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Complete band gaps for liquid surface waves propagating over a periodically drilled bottom
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A plane-wave expansion approach is developed to solve the mild-slope equation for liquid surface waves
propagating over a bottom with periodic structures. Band structures are calculated for the bottom periodically
drilled with the square or triangular lattice of holes. Complete band gaps are found for both lattices. Parameters
that influence the formation of band gaps are discussed.
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[. INTRODUCTION bottoms, waves consist of both propagative and evanescent
terms. When the bottom slope is mild or when we only con-
When propagating in periodic structures, classical wavesider the overall wave propagation, the velocity poterdial
are greatly modulated by the introduced periodi€ity As a  can be approximated as
result of multiple Bragg scatterings, wave propagation in the
periodic structures is characterized by band structures. Be- coshk(z+h) .
tween bands there may exist a band gap within which wave d)(x,y,z,t)mRﬁ’ e(XY) —cosmkp S —iwt)
propagation is absolutely forbidden. In the last few years, the )
idea of the existence of band gaps has been extended to
photonic crystals for electromagnetic wavigs-7] and to  whereh is the variable liquid depth ang is the complex
sonic crystals for elastic wav¢8,9] provided that their con- horizontal variation. For inviscid liquids, the angular fre-
stituent materials are periodically arranged. quencyw and the local wave numbeés are related by the
Liquid surface waves are also modulated by the introfollowing dispersion relation
duced periodicity if propagating in periodic structures. Band
structures and band gaps can also exist for liquid surface w?=gk(x,y)tan k(x,y)h(x,y)], (]
waves. Recently, there have been some theoretical calcula-
tions on the band structures and the possibility of the exiswhereg is the gravity’s acceleration. It should be mentioned
tence of band gaps for liquid surface waves propagating ihat the above slowly spatially varying dispersion relation is
periodic structure$10—15. No complete band gaps, how- a consequence of a slowly varying depth function and is
ever, were found in Ref§10—14. Experimental work has essentially a classical WKB approximatif24].
also been carried out to study surface liquid waves propagat- The MSE, originally proposed by Berkhofl7,18, has
ing over a periodically drilled bottorfil2,16. In Ref.[12],  been widely used to deal with the evolution of liquid surface
band structure was measured. No compl@deall propagat- waves over varying topography. The previous calculations of
ing direction$ band gaps were observed. Only partial bandband structures for liquid surface waves are based either on
gaps along certain directions in the Brillouin zone werethe shallow water equationsl1,12 or on the Helmholtz
found. Bloch waves were clearly observed due to the Braggquation[13]. The MSE reduces to the Helmholtz equation
resonanc¢l2,16|. in deep liquid and constant liquid depth, and to the shallow
In this paper, the plane-wave expansion method is appliedater equations in shallower liquid under the conditkdm
for solving the mild-slope equatiofMSE) [17—22 in order ~ <<1. In the case of a bottom with periodic structures, we start
to investigate band structures for liquid surface waves propawith the MSE, which has wider applications and gives more
gating over a periodically uneven bottom. The paper is orgareliable results than the shallow water equati®#25. The
nized as follows. In Sec. Il, the plane-wave expansion apMSE may be taken in the for21,22
proach is developed for solving the MSE. The calculated
results and discussions are presented in Sec. lll. Conclusions (V-ccyV+k%ccy) 9=0, 3
are given in Sec. IV.
whereV=(d,,dy) is the horizontal gradient= w/k is the
phase velocity, andt,=dw/dk is the group velocity. Al-
Il. PLANE-WAVE EXPANSION APPROACH TO THE though the theory is appropriate for slowly varying bottoms,
MILD-SLOPE EQUATION the analysis and the qualitative physical features for drilled,

Liquid surface wave propagation over an uneven bottonfliscontinuous bottoms are expected to be not too different
is a classical hydrodynamics problg®,20,23. Itis a com-  [14]. By introducing a new parameter
plicated three-dimensional problem. In the case of step-wise

B / tanh(kh) N 2kh 4
U=C%19= 7o sinh(2kh) |’ @
* Author to whom correspondence should be addressed. Electronic
address: jzi@fudan.edu.cn the MSE can then be rewritten as the form
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(V-uV+k?u)e=0. (5)

Note thath, k,c, ¢y, andu are all functions of horizontal
coordinates = (x,y). Reasons for introducing the new pa-
rameteru are that it has a length dimension and is an impor-g
tant parameter for the formation of band gdfsbe shown §
later). The physical meaning af can be seen from the fol- 2
lowing discussions. Comparing E@) with the master equa- %
tion for electromagnetic waves propagating in photonic crys-&
tals[5], it is easy to find that the introduced new quantity
plays a role similar to the dielectric constantn the master
equation, a crucial parameter to determine photonic banc
gaps in photonic crystals. It should be noted thas fre-
guency dependent. For low frequenciass approximately
the nominal liquid deptin. For high frequencies, however,

is proportional tow 2, independent oh. No band gaps are
expected for high frequencies since these high frequency
waves view the uneven bottom as even one. Therefocan

be viewed as theffectiveliquid depth, an important param-
eter to determine the existence of band gaps.

We consider liquid surface waves propagating over a 2D
periodically uneven bottom. A plane wave approach is
adopted to solve the MSE, similar to electrofiz6] and
electromagnetid5,27] waves propagating in periodic sys-
tems. In this system the liquid depth is a spatially periodic
function. For a given frequencl, andu are different in the
drilled and nondrilled area. They are also periodic functions ¢
of (x,y). The horizontal velocity potentiap must be the r X M r
Bloch function. This Bloch function contains a Bloch wave
vector due to the result of the introduced periodicity. The
periodic functionsu and k?u can be expanded by plane

Frequency (Hz)

FIG. 1. Calculated band structures for the square lattice. Experi-
mental results from Torrest al. [12] are shown with their corre-
sponding error bars. The irreducible Brillouin zone is shown as

waves inset. (@ a=2.5mm, R=0.75mm, hy=0.2 mm, and h;
=2.2mm. (b) a=7.5 mm, R=1.75 mm, hy=0.55 mm, andh;
U(r)zz AGeiG-I" (6) =2.55 mm.
G
) / ,w)Cs =0, 11
K(2u(r) =S Beei®™, @ 2 Qor6(6,0)Coyq (11
G

whereG=(Gy,G,) is the 2D reciprocal lattice vectors. The where
field ¢, which is the Bloch function, can be also expanded
by plane waves, namely Qe 6(0,0)=[(G+q)-(G'+a)]Ac -c—Bs'-c-
(12
— i(G+q)-r
(P(r)_%: Code ' ® It is easy to show that the matriQ(q,») is Hermitian. To
ensure that Eq11) has nontrivial solutions, the determinant
whereq is the Bloch wave vector in the first Brillouin zone of the matrixQ(g,w) must be zero
[28]. The Fourier coefficient®\g and Bg can be obtained

from detQ(q,w)|=0. (13

AG:%J’ _ u(rye ' rdr, (9) Band structures can then be obtained by solving the above

unit cell equation. The number of plane waves is determined by the
truncation of reciprocal lattice vectors. To guarantee the sat-
isfactory convergence of the eigen values, enough plane
waves are needed. It is noticed that Etl) is not a standard
eigenvalue problem since the expansion coefficidgsand
where() is the area of the unit cell. Substituting E¢8)—(8) B¢ are dependent om. A root finder is used to obtain the
into Eq. (5), we obtain eigenvalues for a given wave vectgr

:i 2 —iG-r
Bg k(r)<u(r)e dr, (10
Q unit cell
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FIG. 2. Gap map as a function of the filling fraction for the ~ FIG- 3. Band structures for the squaf@ and triangular(b)
square(a) and triangular(b) lattices of holes. Gray areas denote 'attices. The parametess ho, h, are the same as in Fig. 2 and the

band gap regions. For both lattices=22 mm, hy=0.2 mm, and radius of the drilled holes i*R=8.8 mm for both lattices. The
hy=2.2 mm. ' ' ' irreducible Brillouin zone is shown as inset.

IIl. CALCULATED RESULTS AND DISCUSSIONS band _structure, while' thos.e. for Fig(k} are the same as ip
experiment[16] for visualizing Bloch waves and domain

We consider the bottom consisting of drilled cylindrical walls. It can be seen from Fig(d) that the calculated results
holes with radiusk arranged in a periodic way. The liquid are in good agreement with the experimental ones. For the
depth over the bottom is denoted hy and the depth over geometry in Fig. tb), the Bloch wave patterns were pre-
the cylindrical holes by;. Thereforeh;—hg is the depth of  sented in the experimeiil6]. By inspecting the profiles of
the cylindrical dimples. Two types of lattices of cylindrical the corresponding modes, it is found that the calculated pro-
holes are considered, i.e., the square lattice and the triangulfifes are in accord with the observed ones.
lattice. The lattice constant is denoteddnyin all the follow- Recall that in experimentl2] no complete band gaps
ing calculations, the results are obtained by using 253 plangere found. To investigate the possibility of the existence of
waves for the square lattice and 285 plane waves for thband gaps, the gap maps as the function of the filling fraction
triangular one. The accuracy is carefully checked by usind, defined as the fraction area occupied by the drilled holes in
plane waves of more than a thousand. Thus, we believe that unit cell, are given in Fig. 2 for the square and triangular
all results presented here are accurate to within at least 1% ¢dttices. For both latticess=22 mm, hy=0.2 mm, andh,
their true values. To compare with the experimental results=2.2 mm are taken. For the square lattice, there may exist
the liquid considered in our calculations is the same as inwo band gap regions. The first exists if the filling fraction is
experimentg§16,12. It should be mentioned that for the ge- within the range between 0.32 and 0.58, while the second
ometries discussed below, the capillary effect will play a roleone exists for the filling fraction within the range between
[12] and should be taken into account. Therefore, the dispe.35 and 0.71. The range of the filling fraction that renders
sion relation of Eq.(2) should be replaced bw?=g«(1 the existence of the band gap possible for the first band gap
+dZk?)tanh(h) [16], whered_ is the capillary length, taken is smaller than that for the second one. Moreover, the width
to be 0.93 mn{12]. of the second band gap is larger than that of the first one for

In Fig. 1 the calculated band structures for the bottomthe same filling fraction. For the filling fraction outside this
drilled with the square lattice of holes together with the ex-range there are no band gaps. For the first band gap the
perimental results are shown. The geometry parameters faptimal filling fraction that gives a maximum ratio of the gap
Fig. 1(a) are the same as in experimé¢a?] for studying the  width to the midgap frequencyr w/w=4.6% occurs aff
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FIG. 4. Ratio of the gap width to the midgap frequency as a  F|G. 5. Ratio of the gap width to the midgap frequency at the
function ofh, /h, for the squarea) and triangulab) lattices. Solid  optimal filling fraction as a function of/h; for the squarda) and
and dashed lines denote the first and second band gap, respectivalyangular(b) lattices withhy=0.2 mm anch,=2.2 mm. Solid and
For both latticeshy=0.2 mm,a=22 mm, andR=8.8 mm. dashed lines denote the first and second band gap, respectively.

=0.49. For the second band gap the optimal filling fractionno band gaps. The ratio of the gap width to the midgap
is f=0.51, leading to a maximum o/ w=7.5%. frequency as a function dfi; /hy is shown in Fig. 4 with

For the triangular lattice, the first band gap exists for thehg=0.2 mm anda=22 mm for both lattices. For the square
filling fraction within the range between 0.08 and 0.85, lattice, the minimum value df, /hq required for opening up
which is much larger than that for the square lattice. Thea band gap is 7.70 for the first band gap and 7.96 for the
maximum value of the ratio of the gap width to the midgapsecond one. For the triangular lattice, the minimum value of
frequency occurs at the optimal filling fractidr=0.58, be- h;/hy=2.15 is required to open up a band gap. For the same
ing 43%. The width of the band gap for the triangular latticehy anda/h;, the required minimum value &f; /hq for open-
is much larger than that for the square lattice for the saméng up a band gap is much smaller for the triangular lattice
filling fraction. Therefore, the triangular lattice is much than for the square lattice. This indicates again that the tri-
easier to open up a band gap than the square lattice. angular lattice is more amiable for the formation of a band

In Fig. 3, the band structures for liquid surface wavesgap than the square lattice. It is noted that the ratio of the gap
propagating over the periodically drilled bottom are shown.width to the midgap frequency increases with increasing
For both latticesa, hy, andh, are the same as in Fig. 2 and h;/hg and turns to a constant for larde /hy for hy/hg
the radius of the drilled holes R=8.8 mm. For the square larger than the minimum value required for opening up a
lattice, there are two band gaps. The first gap spans frorhand gap. This implies that the band structure is independent
2.00 to 2.09 Hz, while the second one from 2.79 to 3.01 Hzof hy for largeh, /h.
The width of the second band gap is larger than that of the As regard toa/hy, it is also an important parameter for
first one. For the triangular lattice, the band gap is very largethe formation of a band gap. Its importance is not as intuitive
spanning from 1.88 to 2.93 Hz. Clearly, there do exist bandash;/hy and is not noticed in the previous studidd,12.
gaps for liquid surface waves propagating over the 2D periThe ratio of the gap width to the midgap frequency as a
odically drilled bottom, contrary to the previous studi#g].  function ofa/h; at the optimal filling fraction is given in Fig.

Basically, there are four parameters that influence the fors. There is no band gap fa’h, below a certain value. For
mation of band gaps, namehy /hy, a/hy, f, and the lattice the square lattice, the minimuedh, required for producing
symmetry. It is rather intuitive that, /hy is very crucial for  a band gap is 6.60 and 6.16 for the first and second band gap,
the formation of a band gap. If it is too small there should berespectively. For the triangular lattice, this minimum value is
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2.21. In the previous studies of the band structures for liquichpproximationhk<<1 is used. It leads to an effective liquid
surface waves, no complete band gaps were fduadl2. depthu being the nominal one even for high frequencies. In
The reason lies in the fact thath; is below the minimum some cases, the shallow water equation predicts unphysical

required value for opening up a band gap. results because of the too rough approximation used.
For a/h; larger than the minimum value required for
opening up a band gap, the ratio of the gap width to the IV. CONCLUSIONS

midgap frequency increases wit/hy, while the midgap A plane-wave expansion method was developed to solve

frequency decreases accordingly. It is interesting to note th o :
for largea/h, this ratio turns to a constant. Meanwhile, the%.e MSE. fo'r surface liquid waves propagating over a bottom
with periodic structures. Band structures were calculated for

optimal filling fraction also approaches a constant. This "M both the square and triangular lattices. It was found that for

dicates a very interesting feature of scaling, similar to that irboth lattices there do exist complete band gaps. contrary to
dielectric photonic crystalgs]. In other words, if we change . . . piete 9aps, y
the previous studies. It is more amiable to open up a band

the lattice constant scale of the system by a fastmd keep jgap for the triangular lattice than for the square lattice. More-

hy, hi/hg, and f unchanged, the band structures are al : :
scaled by the same factor, namedq)/s. This is because over, the trlang_ular lattice possesses a I_arger band gap than
' ) the square lattice. The parameters that influence the forma-

foJe\r/]iry IT"’ngeaﬁ/:étif/Ze dlgwn;risb:ndrggprfr?agaclcutrh:tnlc())r\‘lr]vi;S- tion of band gaps were discussed. The reason why no band
ge th ¥6r low fre uencies This ‘;Ea“n 0 yert is checkedlaPs were found in the previous studies lies in the fact that
P q ' g property he ratio of the lattice constant to the depth over the drilled

gzctau; r;lé;r:i?]ncalr ore;JtltSf.olrt ssrr:]glr? b;ng(;;?dhithﬁtf:ge;ir']‘c_’ "Roles is below the required value. An interesting scaling
g property 1 9 q property was found for low frequencies and a large ratio of

cies. ; .
In the above discussions, we have used MSE in the studgpe lattice constant to the depth over the drilled holes.

of band structures for liquid surface waves propagation over
periodically drilled bottoms. In the previous theoretical and
experimental studies, no complete band gaps were found. This work was supported mostly by Chinese National Key
The reason lies in the geometry parameters chosen. If prop@&asic Research Special Fund. Partial support from the NSF
geometry parameters are used, complete band gaps can ded from Shanghai Science and Technology Commission,
found. If the shallow water equation is used instead of MSEChina is acknowledged. We thank Dr. Z. Lin for the discus-
the band gaps found are usually larger than those predictesion on the root finder and Dr. Torres and Dr. Adrados for
by MSE. This is because in the shallow water equation, theliscussions.
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