,—T.. The surface tension and kinematic viscosity 2[1+R.(0+2)]S-&+Re€ &,+€;-d4|(0+2)=0.

are taken as linear functions of temperature, (4
o(T)=0o(Te)—(da/dT)(T—T,), The free surface is assumed thermally insulatg® (r

=1,p,2,t)=0. The Reynolds, Prandtl, Marangoni humbers,
the relative variation of the viscosity and aspect ratio are
(T)=vo(T) +(dv/dT)(T—Ty). defined as
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TABLE |. Effect of the grid resolution on the parameters of supercritical flowsReRe,, .

Grid size Re Initial symmetry Final symmetry D wo

[25%x 16X 21] 3000 m=2 m=2 6.25x 10 * 48.58
[25X 16X 31] 3000 m=1 m=2 6.32x10* 48.61
[25x32% 31] 3000 m=6 m=2 6.67x10* 48.47
[49x16X41] 3000 m=4 m=2 6.37x 10 * 51.50
[25X 16X 31] 3000 m=3 m=3 8.23x 101 54.56
[49X16X41] 3000 m=3 m=3 8.88x 101 59.27

orATd number on different grids is about 6%. Optimizing both the

190
> Pr= %, Ma=RePr, R,=— —VAT, quality of the results and time consumption, the basic calcu-
Po¥o

Re=
vo JT lations have been done on the intermediate a8x 16

X 31] with smaller space intervals near the hot and, espe-
cially, near the cold corner. The relatively low dispersion
I'= R’ (3 between the results on the chosen grid and the more fine ones

allows us to conclude that the flow and stability features are

Throughout this parametric study the Prandtl number, thavell resolved. As the present system allows coexistence of
variation of viscosity, and the aspect ratio are kept constanfwo different modes, the convergence is done for both of
Pr=4, R,=—0.5, and'=1. Keeping all the parameters of them. The results of the test for convergence on grid for the
the problem constant, the flow is controlled by the Reynoldd/oW with m=3 symmetry are similar to those far=2, see

number, which is proportional to the temperature diﬁerencéhe last wo lines in Table . Agreement of behavior .Of the
between the rods. integral and spectral characteristics for the two different

grids was a good validation of the code. An additional reso-
lution study concerning inheriting the symmetry will be
IIl. SOLUTION METHOD given in the following section when RelORe, .
The three-dimensional, fully nonlinear governing equa-.. o' Integrating the governing equations at a supercritical
Reynolds number, a solution for the previously investigated

2,?;5 (612;545) ttg?gﬁezongr:nTiepr\l/renllcEI(\:/i(te-\;?erllgtiie dfeofrinmegr;tat Re was taken as initial guess. The temperature oscillations
99 : y r\ﬁere recorded at four azimuthally equidistant points inside

points, which are the central nodes of the cell sides. Valueg, liquid bridge at =0.9 andz=0.5. To identify unambigu-

of the scalar variables are stored at the centers of basic cell3u5|y the 3D time-dependent flow structure, its axisymmetric

Central differences for spatial derivatives and forward differ—Component is subtracted from the resuIting'row field and the

ences for time derivatives were utilized for discretization ofremaining disturbance flow is analyzed. The azimuthal wave

the equations. These equations were integrated over nonovefumper of the periodic oscillatory flom corresponds to the

lapping finite volumes. The computation of the velocity field temperature field structure: it is organized in such a manner,

at each time step was carried out with the projection methoghat after the axisymmetric component is subtracted there are

(see, e.g., Fletchdi2]). The singularities at the symmetry m hot andm cold spots observed in a transversal section and

axis of the cylindrical domain may cause numerical prob-on the free surface, see below Figs. 3 and 4.

lems. To overcome these difficulties, velocity on the cylinder

axis was calculated separately with a special algorithm, de- IV. DESCRIPTION OF RESULTS

veloped by the authors. A combination of fast Fourier trans-

form in the azimuthal direction and of an alternative direc- ) ) )

tion implicit method in the others was applied for calculating _ The traveling wave with azimuthal wave nurr:kmntz

the Poisson equation for pressure. The detailed description @ifurcates from the axisymmetric steady state ai_ R&30.

the numerical code and its validating procedure near thd he 3D oscillatory flow is a result of a supercritical Hopf

critical Reynolds numbefonset of oscillatory 3D flowcan ifurcation and the periodic orbit represents the unique stable

be found in Ref[10]. sqlgtlon near the orr13et of the instability. B.eyond the _flrst
As the present results spread to supercritical values of thgftical point Re=R&'=2810, the system admits the coexist-

Reynolds number, the code validation was extended for thi§Nce of wo stable oscillatory solutions with two different
region, when Re-5Re, . The data in Table | present the wave numbersn=2 andm=3. One should remember that

. . . . these two solutions do not represent the different modes of
results obtained on different grids. Comparison was done fO{h . )
the net azimuthal flowb, see definition in Eq(7), and for he linear problem; on the contrary, they are both the results

o of the solution of the full nonlinear problem, Eq4)—(3).
the fundamental frequency of oscillations when=R8900. £, pq. R€' transitions between the two stable orbits with
In the case of a final symmetm=2 the results from four

_ m=2 andm=3 have never been observed. The final solu-
different meshes have been compared, where the numb v v v ! .

N L : , idn depends on the initially chosen wave-number guess.
indicate the amount of the points in the radial, azimuthal, and  Near the threshold of instability the liquid bridge system

axial directions, respectively. The variation of the azimuthalgyphibits only one solution with self-sustained oscillations.
flow and the frequency for this highly supercritical Reynolds Going further to the supercritical area the flow organization

A. Multistability of the oscillatory flow
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0.22[ ] TABLE Il. Study of the final flow symmetry on different grids,
i Re~10 R§'.
Grid size Re Initial symmetry Final symmetry
2 [25X16X31] 6000 m=2 m=2
g [25% 32x 31] 6000 m=6 m=2
* [49% 16X 41] 6000 m=1 m=2
[25X 16X 31] 6000 m=3 m=3
[25% 32x 31] 6000 m=5 m=3

0.16 7
338.0 339.0 364.0 365.0
I

0.12L

dimensionless time

of a rule of inheriting the parity of initial symmetry for Re
FIG. 2. Ascertainment of stable oscillatory solution with wave >810; namely, taking an initial guess with=1,2,4,6, etc.,
numberm=2. Initial guess is a flow field with a symmetri=3  symmetries, after some transient time the system will arrive
which is unstable for this set of parameters and finally decays. Thgg m=2 solution. Otherwise. all the odd basic symmetries
temperature profiles correspond to-Re00, Pr=4, I'=1. (exceptm=1) give final state of the system with=3. For

with a higher wave number will be excited. For example,the largest Reynolds number, R6000, this test has been
Uenoet al.[7] and Shevtsovat al.[13] have experimentally s_ucc_ess_fully _performed on three different grids; the mformg-
observed that the wave number switches froms 1 to m tion is given in Table Il. Note that even wave-number basic
—2 when moving to the far supercritical region of the Rey_s_ymmetr!es take more _computational t.ime to pass the tran-
nolds number. In the vicinity of that bifurcating point two Sient period and attain final stable squtu_)n than the odd ones.
different symmetry patterns coexist in a limited range of 'I_'he snapshots of the temperature disturbances field in a
Reynolds numbers. However, no theoretical results were rdiorizontal transversal sectioz< 0.5) and on the free sur-
ported until now, when two solutions with different symme- face are shown in Fig. 3 when Ra500 for flow patterns of
tries coexist over a vast range in Re and not in the form oflifferent symmetries. The position @f=0 corresponds to
the mixed mode. the horizontal line passing through the circle center and the

The initial symmetry of the system has different meaningpositive direc'gion fo_rcp is counterclockwise direction. The
for the real experiment and theory. Concerning the experifémperature field with two habright) and two cold(dark)
ments the term “symmetry of perturbations” makes little SPOts in Fig. 8a) represents TW with a mode=2, and the
sense as they have a nonregular stochastic nature. In numépapshots with three hot and three cold spots in Fb) 3
ics, the initial symmetry suggests, for example, the form ofconfirm the existence of a periodic solution with= 3. Note
the perturbations added to the steady two-dimensional solibat in both cases the waves propagate practically azimuth-
tion to initiate the instability. Different initial guesses may ally, the angles between the spots andxis on the free
execute various modes in calculations. For example, if théurface in Fig. 3 are close to zero. To understand the bulk
initial perturbations introduced into the system are of the
form sin(m,¢), the solution will be described by the same
sin(m,¢) function if this oscillatory solution is stable. Other-
wise, after some time it will modify from the initially taken
azimuthal wave numban, to another solution with a differ-
ent m, which is stable for considered set of parameters.
Thus, despite the symmetry of perturbations the system mus
arrive at a solution in the form of waves with, wave num-
ber.

Indeed, for our particular system in the region of the Rey-
nolds numbers 630Re<810 only the oscillatory flonm;
=2 is stable. To prove it, the calculations have been done foi
Re=700 choosing the initial guess with another symmetry
m,=3. Results shown in Fig. 2 demonstrate that after de-
caying the moden= 3, the stable solution witm=2 wave :
number is established. Two insertions in Fig. 2 show the date 0.0 — - —
in a smaller time scale at four equidistant poinisy = /2, 0.0 ¢‘}'25" 19 0 ;}‘g’ﬂ 10
which are located at the same radial and axial positions. The
two solutions with different symmetries can be identified ac- () )
cording to the phase shift between the signals. FIG. 3. Temperature disturbance fields irz&0.5 horizontal

The influence of initial guess symmetry on the final sym-cross sectiorfupper parnt and on the free surfacgower par} for
metry of stable solution has been carefully studied for thePr=4, Re=1500,I'=1, R,=—0.5. () m=2 and(b) m=3 solu-
far-supercritical Reynolds numbers R8000, 4500, 6000. tions. The axisymmetric part is subtracted from the total tempera-
Analysis of the results obtained allows us to propose a kindure distribution.

0.5}
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FIG. 5. Evolution of temporal power spectrum with increase of
the Reynolds number for th@=2 solution. Square root of ampli-
tude is shown. The spectra always have one fundamental frequency

FIG. 4. Surfaces of constant temperature disturbance fields fognd harmonics. No broadband noise is generated.
different symmetry patterns in three-dimensional representation for
Pr=4, Re=1500,I'=1, R,=—0.5. (8 m=2 and(b) m=3 solu-
tions.

(b)

development of the oscillatory flow. The main frequency re-
tains the leading position in the spectra. The first and second
armonics are clearly visible throughout the investigated re-
ion. The maxima of the amplitudes for the different har-
onics are dispersed over some region of Reynolds num-

: h
structure of the temperature disturbances, the three-
dimensional images of surfaces of the constant temperatu
distributions are shown in Fig. 4 for the same set of param ; : 2
eters. Again, the axisymmetric part is subtracted from th bers. The amplitude of the main freque Alwo) has a

total temperature field. For both solutions the snapshots dis- aximum at Re-2000, the first and second harmonics
P ' ) pshof achieve maxima at Re3000 and Re-2500, respectively.
play the surfaces of the same disturbance tempera€ire,

Ratios of the amplitudes of the harmonics to the ampli-
=Onint 0.65@ max— Omin), Where®pay and @, are the  tyde of the main frequency in the appropriate powers as a
maximal and minimal values dd in the bulk. In both pat-

mal ) - function of Re are shown in Fig.(&), because they are pro-
terns presented in Fig. 4, the surfaces are slightly twistegjyced by nonlinearity. The generation of higher harmonics is
which is a reflection of one of the features of the travelingg, imminent consequence on the nonlinearity, and their
waves(in case of standing waves they would be vertically growth is not necessarily related to bifurcations. The func-
straighy. _ tions in Fig. 6a) do not reveal any jumps, which might be a
Note that in the case ah=2 solution the two spots and gjgn that there is no bifurcation for the=2 solution. The
surfaces of constant temperature disturbances have the agi~t weak transition in the system occurs at<RE00. As it
muthal symmetry. For then=3 solution, the symmetry in  fo|lows from Fig. a) in the vicinity of this point the ampli-
azimuthal direction is broken even at the moderate Reynoldf:‘udeA1 starts growing up. It never dominatég but results
number, when the flow is still periodic. It is clearly seen in;q transformation of the signals.
Fig. 4(b) that the closest surface has a kind of spike, while 145 characterize the state of the systéattractoy, one
the two others, they do not. should calculate some invariant of the motion dynamics.

B. Spatiotemporal properties of TW m=2

At Reynolds numbers close to the threshold of instability, _
Re'=630, traveling wave with azimuthal wave numbar §
=2 represents the only stable solution. The smooth exten:
sion of the limit cycle in phase space near the critical point
indicates the supercritical Hopf bifurcation. The growing os-
cillations saturate on a nearby limit cycle. The radius of the
limit cycle is proportional to the saturated amplitude of the
oscillations. Staying on then=2 solution, the calculations
have never led to chaos. There are no signs indicating addi£
tional bifurcations of the system, such as frequency skip,%
period doubling, or quasiperiodicity. Only one fundamental 5.
frequency and its harmonics always present in spectra.

Fourier analyses of the temperature time signals have

wn
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been done for all investigated Reynolds numbers. Results of £ 6. Ratios of the amplitudes of harmonics to the fundamen-
the Fourier analysis are summarized in Fig. 5, where they frequency in the appropriate powess and global entropyb),
main frequency and its two harmonics are shown. To displaq. (6), as functions of the Reynolds number for=2 traveling
the highest harmonics, the square root of the amplitudes igave.A, ,i=1,2 etc., means the amplitude of tith harmonic,A,

drawn. The evolution of the temporal power spectrum withis the fundamental frequency. The rhombs correspond to the calcu-
increase of the Reynolds number demonstrates the smoolited points, and the solid line is the result of spline interpolation.
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Here the entropysis chosen for describing the spatiotempo-  -10
ral behavior of the system. The entropy is an integral quan-

tity, taking its birth in thermodynamics and statistics, and is af
criterion of how well the system is ordered and structurized. E -

To see the contribution of the dynamically important modes,.g -57
the zero mode, representing the spatiotemporal average vaIL’Eé 50l i
of the signal, was excluded from the calculation of the global =, >
entropy as it contains a large percentage of the total energj> -72
. . . 240.0 240.5
of the system. Conventionally, the global entropy is defined _7q time | ,
as follows: 650 2100 3550 5000
Re
1 N N
S(Re)=— ————— Inp,,, —3a2 a2, FIG. 7. The evolution of the maxima of axial velocity signals as
( IN(N—1) nzl Pa NPn Pn= 8 jgl ! the Reynolds number increases for=2 oscillatory solution. One-

(6) maximum oscillations undergo transition to two-maxima ones at
Re~1000.

wherea; are eigenvalues of the spectrum, and the frequency ) )
spectra are calculated using the fast Fourier transform from Note that the same plots made for the axial velocity are
the time series oN=4096 points,® (t)=3=N_,a,exfi(wyt |(jent|cal to the temperature ones pr.ese.nted in F(@ @he
+¢.)]. To designate the amplitude of the fundamental fre-difference is that at Re 1000 the oscillations of axial veloc-
quency w, and its harmonics, the following is assumed: Ity Switched from one-maximum to two-maxima ongsg.
a(k wg) =A_1. 7). This type of oscillationsV,(t), are exposed inside the

The entropy, providing a sign of the relative complexity insertion in Fig. 7. Moving on to higher vqlues of the Rey-
of the signals, is sensitive to each change of the dynarSics. nolds number, difference between the maxima of axial veloc-

tends to grow when modulation or bifurcation occurs in thelty 'émains constant with good accuracy. It is found that the
system. Figure ®) shows how the entropy follows any phase shift between the first harmonic and the fundamental

change of spatiotemporal organization. In agreement with th€duency is responsible for the splitting of the maximum,
previous analysis, its behavior does not reveal any abrupt-9-V(t)=Z2Vicos@t+a;), wherea;# «;, if i#]. Unlike
transition in the system. Comparing Figgafand @b), one the velocity behavior, the temperature oscillations contain
can see that behaviors of the entropy and of the rafipA2 ~ On€ maxima throughout the investigated range of the Rey-
(solid line) are rather well synchronized near the threshold.nOIdS numbgr. In this case the phase S_h'ft is equal to zero
Indeed, the entropy starts noticeably to grow at-Re00 and. respectively, no second maximum is observed.

when the first harmonic with distinguishable amplitude ap- . D€SPité the fact that then=2 motion is strictly time pe-
pears in the system. The maximal slop&/dRe is attained riodic up to Re=6000 the three different regimes have been

when the higher harmonics start to grow. The entropy indetermined. Analyzing carefully the behavior of different

crease is associated with a more uniform distribution of enP@rmonics and their ratios it appears that existence of these

ergy among the superior eigenvalues. The entropy ag€9imes can be disclosed by dependencejnfersus Inky)

proaches to a maximum at R&500, when the ratifAz/Ag with the increase of Reynolds number, see Fig. 8. For a bet-

is close to maximum. It occurs due to overall income of the's" understanding the Roman figures mark the different re-

highest eigenvalues. After some transient time pasSet- gimes and a few Reynolds numbers are written along the

crease means that the system approaches a local state Gy ve- Comparlson. 9f Fhe. flc_)w patterns and temperature
equilibrium. fields does not exhibit distinctive features of the various re-

Equation(6) has been normalized with the Shannon en_gimes, but they can be described through nonlinear charac-

. teristics.
o e e e omomne o (1) Nea-reshod weakly ol osllatons, 63
value, S—1, as the data approach true randomniggsite =<Re<1000, where the limit cycle ishe circle. The peak-
noisa. For the considered type of thermocapillary flow, splitting phenomenon of the axial velocity oscillations, see
=2, the peak valu&s=0.09 indicates that a quite ordered
flow field oscillates in the liquid bridge. The total variation ' 0o orw et T
of the entropy is about 8%, although the governing param-~

' -129r " _
eters were changed in a large range; £0<8.25. Here £ 129
|
T00 e e 4
e=(Re—R€e")/RET -16;58‘93+ ------- _8(.08 500 J
In(Ag)

is the distance from the critical point. The situation, when the Fig. 8. The dependence of the logarithms of the first harmonic
entropy stays practically constant with Re, physically meangmplitude A; on the amplitude of main frequendy, when the
that the energy is spread over a few eigenvalb@smonic$.  Reynolds number increases from=R800 up to Re= 6000. Despite
This is coherent with the information coming from Figs. 5 the strictly time-periodic oscillations @ andV the three different
and 6. regimes are seen for the=2 solution.
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0.0002

-———

Re

FIG. 11. Amplitudes of the main frequenciésindamental and
the subfrequengyin spectrum for then=3 solution as a function
of the Reynolds number.

contains one maxima per period. At R8300 the periodic
solution with one frequency gives up its stability and an
independent frequenay, appears in the spectrufit is less

FIG. 9. Evolution of temporal power spectrum with increase of
the Reynolds number for thm=3 solution. Square root of ampli-

tude is drawn. The second incommensurate frequency exists f
3300<Re<5300. The broadband noise is developed at 42R6
<5000 causing the aperiodic oscillations.

tﬂan the fundamental one, but it is not really a subharmonic
The modulation of time signal¥(t) and ®(t) is observed

from the birth of the frequencw;. The evolution of both
Fig. 7, starts at the end of this regime. frequencies with the Reynolds number and their amplitudes
(2) Strongly nonlinear oscillations where the first har- 2® Shown in Figs. 10 and 11. The fundamental frequesncy
monic A, rapidly grows, 1008 Re< 2000, and the shape of IS glmost a linear function pf the Reynolds number. At the
limit cycle transforms to a heartlike shape. At the end of thisP0int Re=3300, where the independent frequeney has a
regime the entropy slopgS/dRe has maximum. nqtlceable amplitude, it has a value_ of,~30.21 and is
(3) Nonlinear oscillations where the harmorfg is al- slightly larger than 0.6y. As w; remains almost constant,

most independent of the main frequenky, and the former the ratio w,/wg decreases with inpreasing _the _Reynolds
decreases much slower than the latter, 238@< 6000. The ~number, and hence at least sometimes their ratio becomes
dependence I#¢) on In(A,) demonstrates growth o at irrational. One can speak about excitation of t_h(_a two incom-
this regime(not shown by plot The shape of the periodic mensurate frequencies. As a result', in thg vicinity of such
time signal ®(t) slightly deviates from sinusoidal, which bifurcations, the flow becomes quaS|pe_r|0d|c. For example, it
causes a further transformation of the limit cycle. hap.pef?s at Re3500. .The representative return ”.‘ap."f the

oscillations of the axial velocity, proving the realization of
the quasiperiodicity one may find in Fig. 12. These return
C. Spatiotemporal properties of TW m=3 (peak-to-peakmaps of axial velocity demonstrate the differ-

Here we shall discuss the results obtained at values of thnt regimes of the flow organization. The return map is made
Reynolds number far beyond Be Again, the Fourier analy- in the following way: moving along the records of the
sis of the temperature time signals has been done for all
investigated Reynolds numbers. Results of the Fourier analy
sis are summarized in Fig. 9. Evolution of the temporal
power spectrum with increase of the Reynolds number for
the m=3 solution is completely different from that for the
m=2 solutions(see Fig. 5. The solution withm=3 wave
number admits the presence of a rather strong first harmoni
with double frequency @, in the spectrum just near the
threshold of instability. The higher harmonics appear in the
spectrum moving above the second critical point=iRs;" .

Until Re=3300 the dynamic of the flow demonstrates
smooth behavior. For each particular Re the time signals of
temperature®(t) and velocitiesV(t) are periodic with a
nonmodulated amplitude. The temperature time dependenc
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FIG. 12. Return maps of axial velocity for different Reynolds

FIG. 10. Main frequencies vs the Reynolds number for rthe
=3 solution. The frequency, exists only in quasiperiodic and
aperiodic phases and slightly beyond the onset of the second pe
odic dynamics (3308 Re<5300).
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numbers form=3 solution. Re=3000—periodic one-frequency
oscillations; Re= 3500—two incommensurate  frequency
iGjuasiperiodic oscillations; Re3950—period doubling;
Re=4500—aperiodic oscillations.
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strange attractor is chaotic. According to our calculations the
m=3 solution manifests chaotic behavior beginning from
Re~4200. The strip across the plot in Fig. 9 points out a
widespread and featureless distribution of the maxima in the
region 4206<Re<5100. This area looks as a locally
“wrinkled tissue.” The weak broadband noise does not con-
Re= 3950.00 . Re= 4500.00 . ceal the two discrete frequencies but its presence leads to the
I -57 -61 W e 23 onset of absolutely continuous spectral background. The
presence of noise “washes out” the fine structure of the at-
FIG. 13. Phase planes of axial velocity for different Reynoldstractors.
numbersm= 3 solution. Re= 3000—periodic one-frequency oscil- The temporal power spectrum of the temperature is shown
lations; Re=3500—two incommensurate frequency quasiperiodicin Fig. 15 for Re= 4500, when aperiodic regime is progress-
oscillations; Re=3950—period doubling; Re4500—aperiodic 0s- ing. Two characteristic frequencies,=70.56 and w,
cillations. =32.36 dominate in the nonperiodic state. Actually, in the
power spectrum there is second peak, close to the subfre-
time signal of axial velocity/,(t) with a constant time step guency, of more or less the same order of value, see Figs. 9

=16 1 12

av,/dt
dv,/dt
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we search the local maxima. The functi¥p, , is an ampli-  and 15. This peak really appears to be linear combination
tude of (1+1)th maximum versus the amplitud, of the )/ ), within the estimated standard errerand it may be
previousnth maximum. identified at 3308 Re<5100.

The ratiow; / wy continuously diminishes and never has a  The variation ofw, and w; with Re, shown in Fig. 10,
plateau, consequently, no phase locking is noticed. As nQuustrates that in the vicinity of the point Re5000 both
locking has been observed during the range of Re, whegre frequencies have a kind of jumpi, steps up ands, steps
exists, one may suggest that the nonlinear interactions byown. Shortly after the jump at Re5100 the amplitude of
tween the two oscillations are weak. the frequencyw, drastically decreases and it completely dis-

_The_followmg b|furcat|o_n ta_kes place at R&8950. Near appears at Re5300(see Fig. 11 Along with vanishing the
this point the frequencw, is slightly larger than half of the  frequencyw, nonperiodic flow is stabilized back to periodic
fundamental frequency and the latter goes on growing. Ineviz; Re~5100, and remains periodic until the maximal inves-
tably, a period doubling takes place wheg/w,=2. The tigated Reynolds number 6000
. . . . 2 b
image of this motion in space i~ Torus, and the phase ~ Ratios of the amplitudes of the harmonics to the ampli-
plane in Fig. 13 indicates existing of the period-doublingy,de of the main frequency in the appropriate powers are
state. It manifests itself in the form of additional loop in the §rawn in Fig. 16a) as functions of Re. In accordance with
phase plangFig. 13 and the return map consists of three noplinear theory the ratios of the amplitudes are almost con-
points (Fig. 12). The phase planes of axial velocity shown in giant near the onset of oscillations. The perfect bifurcation is
Fig. 13 correspond to the same setting of the Reynolds numyically connected with the violation of certain symmetry.
bers as in Fig. 12. The phase plane for the periodic regimeNumerous jumps of the functions in Fig. &in the region
Re=3000, represents a close curve but not a perfect circle33no« Re< 5300 indicate the changes of the flow state and

as the system is far above from the critical po#:3.9.  yarious bifurcations occurring in the system. For example, at
The typical temperature signal for this range of prechaotic

Reynolds numbers, Re4000, and its power spectrum are 4o
shown in Fig. 14. Numerous harmonics of comparable power
already exist in the spectrum along with the strong long- <
wave modulation of the temperature time dependence. As thi
Reynolds number is increased further, the sharp spectra 1210
peaks are wiped out by a continuous amplification of dy- 0 50 frequie(?gzy " 150
namical noise(Figs. 14 and 1p The peaks become more '
numerous and the gaps between them become shallower. It FIG. 15. Temperature temporal power spectrumnf 3 solu-
results in a pattern when nonregular oscillatory motion istion in the aperiodic regime, Re4500. Two characteristic frequen-
established. Actually, it is not easy to prove rigorously that acies wo=70.56 andw,=32.36.

200
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FIG. 16. Ratios of the amplitudes of harmonics to the funda- 3300 and then have only one maxima afte 00.

mental frequency in the appropriate powéasand global entropy
(b), Eq. (6), as functions of the Reynolds number fo=3 travel-  change in the system due to the vanishing of the frequency
ing wave.A; ,i=1,2, etc., means the amplitude of thik harmonic, ;. Above Re~5300 there is no sign of the presencewgf
Aq is the fun_damental frequgncy. The rhombs corres_pond to then the spectrum, only fundamental frequenay and its har-
::;:g?]l,ated points, and the solid line is the result of spline iNterPOonics. As a _result, the entropy "’?”d r?‘ﬁ@/Ai diminis_;h.
The behavior of the velocity field is coherent with the

temperature evolution, thus oscillations of velocity lose their
the period-doubling bifurcation Re3950, all curves have a periodicity at the same~4200 Reynolds number. Below
twist. At the beginning of the chaos, R&200, the ratios Re~3000 axial velocity performs periodic oscillations with
A;/A] andAz/Ag have distinguishable local maxima. In the only one maxima and its amplitude is nonmodulated. Shortly
transient regime, aperiodicity— periodicity (5106<Re  before the appearance of the incommensurate frequency the
=<5300), the behavior of the ratios of higher harmonics isextremum bifurcation gives rise to the spliting of the
very complex. Moreover, at Re5200 the amplitude of the maxima of the axial velocity, shown in Fig. 17. Peak-
second harmoniciA(3w,), overtakes the amplitude of the gpjitting phenomenon occurs at=2.70 for them=3 pattern
first harmonic A(2wg). Possibly, the second harmonic takesyhile for m=2 solution it is observed at~0.56 (compare

energy from the weak noise in the spectrum and stabilizeﬁigs_ 7 and 1Y, A characteristic time signa(t) with three
the flow. Actually, the interruption of chaotic behavior starts ,5.ima per period is shown by the insertion in the Fig. 17

at Re~5100 and the signal power spectra become ClearI”or Re=3500. Such kind of time-dependent behavior re-
without any noticeable broadband noise and secondary fr%ains unchanged until Re4000; with further increasing the

qu&_arrrl]ues,tsee also IFItg. 9. definition in Eq. 6. for time Reynolds number four or more maxima may encounter. The
_3 te enllropy evolu 'OR’ see ?:!m ion ITt g h’ or shaded area is framed by the smallest and largest values of
=3 traveling wave is shown in Fig. 1. Its behavior re- maxima for fixed Re and does not display the amount of

flects the dynamic transitions in the system. Indeed, the eNhem. The splitting of maxima completes at-R8500, soon

'::lopy sltowly a#gmégtlsgcl)vghlfppearance ofttrr]}e ?harmoEi(t:rs] Nfter the transition of the system from aperiodic to the new
€ system when - It passes smoothly throug € periodic regime. The peak-splitting phenomenon is also in-

qt:]asip_eriodhic bif_u_rc_euion fanr(]j sharpl):j %ro"\sl’_ up and din;;n'herent to the temperature oscillations from the beginning of
ishes in the vicinity of the period-doubling state, Re . quasiperiodic regime.

~3950. In the chaotic area, Re1200, when a lot of the
harmonics are excited, the entropy again increases. Thi . , N

might be caused by either the spegt};al %oise which containjj' Comparison of the solutions with different wave numbers
large percentage of the total energy of the system and “feed- Two branches of three-dimensional periodic orbits, trav-
backs” the entropy or an incommensurate frequency. Its noneling waves withm=2 andm=3, coexist for Re-R€;'.
smooth behavior inside the region of aperiodicity indicatesThe solution withm=2 always remains periodic, but the
the numerous dynamic changes induced by superior harmom=3 wave number one becomes nonperiodic at"Re
ics. ~4200. Kudrolli and Golluj 14] reported experimental ob-

At the end of aperiodicity, Re5100, the entropy drops servation of the coexistence of patterns of different symme-
down and holds some minimal value during the transientries in forced surface wave$araday wavesin the large
regime 5108=Re<5300. This constancy implies that the en- system limit. These different patterns coexisted only within
ergy is distributed over a few harmonics. Indeed, looking aicertain parameter ranges. They obtained that the transition to
Fig. 9, in this narrow region one should find that two fre- spatiotemporal chaos depends upon the symmetry of the pri-
guencieswy and w, and their linear combinations =N w mary patterns. But, despite the basic symmetry, all patterns
+M w, fill the spectrum but there is no broadband noise finally undergo a transition to chaos. In the present study, we
The entropy rises up near R&300 indicating the dynamic have found different solutions, among which one of them
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FIG. 18. Amplitudes of temperature oscillations vs the Reynolds
number,At=0.5(0 ,.x— O nin). Solid line and asterisks represent
m=2, while the dashed line with rhombs denotes: 3 mode.

FIG. 19. Dependence of the fundamental frequency upon the
Reynolds number. Solid line and asterisks represent2, while
the dashed line with rhombs denote=3 mode.

does not reveal chaotic features throughout the whole ranggs|ytion does not trace the dynamic bifurcations in the sys-
of the investigated parametetss8.5. ~ tem. The frequency skip, which often accompanies the dy-
The amplitude of the sustained temperature oscillationsyamic transitions, is not observed here. Possibly, the fre-
defined asA7=(Omax— Omin)/2, is shown in Fig. 18 for quency skip is related with the presence of the gravity force.
both solutions. Solid line with asterisks represemts 2 so- |t was experimentally observed by Frank and Schwitie
lution, while the dotted line with rhombs corresponds to thegng by Uencet al. [7] in ground based experiments, and it
m= 3 solution. The amplitude of th@=2 solution increases \yas numerically determined by Melniket al.[15] in liquid
with the Reynolds number until it reaches a maximum aiyith pr=18.76.
about Re=2300. No changes in the structure of the ther-  The mean azimuthal flow is an important characteristic of
mocapillary flow have been observed near this point. Al-the system when 2D thermal convection with periodic
though, as it was shown in Fig. 8 near this point the nonlinhoundary conditions becomes unstable. An integral quantity
ear oscillations undergo transition from li-d to Ill-d regime, of the flow past bifurcation, the net azimuthal flow, provides
see Fig. 8. With further increase of the Reynolds number théhformation about the nonlinear characteristics of the flow
amplitudeAt smoothly diminishes. The temperature ampli- organization. The net azimuthal flow is determined as an

tude of them=3 solution does not have any pronouncedintegral of the mean azimuthal velocity over the volume:
maximum, but its behavior with Re reflects the dynamic

transitions in the system. Above the onset of instability the
amplitude grows with Re, achieves some saturation value
AT =0.035, and remains almost constant when 23B@
<3000. At the beginning of the quasiperiodic regime the 1

amplitude starts to grow up. Note that above~R8800 the Ve meadlZ,t)= EJ' V(r,z,e,t)de. (7)
temperature amplitude is rather strongly modulated. Differ-
ent types of shorter wave modulations are hidden inside the
long-wave modulation, e.g., see Fig. 14. The maximal valuqe

of Ar over a longest modulation period is shown in Fig. 18 aractions as the contribution of the leading terms is zero
for the quasiperiodic regime. At the point of period doubling, oing to the spatial periodicity. Thus nonlinearity of the hy-

Re~3950, the amplitude jumps down and then goes uUpyrothermal waves can be described by this net flow. This
Achieving the aperiodic regime, itsA¢) behavior becomes iieqral characteristic indicates the intensity of the 3D flow
nonsmooth, being larger than maximal valé in the peri-  in the case of the traveling wave. The dependence of the
odic regime. The determination of the amplitude of oscilla-mean flow on the Reynolds number is shown in Fig. 20,
tions is more difficult for the aperiodic regime, and it is \where solid line and asterisk represent the=2 solution,
roughly estimated according to the global extrema on a longynile rhombs correspond to tire=3 flow pattern.
time interval. When the system attains the periodic window, on the net azimuthal flow plot for tha= 3 solution(Fig.
Re=5100, the amplitude drops down below the initial satu-20) there are two clearly distinct regions related(& peri-
rated valueAr and continues to decrease. odic and to(b) quasiperiodic, aperiodic dynamics. Let us
The evolution of the fundamental frequencieswith the  drop the quasiperiodic and aperiodic points off and connect
Reynolds number is shown in Fig. 19. Near theS'Réhe  the two regions of periodicity Re3300 and Re=5100 using
values of the main frequencies are rather close, e.g., at Rgarabolic interpolation techniquéotted line in Fig. 2D Let
=900 them=2 solution has the frequenay,=27.35 and us nominate this interpolated plot as “regular branch” of the
m=3 has the frequency,=28.72. Both solutions demon- azimuthal net flow. So, in the periodic phase the net azi-
strate almost linear dependence ®@f upon Re, only the muthal flow plot and the regular branch coincide. One can
slopes are different. The frequency of the=3 solution clearly see that at Re3300, the periodic/quasiperiodic bi-
grows faster with increase of the Reynolds number. Unlikefurcation, the plot starts to deviate from the regular branch
the evolution of the amplitude, the frequency of time=3 (in the quasiperiodic and chaotic region it significantly drops

o= J Ve meadl z,t)rdrdz,

Here,V(r,z,¢,t) is the azimuthal velocity. Actually, the
sulting mean azimuthal flow includes only nonlinear self-
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FIG. 20. Net azimuthal flow, defined by E@), vs the Reynolds
number. Solid line and asterisks represemt2 solution, while FIG. 21. Schematic graphs of the dynamics of the various stable
rhombs denoten=3 solution and dotted line corresponds to the splutions with then=2 and 3 wave numbers as the Reynolds num-
regular branch along which the=3 solution is periodic. ber increasesn=2 traveling wave is always periodic. The solution

described by the traveling wave with=3 wave number undergoes
off). A quantitative criterion of the deviation from “regular- aperiodic bifurcation preceded by the quasiperiodic dynamics. The
ity,” ¢, may be suggested as letters inside the bars denote the following: P, periodic, QR0
frequencies quasiperiodic; NP, nonperiodic.
60=(Preg=®) Preg. ® in a simple way. Nevertheless, along with the other observed
whered is the real calculated value ade is the value of features of the behavior of the system in this region of the
the net azimuthal flow on the regular branch along which thd¥€ynolds number it can be concluded that the orbit for Re
m=3 solution is periodic. The variation af, with Re is ~ =4500 shown in Fig. 13 can be classified as weakly chaotic.
shown in Table III. The type of quasiperiodic route, which actually occurs in
As it follows from Fig. 20 for the quasiperiodic/aperiodic the system as the control parameter continues increasing, is
regimes the net azimuthal flow is always below its regulafProbably a function of many parameters characterizing the
branch®,,. Indeed, at the quasiperiodic regime the netSystem's dynamics. The classical scenario could be that a
flow starts to reduce, see the deviation expressedgpyn  third independent frequency appears, i.e., the attractor be-
Table I1l. Within the aperiodic regime, where the disorder isCOMeS a hypertorus. If this attractor is unstable against per-
higher, the reduction of the net flow is about of-156 %. It turbations, the system dynamics become chaotic. In our case
seems that the energy is transferred from the mean flow intth S€€ms that it is not the distinguishable third frequency, but
the growing disturbances. In the case of standing wave, dué'® broadband spectral noige set of incommensurate fre-
to the symmetry, the net flow is equal to zero, see Rif]. guencieg which |s.respon5|ble for the aperiodicity. Among
Hence, we may suggest that in the system with periodiéhe known scenarios of the onset of chaos, the concept of
boundary conditions, e.g., in a liquid bridge, the standingRuelle-Takenssee Refs[17,18) is mostly corresponding to
wave solution will never lead to aperiodicity. the considered system as it takes three bifurcations for the
system to get turbulent state. At Rehe attractor takes the
form of a periodic orbit, at a larger value of the control
parameter the power spectrum has two incommensurate fre-
The discussion below concerns only the=3 solution.  quencies and the attractor changes to a toqussiperiodic
The observed scenario of the onset of aperiodicity in thehasé. Aperiodic regime begins directly from the quasiperi-
liquid bridge shows that the present route to chaos may bedic one.
classified as the quasiperiodicity. The quasiperiodic bifurca- The complete dynamic behavior of the system with two
tion occurs at Re 3300 when the second frequency appearsymmetry patterns are summarized by the schematic graphs
(Figs. 9-11. in Fig. 21. The sequence of bifurcations leading to temporal
Analyzing the phase plane portrait of a nonlinear systemghaos can be identified in the case of time=3 solution.
one can say that attractér is chaotic if(a) in a state space Each bar is labeled by letters P, QRand NP reading for
region the orbits are dense, i.e., they fill the phase space zoperiodic, two frequencies quasiperiodic, and nonperiodic, re-
of the strange attractd2, and(b) the orbits are topologically spectively. Numbers below the bars denote the values of the
transitive in(, i.e., for any two open setQ,, (1, from () Reynolds number at which the marked above events take
there is a time for which any orbit starting @t ends at(}, place.
(Wiggins [16]). The first of the criteria can be verified nu- Note that the spatial Fourier spectra, being discrete for
merically, while the second one is not so easy to be providedylindrical geometry, reveal the increasing of the amplitude

E. Route to aperiodic oscillatory state

TABLE lll. Spatial disorganization of the flows, , Eq. (6.2), as a function of the Re, 338(Re<5000, m=3.

Re 3500 3700 3900 3950 3970 4000 4100 4200 4300 4400 4600 5000
So 0.009 0.043 0.116 0.112 0.090 0.144 0.158 0.147 0.157 0.144 0.144 0.157
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of the various modes in temporally aperiodic regime. Primafeatures at Re 4200. The onset of temporal nonperiodicity
rily, it concerns the amplitude of modes=1 andm=4, but  is shown to be associated with development of broadband
the modem=23 remains dominant when the temporal chaosnoise in spectra and preceded by a quasiperiodicity. It can be

is progressing. concluded that the Ruelle-Takens scenario prevails against
other ones.
V. CONCLUSIONS An interesting property of the aperiodic=3 solution is

its transition back to a periodic oscillatory behavior at higher

The thermocapillary flow in cylindrical liquid zone held values of the Reynolds number. Secondary periodic instabil-
between two parallel rods at different temperatures is studiefly occurs at Re-5100. This periodic window spreads at
under zero-gravity conditions. A parametric investigation ofjeast until Re= 6000, the largest Reynolds number studied in
the onset of aperiodicitychaos in a liquid bridge is numeri-  this paper.
cally carried out for a medium Prandtl number liquid, Pr  The entropy of the system has been calculaieposte-
=4, and unit aspect ratio. The different spatiotemporal patriori. The low peak value of the entrog=0.09 for them
terns of the thermocapillary flow are analyzed, beginning=2 solutions confirms that a quite ordered flow field oscil-
from the onset of instability up to the appearance of theates in the liquid bridge. The small changes of the entropy
nonperiodic flow and further orfup to e~8.5). Two-  with Re indicate that the energy is spread over a few har-
dimensional steady flow becomes oscillatory with azimuthamonics. For then=3 flow the peak valu&=0.2 indicates
wave numbem=2 as the result of a supercritical Hopf bi- that the system reveals a weakly chaotic behavior. Inside the
furcation at R§'=630. A second solution with an indepen- region of aperiodicity this maximal value is slightly changed
dent frequency and an independent wave numiet3, is  with Re, indicating the numerous dynamic transitions in-
found to appear at Be~810. Two solutions witm=2 and  duced by superior harmonics.
m=3, each of them being traveling waves with different The behavior of the net azimuthal flow verifies the exis-
symmetry patterns, coexist for R&Re;" . tence of the chaotic regime. For the periodic regimes in both

The symmetry of the final solution keeps the memory ofcasesm=2 andm=3, it smoothly grows with the increase
the initial state of the system for ReRe}'=810; namely, of the Reynolds number. But for the quasiperiodic and ape-
taking an initial guess wittm=1,2,4,6, etc., symmetries, riodic flow states Fhe net azimuthal flow drops down from
after some transient time the system will arriverto=2  the regularly growing branch. We can conclude that the en-
traveling wave solution. Otherwise, all the odd basic symme€r9y is transferred from the mean flow into the growing dis-

tries m=3,5,7 (exceptm=1) give m=3 traveling wave as turbances. - o
final state of the system. The peak-splitting phenomenon for the=3 flow is in-

For them=2 solution, the critical mode at the first bifur- herent to the temperature and the velocity oscillations from

—6000. Nevertheless, three different regimes have been d@€ak-spliting bifurcation occurs when there is a nonzero
tected according to the nonlinear characteristics. phase shift between different harmonics. The experimentally

The m=3 flow pattern manifests another type of the pe-Observed in Ref_[8] peak-splitting phenomenon of the tem-
havior. The motion admits rather strong harmonics in theP€rature oscillations occurs simultaneously with the appear-
spectrum just near the onset of the oscillations af’ Re @Ce€ of the exclusively odd harmonics @f in the Fourier
=810. It undergoes a transition from the periodic to aSpectra ff’f NaN@ liquid zone. In our system we.d|d not
weakly chaotic flow via quasi-periodic and period-doubling N0tice existence of only even or only odd harmonics.
states. A new frequenay, , relatively small compared to the
main onewg, appears in the spectrum atR8300. The ratio
w1/ wg being larger than 0.5 at the birth @f; is a decreasing This work was partially funded by the program on Inter-
function of the Reynolds number, therefore sometimes theiuniversity Poles of Attraction, initiated by the Belgian State,
ratio becomes irrational. Hence, quasiperiodic regime wittPrime Minister’s Office for Science, Technology and Cul-
two incommensurate frequencies is established. The flowure. The authors also gratefully acknowledge discussions
with azimuthal wave numben=3 starts exhibiting chaotic with Professor A. Nepomnyashchy of Technion, Israel.
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