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Influence of a nonlinear reference temperature profile on oscillatory Beard-Marangoni convection
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We analyze oscillatory instabilities in a fluid layer of infinite horizontal extent, heated from above or cooled
from below, taking into account the nonlinearity of the reference temperature profile during the transient state
of heat conduction. The linear stability analysis shows that a nonlinear reference temperature profile can have
a strong effect on the system, either stabilizing or destabilizing, depending on the relative importance of
buoyancy and surface tension forces. For the nonlinear analysis we use a Galerkin-Eckhaus method leading to
a finite set of amplitude equations. In the two-dimensid@8l) case, we show the solution of these amplitude
equations are standing waves.
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I. INTRODUCTION an asymptotic analysis that the system may be unstable, even
in the purely surface-tension-driven cdgse buoyancy, pro-
It is well known that, in a horizontal fluid layer heated vided one takes into account the nonlinearity of the reference
from below, two mechanisms can be responsible for the ontemperature profile.
set of convection: the variation of density with temperature Another motivation of the present work is related to the
(buoyancy, or the Rayleigh-Bard effect and the variation recent experiments of Wierscheghal.[11]. In their setup, a
of surface tension with temperatugiermocapillary, or the  fluid absorbs another overlying fluid with much lower den-
Marangoni-Beard effect. In general, both effects combine, sity and surface tension and waves are observed at the very
and give rise to the so-called Bard-Marangoni instability beginning of the equilibration process. It is important to note
[1-7]. here that the equations governing mass and heat tranfers
In the case of a fluid layer heated from above, the situahave the same form when effects specific to mass transfer
tion drastically changes. For a long time, an unconditionallysuch as accumulation and energy barriers are not taken into
stable situation was predictethoth buoyancy and ther- account in the interfacial boundary conditions. Thus the nu-
mocapillary effects are stabilizipgbut recent workg[8,9]),  merical results found in this paper on heat transfer are also
show that the conductive reference state may actually beapplicable to mass transfer experimefits2]). Wierschem
come unstable to oscillatory disturbances for sufficientlyet al. observed the appearance of waves at the beginning of
high temperature gradients and provided the buoyancy effe¢che adsorption process, where the Marangoni number is
is sufficiently important with respect to the thermocapillary clearly below the critical value for oscillatory instability as
effect. Rednikowet al. [8] explained the appearance of suchfound by Rednikowet al. [8]. As these waves appear at the
oscillatory instabilities by the linear interaction of internal very beginning of the absorption process, one can think that
and surface waves, which may lead to amplification. Theythe discrepancy between the experimental Marangoni num-
calculated the marginal stability curves, corresponding to osber and the value predicted by Redniketval. can be due to
cillatory perturbations when heating from above, showingthe fact that the reference concentrationtemperaturgpro-
that instabilities appear for very high values of the Ma-file is not yet linear when the instability takes place.
rangoni numberof order 16), such values being reachable  The purpose of this work is to perform a linear and a
for liquids of low viscosity (note that our Marangoni and nonlinear study of oscillatory instabilities, and to analyze the
Rayleigh numbers are proportional to the temperature differinfluence of a nonlinear reference temperature profile on the
ence between the top and the bottom of the fluid layer antehavior of the system. We first confirm the above-
are thus positive when the temperature at the top is highanentioned asymptotic results by Bragastdal. ((10,9]). Fur-
than at the bottom as it is the case in this papEney found  thermore, we show that, more generally, a nonlinear refer-
that contrary to the situation when heating is from below,ence temperature profile can have either a stabilizing or a
instability here requires the simultaneous action of bothdestabilizing effect on the system, depending on the ratio of
buoyancy and thermocapillary effects. For a given fluid,buoyancy to surface-tension forces, on the way the tempera-
there is an optimal depth at which the system is most unture gradient is initially applied, on the time after the experi-
stable. Furthermore, the system is shown to be always stabfaent is run, etc. Given that at the beginning of anBe
for shallow layers, for which surface tension dominates oveexperiment, the reference temperature profile is in general
buoyancy. In another paper, Bragatal. ((10,9)) found by  nonlinear, these results show that the effective critical Ma-
rangoni number can in some cases be much lower than the
one calculated by using a linear reference profile. This means
*Collaborateur Scientifiqgue, Fonds National de la Recherche Scithat the value of the temperature difference giving rise to the
entifique. oscillatory instability can be much lower for a nonlinear ref-
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fluid layer is uniform fort<t,. Then, at=t,, a temperature 2 2

difference is imposed across the layer. The reference tem- ] .

perature profile we use for our stability analysis is then the FIG..2. Refer_ence tempgrature prof_lles for different va!ues qf the
time dependant solution of the heat equation in the ﬂuiodlmensm_nless time, . Left f_|gure: heating from above. Right fig-
layer at rest, which is thus nonlinear at each time. Then &"€: cooling from below (B#0.01).

quasisteady stability analysis is carried out by assuming that o
the temperature profile can be “frozen” at each specifieddUctive plate whose temperaturg is fixed and a flat upper

instant before analyzing the time evolution of infinitesimal {’€€ surface. To model heat transfers across this upper sur-

perturbations with respect to the reference solution. Thiface, we use the well-known Newton's law of cooling:
guasistatic approximation has already been used by many

authors in the context of linear stability analysege, for —Kd—Tzh(T—T ) 1)
example[13-15) and will also be justifieca posteriorifor dz “

our nonlinear study.

We consider both cases of heating from above and cooling/hereK is the thermal conductivity of the liquid artis the
from below. The quasisteady linear stability analysis is perheat transfer coefficienT; is the temperature at the interface,
formed by using a normal mode technique, allowing thez is the vertical coordinate of a Cartesian reference frame
separation of variables, combined with a spectral Tauwith its origin at the bottom of the layer and its vertical axis
Chebyshev method. We also extend our analysis to the nompointing from the lower plate to the free surface ahdis
linear regime, to determine the nature and the stability of thehe temperature far away.
patterns formed above the linear stability threshold. Our ap- As explained in the Introduction, a temperature difference
proach is a generalized amplitude equations method adaptésliimposed at=t, across the layer which was previously at
to the oscillatory problem using an iterative procedure that uniform temperaturé; . . The reference temperature pro-

controls the smallness of the slaved amplitudes]. An ana- fjje for the stability analysis is the time dependent solution of
lytical stability analysis of the typical wave patterns which yhe heat equation. This profile can only be determined by a
appears in the 2D case is performed. numerical approach and is represented in Fig. 2 for different

The paper is organized as follows. We introduce the aiyes of the “conductive” time, . Both the heating from
physical system, define some dimensionless parameters agg .o T.>To=T,.) and the cooling from belowT_,
establish the basic equations in Sec. Il. The linear problem is__I_ T 0 depicted. F ficiently | OI
treated in Sec. Ill, yielding the instability threshold as a func- 1=~ o) cases are depicted. For sufficiently large values

tion of the nonlinearity of the reference temperature profileOf t;, both profiles become linear and the two situations are

i.e., as a function of the “conductive” time after which the equivalent. . . .
temperature difference is applieand for different values of We present now the equations governing the perturbations

the ratio of buoyancy and surface tension effects. In Sec I\yvith respect to this reference solution. First, note that we are
we derive the nonlinear amplitude equations and we stud orking in the framgwork of the Bouss[nesq approximation
the stability of the solutions found in the two dimensional nd the mass density and surface tension are assumed to be

case. Conclusions are drawn in Sec. V. linear functions of the temperature:

p=po—ar(T—Ty), 2
Il. PROBLEM FORMULATION

The system under study is represented in Fig. 1. We con- o=0o— y1(T—Top) €)
sider a fluid layer of infinite horizontal extent and of thick-
nessd. The system is confined between a lower rigid con-wherea and y; are constant coefficients.
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In our stability analysis we consider that tfreonlineaj Parametei is directly proportional to the temperature gra-
reference temperature profile is “frozen” at a given instant ofdient (\ >0 when the temperature at the top is higher than at
timet, ; the reference temperature profile is unchanging durthe bottom. We now define the temperature, velocity, and
ing the application of the stability analysis. This quasistaticpressure perturbation v’ and 7 with respect to the con-
approximation is valid for the linear stability analysis since ductive reference solution, as
we are only concerned with whether or not the perturbations

grow at any stage of the evolution of the reference tempera- T=Teet 0, V=VeitV =Vv=(U"0v" W),
ture profile(see[13—-15). Concerning the nonlinear analysis
we will discuss at the end of Sec. IV the domain where the P=Prett .

guasistatic approximation is valid. . . .
The variables are expressed in dimensionless form: Under our assumptions, it is possible to neglect the term

lengths are scaled by the thicknes®f the layer, time by ’?Tmf/at in the heat equatjon, and the dimengionless equa-
d?/x, with « the heat diffusivity of the liquid, velocityy ~ 1ONS governing the evolution of the perturbatidifisr con-
=(u,v,w) by «/d (vectors are written in bold charactgrs venience the primes have been droppee given by

pressure by kvpy/d?, with v the kinematic viscosity of the V.v=0 (continuity) (11)
liquid, and temperatur& by AT=(T;—T,), whereT,; is the
temperature at the upper free surface in the reference state, dV+V-Vv=Pr— V7—Rafe,+V2v) (momentur

calculated numerically at each time stgpof the evolution (12)
of the reference temperature profile.

The Prandtl, Rayleigh, Marangoni, and Biot nondimen- 3,0+V-VO0=—wo,T,e;+V?0 (energy. (13)
sional numbers are defined, respectively, bytlie accelera-
tion due to gravity: The boundary conditiondower rigid conductive plate and

nondeformable upper free surface with the Newton’s law of

Pr= v 7 cooling and Marangoni effecare given by
K u=v=w=6=0 (14
3
Ra= W, (5)  atthe bottomz=0, and
du—Mad, 0= dp —Mad, 0= 3,0+ Bi 6=w=0 (15
’}/TdAT
Ma= , (6)  atthe topz=1.
KVpo
hd Ill. LINEAR STABILITY ANALYSIS
Bi=—. 7 -
! K Y To study the stability of the reference state we use a nor-

- _ ~ mal mode technique in horizontal directions, combined with
In addition, as an alternative to the usual Marangoni anch spectral Tau-Chebyshev method to solve the resulting
Rayleigh numbers, we have defined two different dimensionequations for the vertical dependencies. First, H44)—

less numbergr and\ by (13) are linearized, the pressure fietdis eliminated by ap-
plying VXV X to Eq. (12). Then, the temperature and ve-
(1-a) Ra_ aﬁ (g locity perturbations are written as the superposition of plane
Ray ~ Mag waves(normal modekof the form
and (v,0)=(V(2),0(2))e' xFiYe (16)
Ra Ma whereo is the complex growth rate of the perturbations and
A= @Jr @ )] ks andk, are the components of the horizontal wave vector

k. After standard calculations, we find the following equa-

where Rg and Ma are two arbitrary constants which are, tONS:
respectively, fixed at 669 and 79.607 in the following. The
parametere is a measure of the relative importance of the
buoyancy effect with regard to the thermocapillary effect and

can vary between zero and one=0 corresponds to pure
thermocapillarity andx=1 to pure buoyandy This param-
eter is related to the well-known dynamic Bond number
Boy=Ra/Ma through the following relation:

a(D?—k?)W—Pr(D?—k?)?W=Pr Rga\k?0, (17
d®—(D?—k?)@=—-WD(T,es), (18

whereD=4,, W is the vertical component of(z) and the
boundary conditions are

W=0=DW=0 (19
Raya

“Mao(l-a) 1o

Boy at the bottom, and
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W=D?W-May(1— a)\k?’0=DO+Bi ©=0 (200 oscillation pulsation of the perturbatiofiRe(o)=0 when
seeking for marginal stattsAs N is real, we have

at the top. in fact two relations A=R{g f(w,a,Pr,Bit,,k)] and
We decomposaV(z) and ©(z) in series of Chebyshev |m[f(w,a,Pr,Bit, ,k)]=0, allowing us to find the pulsation

polynomials (spectral Tau-Chebyshev method'hen after  , and the corresponding value nffor given values ofw,

projection of the equations on the Chebyshev polynomial$y, B, t,, andk. The critical\, \. is defined by
and taking account of their orthogonality properties the final
set of equations and boundary conditions can be written in . .
. ) Ae=minA(w,a,Pr,Bit, k).
the general form of an eigenvalue problem: © r
AX=\BX, (21
The wave number corresponding XQ is the critical wave

whereA andB are two matrices depending on the parametersiumberk. .

of the problem andX is the vector of the unknown coeffi- In Fig. 3,k., A\, andw,. are given as a function of time
cients of Chebyshev polynomials definiig(z) and ©(z). t, for different values of the parameter (the other param-
The eigenvaluex of the problem is a functiofi of the pa- eters are fixed: Rr1, Bi=0.01) in the case of heating from
rametersw, «, Pr, Bi, t,, andk, where o=Im(c) is the above. Figure 4 concerns the case of cooling from below.

w
kc Xc c
S—— 2 x10* 3%10° =07
3 1x10* 2x10° ~—
1
3 3x10° 800 =04 FIG. 4. k, (first column, \ (second colump
1 1%10° 400 and w, (third column as a function of time, for
different values of parameter [first row: domi-
. nant buoyancy ¢=0.7); last row: pure ther-
2 3x10 200 mocapillarity (@=0)] in the case otooling from
1 fk below
1x10° 200 «=03
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In the case of heating from above and for a low buoyancy TABLE I. Critical values corresponding to Figs. 3 and[¥Ve
effect (#=0.1) the system is stable, both for a linear refer-selected the points whene; is at its maximum value and those
ence profile {;=4) and a nonlinear onésmall t;). For  Where the reference temperature is lineiar=(). ]
higher values ofx, oscillatory instabilities become possible

as shown by Rednikoet al.[8] for a linear reference tem- ¢ t Ke Ae W
perature profile. The case of a linear reference profile is in- Heating from above

deed the most unstable one for not too strong buoyancy ef; , . 06 38 990 720
fect. But with still increasing influence of the buoyancy 5 w 11 3170 347
effect with respect to the surface tension effeet=0.5) we . 04 20 1830 513
see that a nonlinear reference profile can have a destabilizi " 3.0 3390 843
effect, i.e., the system is more unstable at the beginning of’ 0.24 2‘3 1890 601
the heat/mass diffusion process. In this case the effec:tivg'7 oo 46 14020 2180

critical Ma (or Ra, or\) can be much lower than the one
calculated using the assumption of a linear reference profile.

It is well known that in a purely surface-tension-driven Cooling from below

situation (@=0) and with a linear reference temperature pro-q 0 2.0 30 18

file, oscillatory instabilities are not possibl§8,9]). An 3 04 1.85 142 86
asymptotic analysis by Bragaed al. ([10,9]) has shown that 5 © 11 3170 347
such oscillatory instabilities become possible in the case of 4 29 20 990 305
cooling from below and at sufficiently small times (i.e., 4, = 15 1570 332

when the curvaturd®?T,. of the temperature profile near
the interface is sufficiently highThis result is confirmed by
our analysis as one can see from Fig. 4.

We indeed see thatin the_case of cooling from belig. 1, 1h05e, we use a Galerkin-Eckhaus method, which consists
4), and without buoyancy{=0), the system is stable for ¢ oynanding the unknown perturbation fields in series of the
high values of, , but can be unstable for nonlinear referenceg;genfunctions of the linear problem, then to introduce these
temperature profiles. With the increasing |mp_qrtance of theexpansions in the nonlinear equations and to project them
buoyancy effect ¢=0.1), oscillatory instabilities appear ,nio the eigenfunctions of the adjoint linear problem. The
even for linear reference profiles, but the nonlinear profile§nfinte set of equations is then reduced to a finite number of
are still the most un;table ones. Then fpr even higher Valueérdinary differential equations by using a slaving principle
of a the case of a linear reference profile becomes the mo%apted to the oscillatory problefsee[9]).

unstable situation. _ _ First we solve the linear equatiolis7)—(20) by fixing A
To summarize, we can stress that in both the heating from. . and using the growth rate of the perturbations as

above or the cooling from below problem, the nonlinearity ggenyalue parameter. For each value of the wave nutaber
can have a destabilizing effect. In transient experiments su ere exits an infinite set of eigenvalue% with p being an

as those reported by Wierscheenal. ([11]) the instability integer running from one to infinity. The negative growth

could appear for a forcing condition on the system that is . K K
lower than the critical condition determined from the rates are ordered in such a way that Re(ory) >Re(org) for

asymptotic reference solution p<g. The corresponding eigenfunctions have the form

Note also the evolution of the critical wave numiigrand
the critical pulsationw,. The wave number increases with
in both cases of heating from above and cooling from below. )
The general tendency consists of an increase of the pulsatioff’® unknowns of the nonlinear problefil)— (15)are then
with «, except that we observe a decrease of the pulsatiofxPanded as a series of these eigenfunctions,
betweena=0.2 and «=0.3 for the case of heating from

0.7 0 4.6 14 040 2180

(V5. 05) = (V§(2),0 5(2))e! e+t (22)

above. The wave number generally increasdscreases _ - K Kk
with increasing, in the case of heating from aboyeooling (v,0)= p; ; Ap(1)(Vp., 0p), (23
from below).

Some numerical values of., k., andw. corresponding whereAk

to Figs. 3 and 4 are given in Table . are the time-dependent amplitudes &ndan take

all possible directions and moduli. After insertiig2) and
(23) in the nonlinear equationd1)—(15), projection onto the
IV. NONLINEAR ANALYSIS eigenfunctions of the adjoint problem, integration by parts
and noticing that the eigenfunctions are biorthogonal, one

The linear analysis allows us to determine the critical Ma-gpiains the following general amplitude equations:

rangoni(or Rayleigh, o) number, i.e., the critical tempera-

ture gradient above which the conductive state becomes un- o o

stable, the characteristic wave number of the flow pattern, , ak_ _kak k ak SRR INSINS
' ; ' "I AL= o Ant e Mg Aq— N A A

and the corresponding pulsation. But the actual shape of the " P~ PP qzl 4Pt q,IE:l k%z alp "

pattern can be obtained only via a nonlinear analysis. For this (29
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wheree = (N —\.)/\. is the relative distance to the threshold in practice the number of slaved modes which must be taken
and the matricedM andN are given by into account for each value &fto ensure good convergence
is limited to four or five.
Here for illustration we write the final expressions of the
, amplitude equations for the 2D case. We consider only two
critical eigenmode@fi1 andA'gl, wherek; =k.g, is the criti-
cal eigenvector and‘;l: +iwe and 021: —iw, are the cor-
responding eigenvalues,. being the critical pulsation. The
' coefficients of the amplitude equations are calculated at the
critical pointA.. The slaved wave vectors akg=k;—Kk;
where the square brackets denote integration over the fluﬁk0 and k2:kk1+k1:2k1' To simplify notation we note
volume and the asterisk denotes the eigenfunctions of th8;'=A and A,'=B and, from Eq.(25 we find the two
adjoint problem. This infinite number of ordinary differential complex amplitude equations:
equations for the amplitude!é; is then simplified by using a

o« —Raah(Wst, k) +Mag(1— a)\o(dWp* 02— 1
q.p— —1 k% k k# ok
(Prtvg* v+ 65" 65)

~1/, kx kg ka ke kg Ky
Kk k Pro(uy” vyt -Vo ) +(6" vyt V62
alp —1 ki k| pkk gk

(Prvg* v+ 65" 6p)

N

slaving method. The principle of the method consists in sepa- dA=ceA—y|A|’A- B|B|?A, (26)
rating the set of eigenmodes in a first 8gt, containing the _ - _
most unstablécritical) modes, and a second ¢€{, contain- 9,B=ceB— y|B|’B— B|A|’B. (27

ing the stable(slaved modes. Since the real parts of the

growth rates of the critical modes are close to zero, while théThis is a quite general expression, where only the coeffi-
ones of the slaved modes have finite negative values, we caylentsc, y, and depend on the particularities of the prob-
assume that near the threshold the moduli of the amplituddem (see, for exampld,10]). Constant amplitude solutions of
belonging to the critical set are higher than the moduli of thethese amplitude equations are the conductive stAte R
amplitudes belonging to the slaved set. Under these circum=0), standing waves|A|=|B|+0)and traveling wavesA
stances we can rewrite Ez4) for the slaved modes, by =0B+#0 or A#0B=0). Traveling waves are stable if 0
restricting the summation to critical modes, which allows us<Re(c)e and 0<Re(y)<Re(B), while standing waves are
to express the slaved amplitudes as functions of critical amstable if 0<Re(c)e, 0<Re(y) and —Re(y)<Re(B)
plitudes only(as explained ii9]). We then obtain the equa- <Re(y) (see[2]).

tions for the critical modes by separating the sums on critical |n both casegheating from above and cooling from be-
and slaved modes in the basic equatié®$ and replacing |ow) and for any value ofr, we predict the appearance of
the slaved amplitudes by their expressions as a factor of critistanding waves above the linear stability threshold. Eventu-
cal ones. Neglecting terms of order higher than 3, we finallyally, note that in all the cases investigated we recover the

get

k_ kak k k
GAk= oAk + e Eq‘, M A

Ak

eKg
kq ko k

- > Ngip

a.1.ky ko
kl kz
AL AZeKe

kiak
AqlAI 2

kq.,kg kg, k

N > Zymn.p

g,m,n,kq,Kg,ky

Akt ks
g m

ki A Ka a k
AZARAL  (25)

,AEAE Ke
where

Zkl,k3,k4,k

_ k1.ks Kk | niKs.Kq Ky K3.Kq.Ks
amnp = (N +N )N

K q.r.p rq,p m,n,r

(&)

kg *

. k k
im(o 2+o.%)—o,

known resultg[8,9]) for a linear reference profile (=4): in

this case the conductive solution is stable below some limit-
ing value ofa and standing waves appear above this limit,
which is a check of our calculation.

In both casegheating from above and cooling from be-
low) and for any value ofx, we predict the appearance of
standing waves above the linear stability threshold. Eventu-
ally, note that in all the cases investigated we recover the
known resultg[8,9]) for a linear reference profile(=4): in
this case the conductive solution is stable below some limit-
ing value of@ and standing waves appear above this limit,
which is a confirmation of our calculation.

We close now this section with a detailed analysis of the
validity of the quasistatic approximation in the context of our
nonlinear approach. For this approximation to be acceptable,
the dimensional time scale of the growth of the perturbations
must be much smaller than the thermal diffusive time scale
(d?/ k). Equations(27), (28) show that an estimate of the
nondimensional time scale of the growth of the perturbations
is given by 1/Re€)e. This quantity must thus be much
smaller than one for the quasistatic approximation to be
valid, which means that must be large enough. Otherwise
stated, this means that the system must be sufficiently far
from the threshold. But in that case, the amplitude method
becomes questionable since its validity is, strictly speaking,

In principle an infinite number of slaved modes should belimited to the close neighborhood of the linear stability limit.

considered to calculate the cubic coefficients in ), but

Even if it is well known that the qualitative results deduced
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FIG. 5. The nondimensional temperature differencbetween 5
the top and the bottom of the layer as a function,d represented
by the solid lines, while the dotted curves represent the functions of
t, giving the value ofA on the critical curve for a wave number
always equal tok.. Left: heating from abovep=0.7 andk,

=1.53. Right: cooling from belowg=0 andk.=2. 0.1 0.2 0.3 0.4 0.5 0.6 t

r
from amplitude equations are generally valid rather far from FIG. 6. Numerical standing waves in the case of heating from

the threshold[16,17)) it is important to check in detail the ,,,e @=0.7,\=7000). A gray-scale plot of the temperature

consistency of our study. _ _ field is presented. The valuestpfon the horizontal axis correspond
This consistency will be examined for two typical cases,q the values in Fig. 5.

which have been selected because our results are significa-

tively different from those corresponding to a linear refer- . L )
ence temperature profile. First, let us analyze the case ¢©°NS are given in Fig. 6 which clearly shows the appearance

heating from above witle=0.7 and the situation for which ©f & Standing wave, as predicted by the amplitude method. A
the instability threshold is reached gt=0.09, A .= 7000, detailed analysis of this picture also enables us to determine
k.= 1.53, andw,=975 (see the dots in Fig.)3 the frequency of the wave. This frequency is seen to vary
It is important to recall that the distance to the thresholdwith time and we have checked that this numerical frequency
varies with the conductive timg since the reference tem- is close to the frequency calculated along the solid line in
perature profile is not constant. In the case of heating fronfrig. 5. Eventually, one can also notice that, as expected, the
above, Fig. 2 shows that increases with time, which means standing wave progressively dies out when the two curves in
that ¢ also increases from zero at the threshold to positivérig. 5 approach each other as time goes on.
values later on. Figure 5 allows us to study in detail the As a second situation to check the validity of our quasi-
growth rate 1/Ref)e of the critical mode. The solid line is static approach, we consider the case of cooling from below
the nondimensional temperature difference between the topnd a purely thermocapillary problena € 0). If the refer-
and the bottom of the layer as a function pfwhile the  ence temperature profile were assumed linear, it is well
dotted line represents the functiontpfgiving the value of\ ~ known that no instability is possible in this case. On the
on the critical curve for a wave number always equal to theother hand, Fig. 4 shows that in the case of a nonlinear
critical k,=1.53. The relative distance between these twoevolving temperature profile an instability is predicted for
curves is thus the value ef for the unstable mode defined small values oft, while all perturbations should decay for
by the dots in Fig. 3. This mode is actually excited for large values of the time variable. The value of the nondimen-
larger than 0.09 and smaller than 0.52. The average value éfonal temperature difference at the beginning of the experi-
the distance to threshold between these two valugs f ~ ment is assumed to be 300; the most unstable wave number
2.6. Since the calculation of the coefficient of the amplitudecharacterizing the critical mode is equal to 2 and the corre-
equations gives Ref=8.5 in the present situation, the av- sponding frequency is given by 18. In this situation, Fig. 5
erage time scale of the growth of the perturbation can b&hows that the critical mode is indeed excited for valuets of
estimated to 0.045, which is indeed much smaller than 1smaller than 0.85. With Refj=5.1 and a mean value @f
This means that in the present example, the quasistatic afer 0<t,<0.85 equal to 2.7, the mean time scale for the
proximation is valid and the amplitude of the unstable modegrowth of the perturbation is equal to 0.072, which justifies
has sulfficient time to saturate before the reference temperélae application of the quasistatic analysis. Moreover, pure
ture profile has notably changed. numerical calculations show that the standing waves pre-
The next delicate point is then the validity of our ampli- dicted by the amplitude method actually appear for small
tude method which is, strictly speaking, limited to the closeand enventually die out fay, = ~0.85.
neighborhood of the linear stability limit while the mean In conclusion, we can assert the quasistatic approxima-
value of ¢ is equal to 2.6 in our problem. To examine this tion, leading to the amplitude equations and the prediction of
guestion, we use pure numerical 2D calculations with a horistanding waves above the threshold can be considered as a
zontal Fourier decomposition and a finite difference method/alid method to analyze the nonlinear evolution of our sys-
along the vertical coordinate. The results of these calculatem.
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V. CONCLUSIONS These results show that the assumption of a linear refer-
Shee temperature profile can lead to wrong predictions, espe-

stability analysis of a system formed by a laterally infinite cially in the domain where surface tension effects are domi-

horizontal fluid layer with a nondeformable surface, compar 1Nt when cooling is from below. Note finally that pure
ing the cases of heating from above and cooling from bemv\pu.merlcal calculations have .also. enabled us tq prove the va-
and emphasizing the importance of the nonlinearity of thdidity of the so-called quasistatic approximation that was
reference profile at the beginning of the experiment. used in the stability analysis.

We showed in particular that when the layer is heated
from above, a nonlinear reference profile has a destabilizing
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We have presented in this paper a linear and nonline
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