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Well-behaved dynamics in a dissipative nonideal periodically kicked rotator
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Well-behaved dynamical properties are found in a dissipative kicked rotator subjected to a periodic string of
asymmetric pulses offinite amplitude and width. The stability boundaries of the equilibrium are determined to
arbitrary approximation for trigonometric pulses by means of circular harmonic balance, and to first approxi-
mation for general elliptic pulses by means of an elliptic harmonic balance method. The bifurcation behavior
at the stability boundaries is determined numerically. We show how the extension of the instability region of
the equilibrium in pulse parameter space reaches a maximum as the pulse width is varied. We also characterize
the dependence of the mean duration of the transients to the equilibrium on the pulse width. The evolution of
the basins of attraction of chaotic attractors when solely the pulse width is varied is characterized numerically.
Finally, we show that the order-chaos route when solely the width of the pulses is altered appears to be
especially rich, including different types of crises. The mechanism underlying these reshaping-induced crises is
discussed with the aid of a two-dimensional map.
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I. INTRODUCTION

Nonlinear nonautonomous dynamical systems, subje
to a periodic string of pulses, describe a vast variety of ph
cal, chemical, biological, and neuronal phenomena@1–3#, to
cite only a few. The choice of a specific mathematical fun
tion to model a given real-world pulse determines, to a gr
extent, the range of phenomena that it could suitably cha
terize. In this regard, the periodicd function provides a
simple but rather ideal model of a periodic string of asy
metric pulses. It has generally been used in the contex
systems subjected to periodic impacts. The periodic
kicked rotator, for instance, has been~and still is! an exten-
sively investigated paradigmatic example@4#:

d2x

dt2
1h

dx

dt
1F~sinx! (

n50

`

d~ t2nT!50, ~1!

wherex is the angular coordinate,h is a normalized damping
coefficient, F is the normalized amplitude, and time~and
hence period! have been normalized in units ofv0

21 (v0

being the small-angle resonant frequency of the underly
integrable pendulum!. As is well known, the main advantag
of employing thed function is that Eq.~1! ~and other similar
equations! can be reduced to a two-dimensional map@4–10#,
so that analytical and numerical results are readily obtai
in these cases@11#. It is clear, however, that a deeper unde
standing of diverse dynamical phenomena leads one to in
duce mathematical models fornonidealpulses into dynami-
cal equations, i.e., pulses withfinite width and amplitude. In
this respect, a comparison of the behavior of a damped p
dulum driven by a periodic string of pulses modeled first
the Jacobian elliptic function~JEF! dn, and then by a peri
odic d function is discussed in Ref.@12#. A numerical study
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of a damped Duffing oscillator subjected to an external fo
represented by the JEF cn is given in Ref.@13#.

In this present work, we discuss well-behaved proper
of the dissipative nonideal periodically kicked rotat
~NIPKR! which was introduced in Ref.@14#:

d2x

dt2
1h

dx

dt
1F~sinx!p~ t;T,a i !50, ~2!

where p(t;T,a i) is a generic asymmetric pulse@i.e., p„t
5(2n21)T/2;T,a i…50, n51,2,...; p(t;T,a i).0, other-
wise# of unit amplitude, periodT, and wave form controlled
by the parametersa i . All variables and parameters are d
mensionless. Equation~2! always possesses the stationa
solution (x50,dx/dt50), which, however, need not b
stable against small perturbations. While Eq.~2! permits us
to study the structural stability of the system solely und
changes of the shape of the pulse function~i.e., with fixed
amplitude and period!, this degree of freedom is absent in th
model of Eq.~1!. In this paper, we shall deal only with puls
functions which could represent realistic impacts, i.e., pu
functions having asingle maximum. A physical condition
concerning the impulse transmitted by this type of pulse,
the dynamics of the kicked rotator~2! to be independent o
the particular wave form of the pulse, was discussed in R
@14#: it is that any two asymmetric single-maximum pul
functions p(t;T,a i),p8(t;T,a i8) yield the same impulse in
the sense

E
0

T

p~ t;T,a i !dt5E
0

T

p8~ t;T,a i8!dt. ~3!

It was demonstrated that the smaller the~time-dimensional!
period of the pulse relative to the small-angle period of
©2003 The American Physical Society17-1
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underlying integrable pendulum~i.e., T,1), the better the
invariance condition~3! works. As numerical experiment
show that the invariance condition~3! is approximately cor-
rect for pulse functions modeling real-world impacts ev
for periods that are not small~cf. Ref. @14#!, we shall here-
after use the choice of pulse function@15#

p~ t;T,m![
dn~2Kt/T;m!2A12m

12A12m
~4!

to obtain generic findings that are~approximately! valid for
that type of pulse. In Eq.~4!, dn is the JEF of parameterm,
K[K(m) is the complete elliptic integral of the first kin
@16#, and T is the period of the pulses. Our choice of th
pulse function~4! is motivated by three remarkable prope
ties. First, the shape of the pulse~and hence the effective
width! is changed by solely varying asingle parameter, the
elliptic parameterm, between 0 and 1. Second, whenm50,
thenp(t;T,m50)5cos2(pt/T), i.e., we recover the simples
harmonic representation for an asymmetric pulse. In
trigonometric limiting case, Eq.~2! represents a parametr
cally forced gravitational pendulum with a vertical
oscillating support: d2x/dt21hdx/dt1(F/2)@1
1cos(2pt/T)#sinx50 @17#. This limiting case has been ex
tensively studied by several authors@18–26#. And third, by
increasingm the effective width of the pulse becomes ev
lower, and form&1 we recover a periodic sharply kickin
excitation very close to the periodicd function, but with
finite width and amplitude as in real-world impacts.

The organization of the rest of the paper is as follows.
Sec. II we determine the stability boundaries for the stati
ary solution (x50,dx/dt50) in the parameter spac
(h,F,T,m). The theoretical approach is based on the
sumption that the stability boundaries of Eq.~2! can be ob-
tained by analytically solving its linearized equation. W
separately consider the cases of general elliptic (0<m,1)
and trigonometric (m50) pulses. For the former case, w
additionally assume that the truncation of certain generali
Fourier series at lowest order provides an approximate
useful solution of the aforementioned linearized equati
We demonstrate that the extension of the instability region
the stationary solution (x50,dx/dt50) in theT-F parameter
plane reaches a maximum as the pulse width is varied.
found that, for any pulse width, the duration of the transie
to such a stationary solution fits a sigmoidal~Boltzmann!
function. Also, we compare the stability boundaries in t
T-F parameter plane with the respective~for each tongue!
chaotic boundaries. Numerical simulations are then e
ployed to investigate the manner in which the basins of
traction of chaotic attractors evolve as the pulse width
changed. Section III gives a characterization of the gen
chaos-order route found as the pulse width is decreased~i.e.,
when m is varied from 0 to 1!, the remaining parameter
being held constant. We also discuss the mechanism un
lying the reshaping-induced crises by using a simple tw
dimensional map. In addition, we briefly discuss the bifur
tion behavior at the stability boundaries when the period
the only parameter changed. Finally, in Sec. IV we give
few concluding remarks.
06621
is

r

n
-

-

d
ut
.
f

e
s

-
t-
s
ic

er-
-
-
s
a

II. STABILITY BOUNDARIES FOR THE EQUILIBRIUM

In this section we assume that the normalized periodT is
not too large~typically, T&10) for the invariance condition
~3! to be approximately correct. One can then obtain theo
ical estimates of the stability boundaries for the solutionx
50,dx/dt50), which would be valid for any symmetric
pulse functionp(t;T,a i). For the sake of clarity, we sha
treat separately the cases of trigonometric pulses (m50) and
~general! elliptic pulses (0<m,1).

A. Case of trigonometric pulses

For trigonometric pulses (m50) we rewrite the NIPKR
~2!,~4! as

V2
d2x

dt2 1q
dx

dt
1«@11cos~2t!#sinx50, ~5!

using the transformations

t5
1

2
vt, V5

v

2
, q5hV, «5

F

2
, ~6!

wherev52p/T. The linearized equation for a perturbatio
j around the stationary solution (x50,dx/dt50) reads

V2
d2j

dt2 1q
dj

dt
1«@11cos~2t!#j50. ~7!

We assume that the stability boundary may be determi
from the existence of a periodic solution forj. According to
Floquet’s theorem@27#, a Floquet multiplier must vanish a
the stability boundaries. Thus we may assume the existe
of

j5A01 (
n51

`

~An cosnt1Bn sinnt!. ~8!

Inserting relation~8! into Eq. ~7!, by balancing harmonics
we obtain

~«2n2V2!An1nqBn1
«

2
~An221An121A0d2n!50,

~«2n2V2!Bn2nqAn1
«

2
~Bn221Bn12!50, ~9!

wherednm is the Kronecker delta, and where we have us
the identitiesA2n5An and B2n52Bn . For the lowest-
order approximation we truncate Eq.~9! at n51. We then
obtain the following two equations:

S 3

2
«2V2DA11qB150,

2qA11S «

2
2V2DB150. ~10!
7-2
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The existence of a nontrivial solution requires the deter
nant of the coefficients to vanish:

F 3«

2
2V2 q

2q
«

2
2V2

G50, ~11!

which gives@cf. Eq. ~6!#

F5F ~1!~h,T![
4p2

3T2 F26A12
3h2T2

p2 G . ~12!

Any finite higher-order approximationF (n)(h,T) of the sta-
bility boundaries in theT-F parameter plane can be foun
from Eq. ~9!. Numerical simulations indeed show that th
accuracy of the theoretical estimates increases asn is in-
creased. As an example, Fig. 1 shows the numerically ca
lated instability regions~gray areas! and the stability bound-

FIG. 1. Stability boundaries of the solutionx5dx/dt50 in the
T-F parameter plane for trigonometric pulses (m50) andh50.2.
Instability regions~gray areas! were numerically calculated on
grid of 3003300 points. Black lines denote the stability boundar
obtained theoretically at truncationn510 from Eq.~9!. T andF are
dimensionless parameters.
06621
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aries ~black lines! obtained at the truncationn510 for h
50.2. To numerically obtain the instability regions we used
grid of 3003300 points in theT-F parameter plane. For eac
of the 90 000 points, we integrated up to 400 drive cyc
and the behavior in the last few cycles was examined to
a point on the grid whenuxu.1026 or udx/dtu.1026. Note
that the tenth-order approximation only goes slightly wro
in how accurately it reproduces the tips of the~boundary of
the! tongues’ tails.

B. Case of general elliptic pulses

For general elliptic pulses (mP@0,1@) the analog of Eq.
~5! is

V2
d2x

dt2 1q
dx

dt
12«

dn~t;m!2A12m

12A12m
sinx50, ~13!

where we have used the transformations~6! with v5v(m)
[4K(m)/T, while the associated linearized equation is

V2
d2j

dt2 1q
dj

dt
12«

dn~t;m!2A12m

12A12m
j50. ~14!

We assume~as for trigonometric pulses! that the stability
boundaries may be determined from the existence of a p
odic solution forj. For the present general case we use
elliptic generalization of Floquet’s theorem, which is bas
on the existence of generalized Fourier series@28# and on an
elliptic harmonic balance method@29#. Thus we may assume
the existence of

j5
A0

2
1 (

n51

`

@An cos~nw!1Bn sin~nw!#, ~15!

wherew[am(t;m) is the JEF of the parameterm. To obtain
a preliminary estimate of the stability boundaries in them-F
andT-F parameter planes, we shall limit our treatment to t
lowest-order approximation. Thus we truncate the series~15!
at n51 and insert the resulting expression into Eq.~14!,
obtaining
H V2@~2m21!cn~t!22mcn3~t!#2qsn~t!dn~t!12«
dn~t!2A12m

12A12m
cn~t!J A11H V2@2~11m!sn~t!12msn3~t!#

1qcn~t!dn~t!12«
dn~t!2A12m

12A12m
sn~t!J B11«

dn~t!2A12m

12A12m
A050, ~16!

where we have used sinw[sn(t;m), cosw[cn(t;m) @sn(t;m) and cn(t;m) are JEFs of the parameterm# and the notation
pq(t)[pq(t;m). By using the generalized Fourier series@28# for the function dn~t! and for the above products of JEFs~see
the Appendix!, if the expansions are limited to the lowest order, instead of Eq.~16! we have
7-3
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H FV2S m

2
21D12«

a1~m!2A12m

12A12m
GA11qa1~m!B1J cosw1H 2qb1~m!A11FV2S m

2
21D12«

b1~m!2A12m

12A12m
GB1J sinw

1«
a0~m!2A12m

12A12m
1~higher harmonics!50, ~17!

wherea0(m), a1(m), andb1(m) are given in the Appendix by Eqs.~A16!–~A18!, respectively. Setting the independent te
and the coefficients of sinw and cosw to zero, respectively, one gets the equations forA0 , A1 , andB1 . The existence of a
nontrivial solution requires the determinant of the corresponding coefficient matrix to vanish, i.e.,

UV2S m

2
21D12«

a1~m!2A12m

12A12m
qa1~m!

2qb1~m! V2S m

2
21D12«

b1~m!2A12m

12A12m

U50, ~18!
or
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which gives@cf. Eq. ~6!#

F5F ~1!~m,T,h!

[
2a2~m,T!6Aa2

2~m,T!24a1~m!a3~m,T,h!

a1~m!
,

~19!

where

a1~m![
4@a1~m!2A12m#@b1~m!2A12m#

~12A12m!2
, ~20!

a2~m,T![
8K2~m!~m/221!@b1~m!1a1~m!22A12m#

T2~12A12m!
,

~21!

a3~m,T,h![
16K4~m!

T4 S m

2
21D 2

1
4h2K2~m!

T2 a1~m!b1~m!. ~22!

Now we make the following remarks.
First, for trigonometric pulses (m50), one recovers the

first-order approximation~12!, as expected.
Second, the first-order approximation~19!–~22! can pro-

vide only a preliminary estimate of the stability boundary f
the main instability tongue such that the narrower the pul
the worse the accuracy of the theoretical estimate~see Fig.
2!. Nonetheless, this approximation reproduces fairly w
the stretching of the tongue’s tail toward ever higher valu
of the period as the pulse narrows@see Fig. 2~b!#. Also, the
extension of the instability region in theT-F parameter plane
increases as the pulse narrows. This behavior is characte
by an enlargement of the tongues’ areas and a simultan
reduction of their number, as can be seen by compariso
Figs. 2~a! and 2~b!. Since the stationary solution (x
50,dx/dt50) is stable over the whole range of the para
eters in the limiting casem51, one then deduces the exi
06621
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FIG. 2. Stability boundaries of the solutionx5dx/dt50 in the
T-F parameter plane for elliptic pulses@cf. Eq. ~4!# and h50.2.
Instability regions~gray areas! were numerically calculated on
grid of 3003300 points. Black lines denote the stability boundar
obtained theoretically from Eqs.~19!–~22!. ~a! m50.5. ~b! m
50.99.T andF are dimensionless parameters.
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tence of a~narrow range of! value~s! of the wave form pa-
rameter, associated with a certain width of the pulse,
which the extension of the entire instability region ismaxi-
mal. Figure 3 shows the fraction of points belonging to t
instability regions of the stationary solution (x50,dx/dt
50) in the T-F parameter plane withTP@0.1,10# and F
P@0,10# on a 1003100 grid,N, vs the shape parameterm.
One sees indeed that the entire instability region is maxi
~after 400 drive cycles! for a shape parameter ranging fro
m'121028 to m'1210214. It is worth noting that in this
interval the pulse width~measured at half amplitude! is at
least 8% of its period. To assess the distribution of trans
times to the equilibrium for specifiedh, F, andT, a grid of
5003500 uniformly distributed initial conditions were se
lected from the phase plane. For each of such initial con
tions, we determined the time~measured in drive cycles!
required for the NIPKR to evolve to the equilibrium. Th
accumulated data were then sorted to give the fraction
such initial conditions vs the transient duration. An illustr
tive example is shown in Fig. 4 forh50.2,F52, T56, and
three values of the shape parameter. We found that, foreach
value of the shape parameter, the numerically obtained c
accurately fits a sigmoidal Boltzmann function

N~n!5A21
A12A2

11exp@~n2n0!/dn#
, ~23!

whereA1'0, A2'1, d5d(m), and wheren0 provides an
estimate of the time at whichN(n5n0)50.5 ~see Fig. 4!. An
instantaneous image of the transient basins of the equ
rium aftert525T is shown in Fig. 5 for the same paramete
as in Fig. 4. Note how the~instantaneous! transient basin
becomes ever sparser as the pulse narrows. Figure 6 sho
plot of n0 ~as a parameter characterizing the duration of
transients! vs the shape parameterm ~dots! together with the
elliptic fit 26.022p/21K(m). One sees a clear increase
the duration of the transients as the pulse narrows from

FIG. 3. Fraction of points of the instability regions of the sol
tion x5dx/dt50 in the T-F parameter plane,N, vs the shape pa
rameterm. N andm are dimensionless variables and solid lines
solely plotted to guide the eye.
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trigonometric form. The elliptic fit confirms that the remar
able increase ofn0 from m'0.9 is a consequence of th
dependence of the pulse function on the complete ellip
integral of the first kind@cf. Eq. ~4!#.

Third, the functionF (1)(m,T5const,h5const) presents
an overall increasing behavior as the pulse narrows, as
pected. Figure 7 shows the instability region in them-F pa-
rameter plane obtained by numerical calculation and
first-order perturbation stability boundary@Eqs. ~19!–~22!#.
The first-order approximation qualitatively reproduces t
overall form of the stability boundary for the main instabili
tongue, in particular the expected behaviorF→` asm→1.
It is clear, however, that the quantitative discrepancies
pearing for narrow pulses indicate that higher-order appro
mations are required form close to 1, as well as to obtain th
stability boundaries for the secondary tongues.

C. Comparison with chaotic boundaries

In Ref. @14# it was theoretically and numerically demon
strated that the extension of chaos in parameter space rea
a maximum as the pulse width is varied, which is coher
with the aforementioned results concerning the instability
gion. Indeed, for fixed wave form and dissipation, the ch
otic region in theT-F parameter plane presents a tonguel
structure which is similar to that of the instability region,
is shown in Fig. 8. Now it is instructive to compare th
stability boundaries of the equilibrium with the respecti
~for each tongue! chaotic boundaries determined b
Lyapunov exponent~LE! calculations. We computed LEs b
using a version of the algorithm developed in Ref.@31#. In a
first step, we calculated the leading LE for each point o
1003100 grid, with periodT and amplitudeF given by the
horizontal and vertical axes, respectively. Second, we c

e
FIG. 4. Fraction of initial conditionsN vs number of drive

cyclesn needed to reach the equilibriumx5dx/dt50 for h50.2,
F52, T56, and three values of the shape parameter:m50 ~h!,
m50.99 ~n!, andm50.995~>!. Also plotted are the correspond
ing Boltzmann fits@cf. Eq. ~23!; see the text#. N andn are dimen-
sionless variables.
7-5
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FIG. 5. Transient basins of the equilibriumx5dx/dt50 ~blank
regions! after t525T ~T is the pulse period! for the same param
eters as in Fig. 4.~a! m50. ~b! m50.99.~c! m50.995.x anddx/dt
are dimensionless variables.
06621
structed the diagrams shown in Fig. 4 by plotting a point
the grid only when the corresponding LE was larger th
1023. One sees that the right-side chaotic boundaries
proximately coincide with the right-side stability boundarie
although chaotic tongues are shorter than the correspon
instability tongues. A similar phenomenon was reported
Ref. @32# for a parametrically damped pendulum. The reas
for such a coincidence is simple: the common side of b
types of boundaries corresponds to a crisis transition in b
systems, as will be discussed in the next section. Figur
also depicts the theoretical chaotic threshold~solid line!
U(m,T,F)50.2, where the chaotic threshold function is

FIG. 6. Plot ofn0 @cf. Eq. ~23!# vs the shape parameterm ~dots!
along with an elliptic fit ~solid line, see the text!. n0 and m are
dimensionless parameters.

FIG. 7. Stability boundary of the solutionx5dx/dt50 in the
m-F parameter plane for elliptic pulses@cf. Eq. ~4!#, h50.2, and
T53. Instability regions~gray areas! were numerically calculated
on a grid of 3003300 points. The black lines denote the stabili
boundaries obtained theoretically from Eqs.~19!–~22!. m andF are
dimensionless parameters.
7-6



d
p
-

dic-
es
tic
er

ir-
It is
r a

ati-
he

ig.

ion

ape

o a

er-
nd,

uter

of

or is

are
10.
ci-

ns
g

goes

ge
rs

c-

tric
ns-

in

t-

ller

tic

0
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U~m,T,F ![
p3

T2AFa3~m!
(
n51

`

n2cn~m!bn~m,T,F !

~24!

with

a~m![
p/2K~m!2A12m

12A12m
,

cn~m![
p

~12A12m!K~m!
sechFnpK~12m!

K~m! G ,
bn~m,T,F ![cschF np2

TAFa~m!
G , ~25!

which is obtained from Melnikov analysis~MA ! ~cf. Ref.
@14#!. As is well known, MA predictions are generally relate
to transient chaos, which is indeed observed above the
dicted thresholdU(m,T,F)50.2. Therefore, one cannot ex

FIG. 8. Instability regions~gray areas! of the solution x
5dx/dt50 and chaotic regions~black circles! in theT-F parameter
plane for h50.2. Black lines represent the theoretical chao
thresholds@cf. Eqs. ~24! and ~25!# from Melnikov analysis. The
instability region ~gray areas! was calculated on a grid of 30
3300 points and the chaotic region on a grid of 1003100 points.
~a! Trigonometric pulses,m50. ~b! Elliptic pulses,m50.99.
06621
re-

pect too good a quantitative agreement between MA pre
tions and LE calculations because the LE provid
information concerning only steady motions. The chao
threshold predicted from MA occurs just below the upp
left-side stability boundary of the main instability tongue
respective of the pulse width, as can be seen in Fig. 8.
worth mentioning that a similar phenomenon is found fo
parametrically damped pendulum~cf. Ref. @33#!. Although
we have not checked the whole parameter space system
cally, we have found multiple coexisting attractors inside t
instability tongues in theT-F parameter plane for sufficiently
weak dissipation. An illustrative example is depicted in F
9 where one chaotic attractor~black points! and two mutu-
ally symmetric period-1 attractors~centers of the circles! are
shown together with their respective basins of attract
~gray and blank regions, respectively!. For the set of param-
eters employed (T55.52,F51,h50.2), we found that the
extension of the chaotic attractor diminishes as the sh
parameter is increased fromm50 @Fig. 9~a!# to m50.6
&mthreshold ~i.e., very near the chaotic threshold, Fig. 9!,
while its corresponding basin of attraction does so but t
much lesser extent. Form.mthreshold, the chaotic attractor
disappears, as expected. It is worth mentioning that high
period attractors have much smaller basins of attraction a
therefore, could not have been detected in our comp
simulations.

III. ORDER-CHAOS ROUTES

In this section we first analyze the bifurcation behavior
the NIPKR@Eqs.~2! and~4!# when solely the pulse width is
changed. We chose parameter values for which the rotat
in a chaotic state under trigonometric pulses (m50). An
illustrative example is depicted in Fig. 10~a!. The global bi-
furcation diagram was constructed by means of a Poinc´
map at the parameters indicated in the caption to Fig.
Starting atm50, and taking the transient time as 500 ex
tation periods after every increment ofDm5531024, we
sampled 30 excitation periods by picking up the firstdx/dt
value of every excitation cycle. The same initial conditio
were set for everym afterDm was added. The correspondin
behavior of the leading LE is displayed in Fig. 10~b!. Figure
10~a! shows that over the range 0<m,0.268 the motion of
the system is large-scale chaos. Then the system under
an inverse interior crisis atm.miic[0.268, limiting the cha-
otic dynamics to within a smaller region, over the ran
0.268<m,0.531. An inverse attractor merging crisis occu
at m.miamc[0.531, splitting the symmetric chaotic attra
tor existing over the interval 0.268<m,0.531 into two
asymmetric chaotic attractors. These are mutually symme
because of the NIPKR’s symmetry with respect to the tra
formation (x→2x), i.e., if @x(t),dx(t)/dt# is a solution of
Eqs. ~2! and ~4!, then so is@2x(t),2dx(t)/dt#. In other
words, nonsymmetric stationary solutions always occur
pairs. For each of the aforementioned inverse~interior and
attractor merging! crises, we found crisis-induced intermi
tency, as expected@34#. Over the range 0.531,m<0.599,
the chaotic dynamics is confined to within an ever sma
region~phase-locked chaos!, which is interrupted by periodic
7-7
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windows. Fromm50.599 tom51 the system’s overall be
havior is inverse period doubling. The asymmetric period
attractor undergoes symmetry restoring atm.0.956. Form
P@0.956,1# there is the steady behavior of a symmet
period-2 attractor, which becomes unstable at a value om
very close to 1, the equilibriumx5dx/dt50 being the re-
sulting attractor. The mechanism underlying the appeara
of the aforementioned reshaping-induced crises can
readily understood by studying the simple two-dimensio
map

zn115azn1zn
21bcn2~Vun1F;m!,

FIG. 9. Multistability for the parametersh50.2, T55.52, and
F51. ~a! m50. ~b! m50.6, very near the chaos threshold. Chao
~period-1! attractors are denoted by black points~centers of the
circles!, while gray~blank! regions represent their basins of attra
tion. The basins of attraction were calculated on a grid of 2
3250 points, and 33104 points are depicted in each version of th
chaotic attractor.x anddx/dt are dimensionless variables.
06621
2

ce
e
l

un1152unmod~2p!, ~26!

wherea, b, andF are parameters, and cn(Vu1F;m) is the
JEF of the parameterm. Note that the function cn2(Vu
1F;m) represents a pulse function which is similar to th
given by Eq.~4!. Since we are interested in the case wh
solely the pulse shape is varied, we fix its periodT5const,
making V5V(m)[2K(m)/T and F5F(m,w)
[2K(m)w/T (wP@0,T#). When m50, then cn2(Vu
1F;m50)5cos2(pt/T1pw/T) while, by increasingm, the
effective width of the pulse becomes ever smaller, i.e.,
functions cn2(Vu1F;m) andp(t;T,m) @cf. Eq. ~4!# exhibit
the same required properties. Also, form50, w50, andT
52p one recovers a map which is similar to that conside
in Ref. @35#. As was the case for that map~cf. Ref. @35#!,
numerical simulations indicated that, for certain parame
values, the map~26! presents two attractors:z5` ~which,
for the present purposes, should be regarded as a ge
nonchaotic attractor! and a chaotic attractor located in th

0

FIG. 10. ~a! Bifurcation diagram for the~dimensionless! vari-
able dx/dt with the ~dimensionless! parameterm in the range 0
<m,1. ~b! Values of the leading Lyapunov exponent~dimension-
less quantity! as a function ofm in the same range as in~a!. NIPKR
parameters:h50.2, F51, andT55.52.
7-8
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region zP@20.1,0.1#. The nonlinearity in Eq.~26! is the
same as in the map studied in Ref.@35#, so that the same
arguments concerning the appearance of crises carry ov
Eq. ~26!: by looking at the fixed points of Eq.~26!, one
deduces the critical parameter values (a* ,b* ,T* ,w* ,m* )
for which the two fixed points (z,u)5$(zc,0),(zb,0)% touch
~i.e., a crisis occurs!, wherezb is the smallestz value on the
upper (z.0) basin boundary of the attractorz5` while zc
is the largestz value on the chaotic attractor. Settingu50 in
Eq. ~26! and assuming thatzn is independent ofn, one has
z65$12a6@(12a)224bcn2(2Kw/T;m)#1/2%/2, and zb
5z1 , zc5z2 . Therefore, a crisis occurs whenz15z2 , i.e.,
for

a5a* [122Ab* cnF2K~m* !w*

T*
;m* G . ~27!

Let us suppose that for fixedb[b* , T[T* , and w[w*
(.0), andm&1 ~sharply kicking pulse!, one has that the
chosena,a* 5a* (m). As m is decreased fromm&1,
a* (m) decreases so that the two fixed points move tow
each other and, in some case that depends upon the c
(b* ,T* ,w* ,a), coalesce atm5m* for which a* (m
5m* )5a. Thus, a reshaping-induced crisis occurs as in
NIPKR, the basic underlying mechanism being the same
both cases~but with a pair of periodic orbits for the NIPKR
instead of the pair of fixed points!.

Second, we shall comment on the bifurcation behav
when solely the period is varied. Figure 11 shows bifurcat
diagrams (dx/dt vs T! constructed through a Poincare´ map
at F54, h50.2, andT ranging from 0.5 to 10. In this route
the stationary solutionx5dx/dt50 becomes unstable as th
period approaches the boundary of the corresponding in
bility tongue~compare the homonymous cases in Figs. 8 a
11, respectively!. With increasing period, chaos~a strange
chaotic attractor! may appear~depending on the specifi
tongue! by period-doubling bifurcations which are occasio
ally interrupted~for certain values of the period! by jumps
onto coexisting attractors. At even higher periodsT, the
strange attractor is destroyed by a boundary crisis aT
5Tbc[Tbc(m), the equilibrium x5dx/dt50 being the
steady state forT*Tbc .

IV. CONCLUSION

In this paper we have studied the dynamics of a dam
kicked rotator subjected to a periodic string of asymme
single-maximum pulses of finite width and amplitude. It c
be expected that the findings remain approximately the sa
independently of the particular wave form of the pulses,
long as an invariance condition concerning the impu
transmitted by the pulses is satisfied. The following is a su
mary of the main results.

~i! The extension of the instability region associated w
the equilibrium x5dx/dt50 in pulse parameter spac
reaches a maximum as the pulse width is varied. A preli
nary estimate of the stability boundary in them-F parameter
plane was obtained by means of an elliptic harmonic bala
method. These results represent well-behaved dynam
06621
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properties of the NIPKR, in the sense that they are inse
tive to the specific wave form of the pulses.

~ii ! The stability boundaries of the equilibriumx5dx/dt
50 in the T-F parameter plane were estimated, to lowe
~arbitrary! perturbative order, for general elliptic~trigono-
metric! pulses by means of an elliptic~circular! balance
method. Numerical calculations indicated that the respec
theoretical curves provide~to the tenth-order truncation! ex-
cellent approximations for trigonometric pulses, and th
they are reliable~to the first-order truncation! for pulse
shapes not too far from the trigonometric shape in the cas
general elliptic pulses.

~iii ! The bifurcation behavior along the stability bounda
in the parameter planesT-F andm-F were obtained numeri-
cally. In particular, the order-chaos route when solely
width of the pulses is altered appears to be especially r
including different types of crisis.

Finally, we should emphasize that none of the phenom
characterized in this work are present in the classical kic
rotator @4#. The present results could be useful in virtua
any scientific field where periodic strings of pulses appe
nonlinear optics and neurosciences are relevant instan
Some interesting open problems remain. Among them,
are presently considering the study of the Hamiltonian v
sion of the NIPKR.
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7-9



f

n

s

d
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APPENDIX: GENERALIZED FOURIER SERIES IN
WHICH JACOBIAN ELLIPTIC FUNCTIONS ARE USED

This appendix shows how to obtain the expansions o
periodic functionf (t), with period 4K(m), in terms of the
periodic set of so-calledelliptic harmonics@29#,

cos0~t;m![1, cosn~t;m![cos~nw!,

sinn~t;m![sin~nw!, ~A1!

where w[am(t;m), m,1, and n51,2,... . Therefore, one
looks for the Fourier coefficientsan ,bn of

f ~t!5
a0

2
1 (

n50

`

@an cos~nw!1bn sin~nw!#. ~A2!

They can be obtained by a standard~trigonometric! Fourier
expansion of the transformed functionf (w;m) in terms of
cos(nw) and sin(nw):

an~m!5
1

p E
0

2p

f ~w;m!cos~nw!dw, ~A3!

bn~m!5
1

p E
0

2p

f ~w;m!sin~nw!dw. ~A4!

However, instead of changing the functionf (t) into the form
f (w;m) @by using the inverse functiont5am21(w;m)], the
current procedure uses a set of orthogonal functions defi
in the t variable@the set~A1!#. One therefore has

f ~t!5
a0

2
1 (

n50

`

@an cosn~t;m!1bn sinn~t;m!#, ~A5!

where, upon substituting expression~A1! and the formula
dw/dt5d@am(t;m)#/dt5dn(t;m) ~cf. Ref. @16#! into the
expressions~A3! and ~A4!, one has

an~m!5
1

p E
0

4K

f ~t!cosn~t;m!dn~t;m!dt, ~A6!
06621
a

ed

bn~m!5
1

p E
0

4K

f ~t!sinn~t;m!dn~t;m!dt. ~A7!

Thus, for the function dn(t;m) and the products of JEF
appearing in Eq.~16!, one straightforwardly obtains

cn3~t;m!5
3

4
cn~t;m!1¯ , ~A8!

sn~t;m!dn~t;m!5b1~m!sn~t;m!1¯ , ~A9!

cn~t;m!dn~t;m!5a1~m!cn~t;m!1¯ , ~A10!

sn3~t;m!5
3

4
sn~t;m!1¯ , ~A11!

dn~t;m!5a0~m!1¯ , ~A12!

whereE(m) is the complete elliptic integral of the secon
kind @16#. By using Eqs.~A6! and ~A7!, the coefficients are
given by

a0~m!5
1

p E
0

4K

dn2~t;m!dt, ~A13!

a1~m!5
1

p E
0

4K

cn2~t;m!dn2~t;m!dt, ~A14!

b1~m!5
1

p E
0

4K

sn2~t;m!dn2~t;m!dt. ~A15!

Finally, with the aid of standard tables@30#, a0(m), a1(m),
andb1(m) can be written as

a0~m!5
4E~m!

p
, ~A16!

a1~m!5
4

3pm
@~m11!E~m!2~12m!K~m!#,

~A17!

b1~m!5
4

3pm
@~2m21!E~m!1~12m!K~m!#.
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