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Response maxima in modulated turbulence. Il. Numerical simulations
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Numerical simulations of fully developed turbulence driven by a modulated energy input rate or driving
force are performed within two dynamical cascade models, the Gkedzer-Ohkitani-Yamada shell model and a
reduced wave vector set approximation of the Navier-Stokes equation. The frequency behavior of the system
response is studied and compared with predictions from a variable range mean-field theory, which excludes
turbulent fluctuations. In agreement with the mean-field approach, we find a constant response amplitude for
low driving frequencies and a &/decay of the amplitude for high frequencies. In the mean-field theory, the
finite cascade time scale had led to an oscillating behavior of the response amplitude as a function of the
driving frequency. In the simulations of both models we observe the main maximum. The higher maxima and
minima are completely washed out by fluctuations, though the statistical properties of the fluctuations are
different in the two models.
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I. MOTIVATION decreasesA{1/w) at higher frequencies. The finite energy
transfer timer plays a crucial role in this theory. This time

Many realistic turbulent flows are subject to modulatedis the average time the energy stays within the system while
driving forces, as, e.g., the atmosphere of the Earth driven bit is transported by the interaction cascade from the large
the periodic heating of the Sun or the pulsed flow through a&ddies towards the small eddies, where it is finally dissi-
pipeline. Three dimensional turbulence is characterized by apated. This intrinsic time scale of the system is a multiple
energy cascade from the outer length scale, where the forcingf order 1 of the large eddy turnover timg, corresponding
acts, to the dissipative scale, where most of energy is dissto the sum over the eddy turnover times on all scates.
pated, see, e.g., Refil,2]. The down-cascading of energy determines the frequency at which the crossover takes place
from large to small scales takes a characteristic timéh a  between the regime of constant response amplitude and de-
statistically stationary flow the energy dissipation rate equalgreasing amplitude. In addition, it leads to an oscillating be-
the energy input rate. In a situation with time dependenthavior of the system response with driving frequengy
energy input, on the other hand, this statement will only holdvhere the maxima and minima are at frequencies connected
on average whereas the energy dissipation at a certain timeo the inverse of the energy transfer timeIn the limit of
tis expected to depend on the energy input a¢artier time  large frequencies, the extrema of the response can be es-

due to the finite time delay of the energy transfer. timated to be at frequencies,=n(=/7), n=1,23 ... .
In a previous worK 3] the effect of an energy input rate Recent experiments on modulated turbulence in a cylinder
modulated in time, between two counter-rotating disks| provided evidence for
the proposed response maxima. In accordance with the pre-
ein(t)=€eo(1+esinwt), (1) dictions from the mean-field theofg], for small frequencies

a constant response amplitude was measured. For large driv-
with a modulation amplitudee<1 and a modulation fre- ing frequencies a &/ decay of the velocity response ampli-
quencyw, has been studied within a variable range meantude was observed, again in agreement with the prediction
field theory[4]. The response of the system can be observe¢tom our mean-field approach. Note here that both the veloc-
in the second order velocity structure function of the flowity response as well as the energy response are the same up
field at the outer length scalé, D, (t)=([u(x+L,t) to a factor of 2, in linear order, cf. Sec. VI of R¢B].
—u(x,t)]?)=6uyms, Which is equivalent to the Reynolds  In the experiments the amplitude of the driving force
number Re{) =u, ms(t)L/v of the flow and the total energy rather than that of the energy input rate is modulated. Since
E(t) =(u?)/2 of the system. Herey; s is the rms of one the energy input rate is not a controlled quantity anymore, it
velocity component and is the viscosity. The response fol- can serve to measure the response of the system. Of course,
lows the oscillation of the energy input rate with almost con-also within the mean-field theory we can apply a modulated
stant modulation amplitude at low frequenciesof the en-  driving force, see Ref[3]. The main features, the @/decay
ergy input rate, whereas the response amplitude stronglygf the energy response amplitude for high frequencies and

the constant response amplitude for low frequencies, pertain.

The response maxima are only slightly shifted in comparison

*Present address: Department of Physics and Astronomy, Institut® the case of a controlled and modulated energy input rate.
for Marine and Atmospheric Research Utrecht, Utrecht University,In the case of a modulated driving force, as in the experi-
Princetonplein 5, 3584 CC Utrecht, The Netherlands. ments, the energy input rate as a response of the system, also
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shows maxima in addition to the mentioned mean features
These are at the same frequencies as the maxima of the tot
energy response amplitude.

In the mean-field approach, tlimtermitteny fluctuations
of the energy and, in particular, of the cascade tinage not <
present. In experiments and numerical simulations these § -1
fluctuations are of course present, and they may lead tc™
broader and less pronounced response maxima and minimi
Therefore, in this paper we shall study the frequency depen:
dence of the response to a modulated energy input rate into
system where turbulent fluctuations are included. In particu- -2 : o
lar, we shall address the question whether the respons
maxima and minima can still be well identified in the pres-
ence of fluctuations. Furthermore, we not only consider a
modulated energy input rate, but also discuss the slightly 4
different case of a modulated driving force in order to com-
pare with the above mentioned experiments.

An appropriate way to numerically study the problem of
modulated turbulence would be a direct numerical simulation
of the Navier-Stokes equation for this specific time-
dependent energy input rate. However, as we need high Rey=
nolds numbers to achieve fully developed, isotropic, and ho-
mogeneous turbulence and, in addition, need the response «
the system as a function of time for a wide range of driving 23 o 0 1
frequencies, the computational demands would be too high log,(o7)

Therefore, we first study the problem within a dynamical _ ) .
cascade model of turbuience, the Gledzer-Ohkitani-Yamada F'C- 1+ Response amplitude as a function of the driving fre-
(GQY) shell model[6-13]. With this model, large Reynolds quencye for a modulated energy input ragg, = eo(1+esinawt)

_ L . calculated within the GOY shell modéfull dots), see Sec. Il B.
numbers and enough statistics within a reasonable computi

. h ) npne modulation amplitude is set ®=0.2, and the cascade time
time for each driving frequency can be achieved. The GO.YdeIay turned out to be/r =a=2.54. The stationary Reynolds

model has been successfully used in a study about decaying per is Rg=7.1x 10%, the viscosityr=1.018 7510 %, and
and kicked turbulencgl4]. In addition, to be even closer t0 e |arge eddy turnover time, = 15.57. Time and length units are
a numerical Navier-Stokes simulation and to distinguish beget by, k., andF, in GOY. Our findings are compared with the

tween real effects and artifacts of the turbulence model, Weesponse amplitude as calculated within the mean-field model with
follow another approach. We calculate the response of thghe samee and~ (dashed lines (a) Log-log plot of the amplitude
system to a modulated energy input rate within a reducegs frequency. The long-dashed line denotes the low-frequency limit
wave vector set approximatigfiREWA) [15-17, where the  of the mean-field theoryA=2/3, and the dotted line the high-
Navier-Stokes equation is solved on a reduced, geometricalliyequency limit, Ax2/(3w). The arrow denotesr =1/a=0.39.
scaling subset of wave vectors. This method is much closexear this frequency the crossover takes place in GOY. Inset: linear
to the Navier-Stokes dynamics than the GOY model, as itcale plot of the response amplitude) Log-log plot of the ampli-
contains(i) much more modes than GOYjj) it solves the tude compensated by the asymptotic amplitude, A&(w7 ) * vs
Navier-Stokes equation for those modes and not only &equency. A clear maximum is observed in GOY at a frequency
model equation; andii) it is three dimensional. By compar- near the maximum of the mean-field amplitude.
ing the results of the two models we can systematically study
the effect of fluctuations in different models of turbulence. is plotted versus frequency. Thedlbecay of the response
Our main results are summarized in Figs. 1, 2, and 3. Inmeans that for fast modulation no response is detectable any-
Figs. 1 and 2, the amplitud& of the energy response is more. The remaining dissipation rate is that of the stationary
shown as a function of the driving frequency for both thesystem itself.
GOY model(Fig. 1) and the REWA simulatioiiFig. 2) with In the mean-field approach, a sequence of response
a modulated energy input rate. This is compared with thenaxima is present for both types of forcing, starting at a
results of the mean-field model with the corresponding pafrequencywo1/7. In the simulations, this main maximum
rameters, i.e, the same modulation amplitwl@nd time can also be observed, although it is weaker and broader, i.e.,
scaler. In Fig. 3 the results from the GOY model solutions it is “washed out” by fluctuations. The higher-order maxima
are shown for a modulated driving force and compared withand minima are not visible in the simulations, but are com-
the mean-field model. In all cases we observe a constamptietely washed out by fluctuations. On the other hand, we
amplitude for low driving frequencies and awlflecay for emphasize that the turbulent fluctuations in the GOY model
high frequencies. This can, in particular, be observed in thare strongly overestimated due to the extreme mode reduc-
compensated plotgarts (b) of all three figure§ whereA,  tion in this model. In the REWA simulation, an artificially
compensated by its asymptotic amplitude, & (w7 )1, large Kolmogorov constatt, indicating that still the fluctua-
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FIG. 3. Response amplitudeand amplitude of the energy input
rateAe as a function of the driving frequenay for a modulated
quencyw for a modulated energy input ratg, = ey(1+ e sinwt) driving force F=Fy(1+esinwt) calculated within the GOY shell
calculated within the REWA modéefull dots), see Sec. Il B. The model(full dots), see Sec. Il C. The modulation amplitude is set to
modulation amplitude is set te=0.3, and the cascade time scale e;=0.2, and the cascade time scale is found torbg =a=2.48.
results to ber/ 7. =a=2.94. The Kolmogorov constant is found to The stationary Reynolds number is JRe8.6x 10*, the viscosity
beb=83.5 in this simulation instead d&f,,,=6-9. The stationary »=1.018 75< 1074, and the large eddy turnover timg =14.5.
Reynolds number is Re=1.2x 10°, the viscosityy=5x10"° and  The result is compared with the response amplitude as calculated
the large eddy turnover time, =0.063. Times are measured in within the mean-field model with the saneeand  (dashed lines
units of LZ%, 3 in REWA. The result is compared with the re- (a) Log-log plot of the amplitude vs frequency. The long-dashed
sponse amplitude as calculated within the mean-field model withine denotes the low-frequency limit of the mean-field thedky,
the samee, 7, andb (dashed lines (a) Log-log plot of the ampli- =1, and the dotted line the high-frequency limitg2/(3w 7).
tude A vs frequency. The dotted line isl/w. The arrow indicates The arrow denotes . = 1/a=0.40. Near this frequency the cross-
the mean-field crossover frequenay!’.r = (6/b)%?=0.019. In-  over takes place in GOY. Inset: linear scale plot of the response
set: linear scale plot of the response amplitut.Log-log plot of  amplitude. (b) Log-log plot of the compensated amplitude, i.e.,
the compensated amplitude, i.&/(w7 )~ vs frequency. A clear A/(w7) ! vs frequency. The dotted line denotéd(wr ) 1=
maximum is observed in REWA at a frequency near the first maxi-const.(c) Linear scale plot of the energy input amplituéxgin S
mum of the mean-field amplitude. The arrow indicates the height ofrequency. The mean-field amplitude as well as the GOY amplitude
the maximum, i.e., a deviation from thewlflecay by a factor of 1.4  start for low w with A, =1.5 and merge ah =1 for high fre-
in REWA. quencies. The GOY amplitude shows only the first main maximum.

FIG. 2. Response amplitude as a function of the driving fre-

tions are stronger than in the Navier-Stokes dynamics, igluced wave vector set approximation. We summarize our
found. Using such large in the mean-field approach also results in Sec. IV.
leads to a considerable weakening of the first maximum and
a shrinking of the higher-order maxima and minima towards || MODULATED TURBULENCE IN THE GOY SHELL
very small amplitudes. MODEL

These results will be explained and discussed in detail in
this paper, which is organized as follows. In the following
section we study the modulated turbulence within the GOY The GOY shell model consists of a set of coupled ordi-
shell model. Before calculating the response of the system toary differential equation€ODES9 for one-dimensional com-
a modulated energy input rate as well as a modulated forcinglex velocity modesi,, [6—13]. These modes,, correspond
in Secs. 11 B and Il C, we briefly introduce the model andto velocity differences|u(x+r,)—u(x)| on scaler,. N
study its stationary properties in Sec. Il A. In Sec. Ill we modes are taken into accoumt=1,2, ... N, one complex
present our findings on modulated turbulence within the revelocity mode per cascade leveldefined by the wave num-

A. Stationary properties
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bersk,=\"ky which are equally spaced on a logarithmic 20 — ' '
scale, here)\ =2. The model equations read R

s ISR VSR
d 2
—+ vk

—i * * * *
dt un_|(aknun+1un+2+bknflun—lunJrl

a
>

~
=

FCky_pUp_1Un_p) +F 1, 2

wheren=1,... N, a=1, b=—-1/4, andc=—1/2. These
are the traditional parameters. We impose boundary condi
tions on theu,, i.e.,u,=0 for n<1 or n>N. We useN
=14 shells, a viscosity ofv=1.01875<10 4, and kg T,
=2"% The forcing acts on the largest scale, i.e., the first
shell,n=1. F is constantF =F,=(1+i)x 10 2. Together .
with v andkg, this sets the time and length units as well as

the Reynolds number. Equatiofi®) are integrated using a -100 5 10 15
fourth order Runge-Kutta scheme with adaptive step size =

[18] shell number n =log,(k /k,)

With the above chosen parameters the GOY dynamics iS FIG. 4. Characteristic time scales of the turbulent energy trans-
chaotic[13]. The system is forced on large scales while moster =, (full dots) and of the viscous dissipatior] (full triangles as
of the energy is dissipated on small scales. It reaches a steatiinctions of the level numben. The dashed line is a linear fit of
state, in which the velocities are stochastically fluctuating. Inog, 7,, n=2, .. .,11, and givesr'=22.46<2~ %6 The shown
this sense the system has similar properties as three dimen; are obtained by averaging over about 1400 large eddy turnover
sional Navier-Stokes turbulence. The scaling behavior ofimes. The dotted line indicates the middle of the crossover region
structure functions and dissipation has been extensively studetween the ISR and the VSR.
ied in Refs.[10-13,19-21 The deviations from K41 scal- )
ing due to intermittency observed in the GOY model are very! herefore, we extrapolate from the turnover times of the
similar to experimental values. In order to reduce the com®ther shells. A 'mefar fit in Fig. 4 for logy with n
putational effort we use only 14 shells, which turns out to be=2. - - - ,11leads tor;'=22.46< 2~ %% without intermit-
sufficient to achieve an inertial scaling range of about thredency one would have,2 2", the small deviation corre-
decades. sponds to the intermittent scaling of=k;, %" or an inter-

The Reynolds number of the system can be defined agittency  correction of &&;=§,—1/3=0.04. The
follows. An outer length scalé is given by the smallest extrapolation forn=1 yields for the large eddy turnover
wave numbek,, L=1/k;. Atypical velocityU is the veloc- time r = rfl't= 14.5. The time scale corresponding to the en-
ity on that scale(|u,|?)¥2. The average(---)) is taken ergy transfer timer used in the mean-field modg8] is the
over time. With these length and velocity scales the Reysum over the eddy turnover times of all energy-input and
nolds number of the present simulation is,R&JL/» inertial-range shells, i.e., here=3'' 7,=35.9. The factor
=8.6x 10*. The simulated time interval is several hundreds7/7 =a between the transfer time and the large eddy turn-
of large eddy turnover timg,u,| 1. The time scales in the over time is thera=2.48.
model have been determined as follows. For each shai Until now, we have considered a constant forcikg
eddy turnover timer,, is defined by{10] 7,=1/ju.k,|. This  =F,. The resulting energy input rate,(t)=(u} (t)F,)
is also considered as the time scale for the turbulent energfen fluctuates around its mean value because otifi(e)
transfer through theth level. The time scale relevant for the fluctuations. In the mean-field theof¢] the energy input
energy loss on leveh due to viscosity is defined as, ratee,, is constant instead. For closer comparison we also
=1/(vk2) . Both time scales are shown in Fig. 4. consider another type of forcing in the GOY modEl(t)

In the inertial subrangdISR) between shells 2 and 9, =eyu,(t)/|u,(t)|2. This forcing F(t) fluctuates asu,(t).
where the energy transfer times are the relevant time scalefhen the energy input rate is,={u} F)=e,=const by
for the dynamics, the decrease of thewith nis nearr,  definition. The ISR-scaling behavior as well as the energy
«272"3 (dashed line in Fig. Blas expected for the turnover spectrum then turn out to be similar to the previously dis-
times of eddies of sizes,/L=(1/2)". In this range the dis- cussed ones with the constant forciRg=F,. The energy
sipation time scales?1 are much larger than the,, meaning  transfer timer is slightly larger in this case, namely,
that the turbulent energy transfer is much faster than the=39.5, and the large eddy turnover time ig=r"
viscous dissipation, and therefore the dominant process. |la15.57. Again, the large eddy turnover time is extrapolated
the VSR instead-ﬂ< 7., i.e., on average the energy is dissi- from 7,, ...,r;;. This leads to the factot/r =a=2.54
pated by viscosity before it can be transferred to smallebetween the total time delay of the energy cascade and the
scales. The largest eddy turnover time is, in general, defineldrge eddy turnover time. In the following sections we will
by the velocity on the outer length scalei.e., on the length  study the time-dependent cases where either the energy input
scale of the forcing, which in this case iki/ However, in  rate e;,, i.e., F=¢gu,/|u;|?> (Sec. Il B or the forcingF
this model, the timer; is disturbed due to finite size effects. =F, is modulatedSec. 1 O.

log,T,, log, T,
/
A
\c-]
3
»

»e
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B. Modulated energy input rate 13 . ‘ 1.3
@  @7=00151
In this section we apply a modulated energy input rate to _
the GOY model, i.e., we set the forcig=F(t) in Egs.(2) £
as & 1
Uy . : e si;;z;)t)
F(t)=¢q (1+esinwt) 3 W07 . ‘ . . 0.7
|u,q|? "o 500 1000 0 100 200 :

with a modulation amplitude=0.2. Then, the resulting en-
ergy input rateg;, is

ein(t) =(ui (VF(D))=eo( L+esinwt), I
and has a prescribed modulation amplitedg by definition. ~ §_
The total energy of the system “ 07 2w o 5 50 07
tit, tr,
1 14
E(t)= > 21 (Ui (Hun(t)), 5 FIG. 5. Energy input ratel°™=e,, /¢, (dotted line and en-
=

ergy contentE"°"™ (solid lineg for four different modulation fre-
guenciesw calculated in the GOY model. The energy input rate

IS dcalculate% forha fW'de rang% orf d'.“‘"”% fLequenChesm This modulated with a modulation amplitude of 20% of the constant
order to study the frequency behavior of the response. gnergy input rate,, e=0.2, according to Eq4). Also included is

brackets((i- - ) denote the ensemble average. This ensemblgq it according to Eq(7) for the energyE™™ (dashed lines,
average is performed as follows. From a long stationangistinguishable from the solid lings(a) wr,=0.0151, (b) wr,
simulation we collect an ensemble of 1500 starting configu—0.151, (¢c) wr, =0.787, (d) wr, =2.025.

rations which we then let evolve according to E¢®. but

now including the modulation of the forcing(t), Eq. (3), rgy E(t) for 85 different driving frequencies varying over

and average over these 1500 time series. To ensure that t ost three decades between 0812, <9.3. The chosen

different realizations can be considered as statistically indefrequencies are approximately equally spaced on a logarith-
pendent, the time delay between the successive starting CORsic scale. The normalized enerd™(t) is fitted by a
figurations for the different realizations is chosen to be aboufunction o.f the form

100 large eddy turnover times.
The oscillating response of the systex(t) is then stud-

ied in terms of the ratio between the enefft) with modu- E""M(t) = Econsct €ASINwt+ @), (7)

lated energy input and the enerBy(t) without modulation,

namely, with three free parameterg.,,s;, the amplitudeA, and the
phase shift®. E.,.s IS near 1 for all frequencies, i.e.,

ENOrm(t) = iﬂ:lﬂLA(t). 6) Econs=1.0022+0.0032. Fits(7) are included in Fig. 5 as
Eq(t) dashed lines but they are mostly indistinguishable from the
solid lines for the energy itself.
E andE, are both averaged over 1500 realizations. In spite Figure 1 shows the amplitudk resulting from the fitting
of the averaging not onlf but alsoE, still contains(weak  procedure, as a function of the dimensionless frequency
fluctuations. Therefore, we writgy(t), asEy is still slightly o7 . A is almost constant for low frequencies and has a
fluctuating around its mean valuk. and E, contain about value of about 2/3. For higher frequencies the amplitude de-
the same size of fluctuations. Accordingly, the energy inputreases as 1/w. The same features have been observed in
rate e, is normalized by its stationary value’""(t)  the mean-field calculations, see dashed lines. The long-
=g (t)/ ep=1+esinwt. dashed line in Fig. 1 represents the low-frequency limit of
In Fig. 5 the input rate]°"™(t) and the energg™®™(t)  the mean-field theoryd=2/3, and the dotted line the high-
are plotted for four different driving frequencies. For the two frequency limit,Ax2/(3w 7).
low frequencies wherevr <7 /7=1/a=0.39, the energy The crossover between the regime of constant amplitude
follows the oscillation of the energy input rate with almost and the one of 14 decay of the energy response takes place
constant, but smaller, amplitude. For higher frequencies that w557 =1/a=0.39, which is indicated by the arrow in
amplitude of the deviations of the normalized energy from itsFig. 1. In the mean-field approach this crossover is always at
stationary value 1 strongly decrease, and a phase shift witb 7 =1, independent of the factarbetween the large eddy
respect to the energy input becomes visible. The same behaturnover time and the total time scale of the energy transfer.
ior of the energy has been observed in the mean-field theoriyn experimentg5] the crossover frequency has been used to
[3]. measure the energy cascade time scale. The present simula-
To quantitatively access the frequency behavior of the retions confirm that this frequency gives the correct order of
sponse amplitude, we calculated time series of the total ennagnitude for the energy transfer time.
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C. Modulated driving force

In this section we present further results within the GOY
I model based on a nonfluctuating driving for€g which is
] regularly modulated as was, in the preceding section. This
case may be more comparable to the experimental method in
Ref.[5], because there the driving force is modulated. What
cannot be modeled with GOY is the spatial inhomogeneity in
10 20 the experiment$5].

T, In Egs.(2) we now apply a forcing

log,,(PDF)
1

1
N
T

T,
o

F=F(t)=Fo(1+essinot), ®

with a modulation amplitude of;=0.2. As in Sec. Il B, we
calculate the ensemble averaged time series of the energy
input ratee;,(t), see first line of Eq(4), and the total energy
of the systemE(t), cf Eq. (5), for 89 different frequencies
o 100 200 between 0.0144 w7 <3.04, again logarithmically equally
H H H orm H

v, distributed. The normalized ener@/'°"™(t) and energy in-

put ratee;’""(t) are then fitted by a function according to

FIG. 6. Time series of the cascade tim@) for nonmodulated  Eq. (7), with the parameterg ., ., A,® and €in constrAe. s
forcing F= egu, /|uy|? in the GOY model. Strong fluctuations are ® respectively. "
€in’ !

observed. Inset: probability distribution of 7, . The mean isa . A
—2.54, and the width (FWHM)/20.46a giving about 50% fluc- 1 ne amplitudes andA,, - are plotted in Fig. 3 as a func-

tuations. tion of the dimensionless frequenayr, . Also in this case of
a modulated force, the response amplitude is almost constant

) ) ) for small frequencies, namelA=1, and decreases aswl/
Response maxima, as observed in the mean-field model @i, high frequencies, see Fig(a (full dots). Again, the

frequenCieS connected with the inverse energy transfer tim%ng_dashed line represents the |Ow-frequency limit of the
are difficult to identify in Fig. 1a). There is some structure mean-field theory foA (which isA=1 in this casgand the
visible atwr =0.31 andwr =1.57. In Fig. 1b), where the  dotted line represents the high-frequency limit. As in the pre-
amplitude A, compensated by the asymptotic amplitudeceding section, the crossover frequency between the two re-
(wr) 7%, ie.,Al(wr) "t is plotted vs frequency, this struc- gimes is determined by the energy transfer time, i.e.,
ture becomes more evident, and we see a clear maximum &kross7L=1/2a=0.40 (as a=2.48 in this casge which is

a frequency of aboutyr,=1.57. This maximum probably marked.by the small arrow in Fig(®. The amplitude of the
corresponds to the mean-field maximum. Of course, th&nergy input raté\,  starts with a value of about 1.5 for low
maximum in GOY is broadened and weakened due to th#equencies and merges towards 1 for high frequencies, see
large fluctuations, and the higher-order maxima and minimd&ig. 3(c). This indicates that at very large frequencies the
are apparently washed out completely. As in the mean-fiel¢felocity is not oscillating anymore as it only feels a mean
theory, no fluctuations are included and the energy cascadé@nstant force. The oscillations of the energy input rate are
time 7 is considered to be constant. However, in the Goythen only a consequence of the oscillation of the driving

model this assumption is not true, as can clearly be seen iffrc€F- In the mean-field theory we have observed the same
Fig. 6. Here, a time series of the cascade timg) trend for both amplitudes. The corresponding mean-field re-

=3 7.(t) is plotted, computed within the GOY-shell SUItBSO?gea'rgdﬁtizisaAs;:(?Zed I;:iiv A maximum at a fre-
model with nonmodulated forcing = eyu, /|u;|2. The inset P Cin

D o it the crossover frequeneyr =7 /r=a !
shows the probability distribution of/ 7 . This distribution i“ency near : L L 4
has its maximum at/,_ = 2.39, almost at the mean cascade — 0-40- In the compensated plot Figh3 whereA/(w )

time a=2.54, and a width of about 0.46[(FWHM)/2)] is plotted as a function of frequency, a clear deviation from

(FWHM, full width at half maximur. The width is almost the dotted line representingyc1/w can be observed. At this
' ) Efequency, the mean-field theory predicts a first maximum

half the size of the mean which indicates that the transfe h itU G d .
time fluctuates strongly and therefore we have to expect thdp" the energy response amplituléig. 3(@] and a maxi-

the response maxima are more or less washed out. Howevépum directlly followe_d by a m‘”i”.‘“m fqr the energy input
these strong fluctuations are considered as an artifact of gfate. see Fig. (3)._Th|s frequency is again connected to the
GOY model and not as a feature of real turbulence. Th&NErGY transfer timer. As in the case of Sec. II B, further
GOY model contains only one velocity mode per cascadé&Xxtrema are washed out due to the strong fluctuations of the
level instead of infinitely many modes in real turbulence.GOY dynamics.

This one-mode approximation leads to an overestimation of
the fluctuation strength. In order to confirm this, we per-
formed another simulation with more modes per level within
the reduced REWA of the Navier-Stokes equation. This will As was pointed out in Sec. I, a full numerical simulation

be presented in Sec. Ill. of the Navier-Stokes equation for modulated turbulence at

I1Il. MODULATED TURBULENCE IN A REDUCED WAVE
VECTOR SET APPROXIMATION
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high Reynolds numbers is still not possible or requires low To maintain the turbulent flow we apply a forcing as in
Reynolds numbers. Therefore, we first have considered thRefs.[15—17:

GOY shell model. This model correctly describes many fea-

tures of turbulence, however, due to the one-mode approxi- u(p,t)

mation in each cascade level, it contains various artifacts. eg—(1l+esinwt), ek,

Namely, it strongly overestimates the strength of the fluctua- f(p,t)= 2 lu(a,t)|? n

tions. The aim of this section is to study the problem of qeKip

modulated turbulence within another model, the REM/B— 0, PEKi, .

17], which is much closer to the Navier-Stokes equation than (10)

the GOY model and contains much more modes per cascade

level. Of course, as compared to full numerical simulationsthe subsek;, of K, by choice contains the 14 wave vectors
of the Navier-Stokes equation, it still contains a mode reducyith the three smallest lengths. In Rdfl6] it has been
tion in order to make the computational effort reasonable foshown that the statistics of the solutions of the equations of
the desired high Reynolds numbers. The present approximanotion do not depend on the particular choicekof This
tion has been introduced and extensively studied in Refgorcing corresponds to the same type of forcing, which has
[15-17. Here, we use it together with a time-dependentajready been applied to the GOY model in Sec. II B. It en-

driving. For completeness, we very briefly explain the ap-forces the energy input rate to be modulated:
proximation before we present the results with modulated

driving.
em=<< > u*(p&”)-f(p(n”>>>=eo<1+esinwt>-
P

— )
A. The reduced wave vector set approximation €K

n

The velocity fieldu(x,t) is Fourier transformed into plane (11)

waves,u(x,t) = Zyu(p,t)e'**. Periodic boundary conditions  Equation(9) is a set of 3(I .+ 1) coupled ODEs for
are applied on a periodicity volume {7%0)3' The wave vec- o complex mode amplitudes(p’) which is numerically
tors p are given byp=(p)=(niLo"), with nj=0,21,  gged. Length scales are measured in units p&nd time
*£2,... . Inorder to efficiently deal with the large number g.,ias in units of_(z,’e’egl’?’. A Reynolds number can be de-
of modes involved, the reduced wave vector set approximaﬁned as follows. The wavelength of the smallest wave
tion sele_cts a Iimit.ed number of modes by admitting pnly & ector gives an external length scale27//6, and a typi-
geometrically scalm%i,ubs&t:ml.(, of wave vector%l,) €., cal velocity on that scale is determined by the rms of one
u(x,t)==pcku(p,t)e™* On this subset K={py’.n yqojqcity componenty; ;. Then, in our case, the Reynolds
.=1, ...N, _I=O, ... Imax the Navier-Stokes equation for number is Re Uy mel/v=1.234x 10° because from the
incompressible flow, simulations we obtai; ;,s=2.405.
d The main features of fully developed turbulence as irregu-
aui(pg))z —v(p)2u; () + £;(p() lar velocity signals, characteristic scaling of structure func-
tions, etc., are well described within this approximation, as
has been shown in Ref§15,16,23. The REWA solutions
—iM () > u;j(G) (), show small scale intermittency, which is produced by the
010z = K, 0y + Gp=pf| competition between down-scale energy transport and vis-
(9  cous dissipation on the small scalgs,22. Other mecha-
nisms leading to intermittency in turbulence as, e.g., nonlo-
together with the continuity equatiom{-u(p{’)=0, is cal interactions between wave vectors are underestimated in
this approximatiorj23]. The down-scale energy transport in
the REWA fluid is less effective than in real turbulence, be-
cause in this approximation the larger wave vectors are more
oo . and more thinned oy24]. This is in contrast to the case of
=1,... N} together with its sca_led re_pllcq'.éﬁ')zz'pgo), ! the complete set of wave vectofs.g., in full grid simula-
=1 .. dmax. ((I,';' the present simulation we takd=74  yjong \yhere the density of states increases?, whereas in
wave vectorsy, . The wave vectors) K, are chosen such  he reduced wave vector sétthe number of admitted wave
that they span a wide range of length scales, but st|.II dynamigectors decreases apI17]. In Ref.[24] it has been shown
cally interact to a good degree. The largest eddies of thg,at this reduced energy transport leads to an overestimation
orderL, are represented by the wave vector&iy whereas  of the Taylor Reynolds number of the system as well as the
the subsetK, contain wave vectors of smaller and smaller Kolmogorov constantb, defined by D(r)=b(er)?3 by
eddies. The choice of t_he smalles_,t ed(jles, i.e., the value %ughly one order of magnitude for our choiceNfIn the
Imax, depends on the kinematic viscosity lrlnax andv are  present simulation we obtain—==83.5 instead ob=6-9 as
adjusted such that the velocity amplitudg®| ™ ,t) of the  in experiments25—27. SinceD(L) is the energy density
smallest eddies are almost zero. In this simulatiois cho-  «(u?) of the fluctuations in the fluid system, the large
sen asy=5x10"° and the number of levels ds,,,+1  value indicates that in the REWA approximation the strength
=9. of the fluctuations is highly overestimated. The large Kol-

solved. My is the coupling matrix,Mijk(p)=%[ijﬁ<(p)
+pkPi;(p)], wherePs;(p) is the orthogonal projector tp.
The subsetK consists of a basic subséty,={p{®,n
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FIG. 8. Energy input ratej;’'™=1+ e sinwt (dotted lineg and
energyE""™ (solid lineg for four different modulation frequencies
w as calculated in the REWA simulation. The energy input rate is
modulated with a modulation amplitude of 30% of the constant
energy input rate, i.ee=0.3 in Eq.(10). Also included is the fit to
the energy data cf. Eq7) as dashed lines but these are in all cases
indistinguishable from the solid lines. The averaged time series of
mogorov constant will change the relevant time scales in thgno'm are repeated once for better visibility(a) wr,
system, as will be shown in Sec. Il B. =3.16x10% (b) w7 =3.16x10" 3, (c) w7 =3.16x1072, (d)
The characteristic time scale for the turbulent energywr =0.316. For largewr,_ the energy is indistinguishable from 1
transfer on scalé can be estimated ag(l)=1/(pu{ll.),  on this scale. The crossover to thewidecay regime is in this
Wherep(') denotes the mean wave number on stale., it simulation atwr =1.1X 102, between the frequencies @f) and
is the mean inverse eddy sizekq. As in the GOY model, (©)-
the time scale of viscous dissipation ig=[»(p(")?] 2.
Again, in the ISR7(1)> 74, whereas in the VSRy>7(l).
From a simulation with stationary forcing, i.ee=0 in Eq.
(10), the time delay of the energy down-transpett,, is

FIG. 7. Time series of the cascade timg,{t) in REWA. Inset:
probability distribution ofzg,,,/7_. The fluctuations are consider-
ably smaller than in the GOY model. Note the different scales in
this figure and Fig. 6. The mean ig,,/7.=a=2.94, and the
width (FWHM)/2=0.02a giving about 2% fluctuations.

The modulation amplitude of the energy input ratg [EQ.
(11)] is chosen ag=0.3. The response is calculated for 150
(approximately equally spaced on a logarithmic scéife-
then estimated by the sum of af(l) in the ISR, 75y  quencies between 0.00046 7, <3.0. The energy is nor-
=2 1sr7(1)=0.186. The largest of thes€l), on the larg- malized byE,, calculated from a stationarily forced solution
est scale7(0)=0.0632 can be regarded as a large eddy turnwith e=0 and averaged &. The oscillating respons&(t)
over time 7 . Thus, 7g,=2.94r_, and the factor between of the system is defined in the same way as for the GOY
the cascade time scale and the large eddy turnover time igodel, see Eq(6). Then, as for the GOY calculations, the
Tsum/ TL=2=2.94. averaged and normalized sign&%°"™(t) are fitted with Eq.

As we have seen in the GOY model, Fig. 6, the energy7). The fit parameteE. s, is again near 1 for all frequen-
transfer time is strongly fluctuating. We attributed thesecies, E,,,,s=1.0064+ 0.0065. In Fig. 8 the time averaged
strong fluctuations to the one-mode per level approximationesponses and the normalized energy input rates are plotted
of the GOY model. Figure 7 shows a time series of the enfor four different driving frequencies. Also the fits according
ergy transfer timerg,(t) [use 7(I) with u®)(t)] in the  to Eq.(7) have been included as dashed lines but are indis-
present REWA, and, in the inset, the distribution of this timetinguishable from the solid lines for the energy signal itself.
scale. Clearly, the fluctuations are much weaker than in the We observe in Fig. 8 for REWA the same features as in
GOY model; they are zero in the mean-field approximationFig. 5 for the GOY model and in Fig. 1 of Rdf3] for the
The distribution is centered aroung,,,/ 7. =a with a width  mean-field model. For the two lower frequencies the re-
[(FWHM)/2] of about 0.02. sponse amplitude remains almost constant and is about 2/3 of
the amplitude of the energy input rate, whereas for the two
higher frequencies the response amplitude strongly de-
creases. This trend becomes more clear in Fig), 2vhere

The response of the system to a modulated driving forcege amplitude of the response—determined from(Tjt—is
cf. Eq.(10), is calculated now in terms of the total energy of shown as a function of the driving frequengull dots). For
the system low driving frequenciesA=2/3, whereas for high frequen-
cies the amplitude decreases as.1The crossover between
the regime of constant amplitude and the one af tlecay
takes place atvg,,ssr =0.011, i.e., at a much smaller fre-

B. Modulated energy input rate

1 I=Imax
Em=5{ 2 > [upnl?)). (12)
2\\ =0 pexk,
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guency than expected from the original case of the mearmodulated energy input rate this mean-field theory had pre-
field theory in which the crossover was @}l .- =1 with  dicted a constant response amplitude for low frequencies and
b=6. We understand this as follows. In Sec. Ill A it was @ 1k decay for high driving frequencies. In addition, at cer-
mentioned that the Kolmogorov constant in the REWA simu-tain frequencies connected with the energy cascade time
lation isb=83.5 instead ob=6—9 as in experiments. In the Scalé, & sequence of maxima and minima of the response
figures of the mean-field approa3j we have seb=6. The amplitude is observed. .
mean-field solution for a general revealed that the cross- . Both numerical mo_dels well reproduce the basic trend,
over frequency decreases with increasimghile the posi- L.e., the constant amp"t“de for smai_land the 1b decrease .
tions of the response maxima are left unchanged. lior OF 1argéw. The main response maximum can be observed in
—83.5 the mean-field crossover frequency is‘d{ﬂp , both numerical .models, aIthoug_h it is Weakgned due to _quc-
oss’L  tyations. The higher-order maxima and minima as predicted

= (6/)*?~0.019 in close agreement to what we observe I"hy the mean-field theory cannot be identified in the simula-
the REWA simulations. The response amplitude calculategions. They are washed out by fluctuations. We believe that in
from the mean-field model with=83.5 is included in Fig. real turbulence with a realistic Kolmogorov constant and
2(a) as dashed line. Apart from the changed crossover frepnly narrow fluctuations of the energy transfer time the first
quency we observe that, in the mean-field calculations, thenaximum should be clearly observable and possibly also the
first response maximum air =0.1 is considerably smaller higher-order extrema in the response. Thus, the predictions
and broadened as compared to the case bvtlt, given as  of the mean-field model, which excludedl fluctuations,
the dashed line in Fig. (&). In agreement with this, our might be quite reasonable for real turbulence. To further
REWA simulations(with a valueb=83.5) show a broad study the response maxima numerically, it is necessary to
maximum in the response amplitude @t =0.028. This perform full numerical simulations of the Navier-Stokes
means it occurs at a similar frequency as the mean-fiel@équation, as then all relevant time scales including their fluc-
model. The maximum becomes more clear in the compentuations are reproduced realistically, which turned out to be
sated plot, Fig. @), whereA/(w7.) ! is shown as a func- essential for the observation of the response maxima.
tion of frequency. There, we observe a deviation from the Recent experiments on modulated turbulef&eaevealed
l/w decay of the amplitude by a factor 1.4 at the maximumevidence for the response maxima. These experiments may
in the REWA simulations. The mean-field maximum has abe more comparable to the case of a modulébeck instead
height of 2.8. The subsequent maxima and minima in thef a modulated energy input rate. We have studied this case
mean-field model occur at frequencies where the amplitudalso within the mean-field model and have found basically
is already very smallA=<102) because the crossover to the the same behavior of the energy response as for a modulated
1/w regime takes place at a much smaller frequency wherea@nergy input rate. In addition, the amplitude of the energy
the response maxima stay at the same frequencies as forirgput rate showed “wiggles” at the same frequencies where
smallerb. Therefore, the higher order maxima are not visiblethe energy response had maxima. In the experiments the re-
in the REWA simulations. The cascade time shows about 2%ponse maxima were measured in the energy input rate,
fluctuations in REWA as shown in Fig. 7. However, at smallwhich can be regarded as a response of the system as well in
response amplitudes these fluctuations are already lardgbis case. Also the constant amplitude for low driving fre-
enough to wash out the higher-order response maxima.  quencies and the d/decay of the velocity response—which
In conclusion, the REWA system reproduces qualitativelyin leading order is corresponding to awlflecay of the en-
the features of modulated turbulence as predicted by thergy response, as well—have been observed in the experi-
mean-field model including the first response maximum. Thenents. Here, we have studied the case of a modulated driv-
latter is considerably weakened due to the large Kolmogoroing force within the GOY shell model. Also in this
constant in REWA. Another consequence of the labgis  simulation, the response amplitude behaves basically as in
that the crossover between constant amplitude anddétay the mean-field model, i.e., it decreases as.1lhe energy
is shifted towards smaller frequencies, and therefore theesponse amplitude as well as the amplitude of the energy
higher-order maxima and minima are already at very smalinput rate show the main maximum.
amplitudes where the fluctuations in the cascade time scale There are two regimes in the frequency behavior of the
are finally large enough to wash them out. We cannot clarifyresponse amplitude, namely, a constant amplitude atdow
at present, how close the response in direct numericaind a decreasing amplitude at high The present simula-
simulations—which lead to an order of magnitude smdiler tions give further confidence that the crossover frequency
and thus have much smaller fluctuations—will come to thebetween these two regimes gives the correct order of magni-
mean-field features, but we expect a clearly visible firsttude of the cascade time scale, i.e., in experiments it can be
maximum at least. used to measure this time scale as suggested in[Ref.
Both models in the present study were able to reproduce
IV. CONCLUSIONS the n_1ain f_eatures of the frequency behavipr of the response
amplitude in modulated turbulence as predicted by the mean-
We have simulated the response of modulated turbulencield model, however, both also have their shortcomings,
within two numerical models. Namely, we have used thewhich prevent us from correctly predicting the behavior of
GOY shell model and the reduced wave vector approximareal turbulence in all quantitative details. Therefore, we be-
tion (REWA) of the Navier-Stokes equation. The results arelieve that it is worthwhile to further study modulated turbu-
compared with predictions from a mean-field theory. For alence numerically as well as experimentally.

066302-9



von der HEYDT, GROSSMANN, AND LOHSE PHYSICAL REVIEW E8, 066302 (2003

ACKNOWLEDGMENTS Wetenschappelijk OnderzoéKWO). This research was also

The work is part of the research program of the StichtingSupported by the German-Israeli Foundati@iF) and by
voor Fundamenteel Onderzoek der MatéG©M), which is  the European Union under Contract No. HPRN-CT-2000-
financially supported by the Nederlandse Organisatie voof0162.

[1] S.B. Pope, Turbulent Flows (Cambridge University Press, Cambridge, 1998
Cambridge, 2000 [14] J.0. Hooghoudt, D. Lohse, and F. Toschi, Phys. Flui@s
[2] U. Frisch, Turbulence (Cambridge University Press, Cam- 2013(20012).

bridge, 1995. [15] J. Eggers and S. Grossmann, Phys. Fluidy A958(1991).

[3] A. von der Heydt, S. Grossmann, and D. Lohse, Phys. Rev. E16] S. Grossmann and D. Lohse, Z. Phys. B: Condens. M&ger

67, 046308(2003. 11 (1992.

[4] H. Effinger and S. Grossmann, Z. Phys. B: Condens. Mattef17] S. Grossmann and D. Lohse, Phys. Fluid$11 (1994).
66, 289(1987. [18] W. Press, S. Teukolsky, W. Vetterling, and B. Flannéxy-
[5] O. Cadot, J.H. Titon, and D. Bonn, J. Fluid Me&85, 161 merical Recipes(Cambridge University Press, Cambridge,

(2003. 1986.

[6] E.B. Gledzer, Sov. Phys. DokL8, 216 (1973. [19] R. Benzi, L. Biferale, and G. Parisi, Physicafb, 163(1993.
[71 M. Yamada and K. Ohkitani, J. Phys. Soc. J&6 4210 [20] N. Schaghofer, L. Kadanoff, and D. Lohse, Physica8B, 40

(1987. (1995.

[8] M. Yamada and K. Ohkitani, Prog. Theor. Phy&, 1265 [21] L. Kadanoff, D. Lohse, and N. Schghofer, Physica DLOO,

(1988. 165 (1997.

[9] K. Ohkitani and M. Yamada, Prog. Theor. Phy&l, 329 [22] S. Grossmann and D. Lohse, Physicd®4, 519 (1993.

(1989. [23] S. Grossmann, D. Lohse, and A. Reeh, Phys. Rev. [Z&it.
[10] L. Kadanoff, D. Lohse, J. Wang, and R. Benzi, Phys. Fldids 5369(1996.

617 (1995. [24] S. Grossmann and D. Lohse, Phys. Re\6(:2784(1994).
[11] L. Biferale, Annu. Rev. Fluid Mech35, 441 (2003. [25] A.S. Monin and A.M. Yaglom,Statistical Fluid Mechanics
[12] M.H. Jensen, G. Paladin, and A. Vulpiani, Phys. Rew3\ (The MIT Press, Cambridge, MA, 19Y.5

798 (199). [26] K.R. Sreenivasan, Phys. Fluids2778(1995.

[13] T. Bohr, M.H. Jensen, G. Paladin, and A. VulpiaDiynamical  [27] K.R. Sreenivasan and R.A. Antonia, Annu. Rev. Fluid Mech.

Systems Approach to Turbulen@ambridge University Press, 29, 435(1997.

066302-10



