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Well-behaved dynamics in a dissipative nonideal periodically kicked rotator
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Well-behaved dynamical properties are found in a dissipative kicked rotator subjected to a periodic string of
asymmetric pulses dinite amplitude and width. The stability boundaries of the equilibrium are determined to
arbitrary approximation for trigonometric pulses by means of circular harmonic balance, and to first approxi-
mation for general elliptic pulses by means of an elliptic harmonic balance method. The bifurcation behavior
at the stability boundaries is determined numerically. We show how the extension of the instability region of
the equilibrium in pulse parameter space reaches a maximum as the pulse width is varied. We also characterize
the dependence of the mean duration of the transients to the equilibrium on the pulse width. The evolution of
the basins of attraction of chaotic attractors when solely the pulse width is varied is characterized numerically.
Finally, we show that the order-chaos route when solely the width of the pulses is altered appears to be
especially rich, including different types of crises. The mechanism underlying these reshaping-induced crises is
discussed with the aid of a two-dimensional map.
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[. INTRODUCTION of a damped Duffing oscillator subjected to an external force
represented by the JEF cn is given in Raf3].

Nonlinear nonautonomous dynamical systems, subjected In this present work, we discuss well-behaved properties
to a periodic string of pulses, describe a vast variety of physiof the dissipative nonideal periodically kicked rotator
cal, chemical, biological, and neuronal phenomgha3], to  (NIPKR) which was introduced in Ref14]:
cite only a few. The choice of a specific mathematical func- & g
tion to model a given real-world pulse determines, to a great X X . ) _
extent, the range of phenomena that it could suitably charac- aez * ﬂa+ F(sim)p(t;T, a;) =0, @)
terize. In this regard, the periodié function provides a
simple but rather ideal model of a periodic string of asym-where p(t;T,«;) is a generic asymmetric puldée., p(t
metric pulses. It has generally been used in the context of (2n—1)T/2;T,®;)=0, n=1,2,...; p(t;T,«;)>0, other-
systems subjected to periodic impacts. The periodicallyvise] of unit amplitude, period’, and wave form controlled
kicked rotator, for instance, has be@nd still i an exten- by the parameterg;. All variables and parameters are di-
sively investigated paradigmatic examipig: mensionless. Equatiof?) always possesses the stationary
solution x=0,dx/dt=0), which, however, need not be
stable against small perturbations. While E2). permits us
to study the structural stability of the system solely under
changes of the shape of the pulse functioa., with fixed
wherex is the angular coordinateyis a normalized damping amplitude and periodthis degree of freedom is absent in the
coefficient, F is the normalized amplitude, and timiand  model of Eq.(1). In this paper, we shall deal only with pulse
hence periofl have been normalized in units @fal (wo  functions which could represent realistic impacts, i.e., pulse
being the small-angle resonant frequency of the underlyingunctions having asingle maximum. A physical condition
integrable penduluimAs is well known, the main advantage concerning the impulse transmitted by this type of pulse, for
of employing thes function is that Eq(1) (and other similar the dynamics of the kicked rotat¢2) to be independent of
equationscan be reduced to a two-dimensional nfidp-10), the particular wave form of the pulse, was discussed in Ref.
so that analytical and numerical results are readily obtaineft4l: it is that any two asymmetric single-maximum pulse
in these casefl1]. It is clear, however, that a deeper under-functions p(t;T,«;),p’ (t;T,«;) yield the same impulse in
standing of diverse dynamical phenomena leads one to intréhe sense
duce mathematical models fapnidealpulses into dynami- . ;
cal equations, i.e., pulses wiftmite width and amplitude. In : _ ’ixe /
this respect, a comparison of the behavior of a damped pen- fo P T, a)dt= fo p(ET,ap)dt @
dulum driven by a periodic string of pulses modeled first by
the Jacobian elliptic functio®JEP dn, and then by a peri- It was demonstrated that the smaller thiene-dimensional
odic & function is discussed in Ref12]. A numerical study period of the pulse relative to the small-angle period of the

d’x  dx R
——+n— +F(sinx) >, 8(t—nT)=0, (1)
dt dt =0
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underlying integrable pendulurti.e., T<1), the better the  Il. STABILITY BOUNDARIES FOR THE EQUILIBRIUM
invariance condition(3) works. As numerical experiments
show that the invariance conditidB) is approximately cor-
rect for pulse functions modeling real-world impacts even
for periods that are not smaltf. Ref.[14]), we shall here-
after use the choice of pulse functiphs]

In this section we assume that the normalized pefiasl
not too large(typically, T<10) for the invariance condition
(3) to be approximately correct. One can then obtain theoret-
ical estimates of the stability boundaries for the solutign (
=0,dx/dt=0), which would be valid for any symmetric-

dn(2Kt/T:m)—vI—m pulse functionp(t;T,«;). For the sake of clarity, we shall
p(t;T,m)= n ) (4)  treat separately the cases of trigonometric pulses Q) and
1-y1-m (genera) elliptic pulses (B=m<1).

to obtain generic findings that atapproximately valid for
that type of pulse. In Eq4), dn is the JEF of parameten,
K=K(m) is the complete elliptic integral of the first kind For trigonometric pulsesnf=0) we rewrite the NIPKR
[16], and T is the period of the pulses. Our choice of the (2),(4) as
pulse function(4) is motivated by three remarkable proper- & g
ties. First, the shape of the pulsend hence the effective , 07X X L

width) is changed by solely varying single parameter, the 0757 Tag; Tell+cod2m)]sinx=0, ®)
elliptic parametem, between 0 and 1. Second, wher=0,

thenp(t;T,m=0)=co(w#t/T), i.e., we recover the simplest using the transformations

harmonic representation for an asymmetric pulse. In this

A. Case of trigonometric pulses

trigonometric limiting case, Eq.2) represents a parametri- 1 @ B _F
cally forced gravitational pendulum with a vertically =50t Q=7, q=70, e=3, ©®
oscillating support: d?x/dt?+ pdx/dt+ (F/2)[ 1

+cos(2rt/T)]sinx=0 [17]. This limiting case has been ex- wherew=27/T. The linearized equation for a perturbation

tensively studied by several authdts8—26. And third, by ¢ around the stationary solutiox£ 0,dx/dt=0) reads
increasingm the effective width of the pulse becomes ever

lower, and form=1 we recover a periodic sharply kicking 5 d?¢
excitation very close to the periodié function, but with Q%= Tag, +ell+cos27)]¢=0. (7)
finite width and amplitude as in real-world impacts.

The organization of the rest of the paper is as follows. Inwe assume that the stability boundary may be determined
Sec. Il we determine the stability boundaries for the stationsyom the existence of a periodic solution férAccording to
ary solution &=0dx/dt=0) in the parameter space Foquet's theoreni27], a Floguet multiplier must vanish at

(7,F,T,m). The theoretical approach is based on the asthe stability boundaries. Thus we may assume the existence
sumption that the stability boundaries of H8) can be ob-  f

tained by analytically solving its linearized equation. We

separately consider the cases of general elliptis(D<1) *

and trigonometric ih=0) pulses. For the former case, we E=Ag+ E (A, cosnt+B,sinnT). (8
additionally assume that the truncation of certain generalized n=1

Fourier series at lowest order provides an approximate but . . . . .
useful solution of the aforementioned linearized equation!NSerting relation(8) into Eq. (7), by balancing harmonics,
We demonstrate that the extension of the instability region ofV€ obtain

the stationary solutions= 0,dx/dt=0) in theT-F parameter .

plane reaches a maximum as the pulse width is varied. We _ 202 hd _

found that, for any pulse width, the duration of the transients (£ A+NABF 5 (An—2F Anrot Aod2n) =0,

to such a stationary solution fits a sigmoid&oltzmann

function. Also, we compare the stability boundaries in the 9o €

T-F parameter plane with the respecti(fer each tongue (e=n“Q9)Br—NaA+ 5 (By2+Bni2) =0, (9
chaotic boundaries. Numerical simulations are then em-

ployed to investigate the manner in which the basins of atynere 5, is the Kronecker delta, and where we have used
traction of chaotic attractors evolve as the pulse width ispe identitesA_,=A,, and B_,=—B,. For the lowest-

changed. Section Il gives a characterization of the generig qq, approximation we truncate E€@) at n=1. We then
chaos-order route found as the pulse width is decre@sed  ,piain the following two equations:
when m is varied from 0 to ], the remaining parameters

being held constant. We also discuss the mechanism under- 3

lying the reshaping-induced crises by using a simple two- <§s—02 A;+qB;=0,

dimensional map. In addition, we briefly discuss the bifurca-

tion behavior at the stability boundaries when the period is

the only parameter changed. Finally, in Sec. IV we give a —qA+ E—QZ)BFO. (10)
few concluding remarks. 2
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aries (black lineg obtained at the truncation=10 for %
=0.2. To numerically obtain the instability regions we used a
i grid of 300%x 300 points in thel-F parameter plane. For each
of the 90000 points, we integrated up to 400 drive cycles
and the behavior in the last few cycles was examined to plot
a point on the grid whefx|>10"° or |dx/dt|>10"°. Note
that the tenth-order approximation only goes slightly wrong
1 in how accurately it reproduces the tips of ttimundary of
the) tongues'’ tails.

B. Case of general elliptic pulses

T s e s s 1o (5)'?;” general elliptic pulsesnfe[0,1) the analog of Eq.

FIG. 1. Stability boundaries of the solutiorr=dx/dt=0 in the 02 d?x n d_X+2 dn(7;m)—+1-m inx=0, (13
T-F parameter plane for trigonometric pulsea=<0) and »=0.2. dr? q dr & 1—JV1—-m Sinx="9,
Instability regions(gray areaswere numerically calculated on a
grid of 300X 300 points. Black lines denote the stability boundaries ] .
obtained theoretically at truncation=10 from Eq.(9). TandF are ~ Where we have used the transformatiggswith o= w(m)
dimensionless parameters. =4K(m)/T, while the associated linearized equation is

dn(7;m)—+1-—m

The existence of a nontrivial solution requires the determi-

2 0%

. © ; d¢
nant of the coefficients to vanish: 2 ig— =
Q 92 +da+ e - im £=0. (19
3¢ )
7_9 q We assumeas for trigonometric pulsg¢sthat the stability
=0, (11)  boundaries may be determined from the existence of a peri-
—q E_Qz odic solution foré. For the present general case we use an
2 elliptic generalization of Floquet's theorem, which is based
on the existence of generalized Fourier sef#8 and on an
which gives[cf. Eq. (6)] elliptic harmonic balance methd@9]. Thus we may assume
the existence of
SR PO L 12 Ao, 5
P =g |2e N T (12 £=5+ 3 [Ancosng) +Bysinng)l, (19

Any finite higher-order approximatioR("(#,T) of the sta- wherep=am(r;m) is the JEF of the parametex To obtain
bility boundaries in thel-F parameter plane can be found a preliminary estimate of the stability boundaries in thé&
from Eqg. (9). Numerical simulations indeed show that the andT-F parameter planes, we shall limit our treatment to the
accuracy of the theoretical estimates increases &sin-  lowest-order approximation. Thus we truncate the se(figs
creased. As an example, Fig. 1 shows the numerically calcuiat n=1 and insert the resulting expression into Ef4),
lated instability regionggray areasand the stability bound- obtaining

QZ[(zm—1)cn(r)—2mcr13(T)]—qsn(r)oln(T)JrzaL '1_mcn(7)}Al+[92[—(1+m)sm)+2msrﬁ(r)]
1-V1—m
dn(7)—vy1—m dn(7)—vV1—m
+qcn(r)dn(r)+231iﬁsr(r) B:ﬁ‘&ﬁAOZO, (16)

where we have used si@g=sn(r;m), cose=cn(7;m) [sn(r;m) and cn@;m) are JEFs of the parameter] and the notation
pa(7)=paq(7;m). By using the generalized Fourier serj@§] for the function ditr) and for the above products of JEfSee
the Appendiy, if the expansions are limited to the lowest order, instead of(Eg). we have
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m a;(m)—y1l-m m b;(m)—+y1-m )
QZ(——l +2e " = " |A,+qay(m)B; cose+{ —aby(m)A;+ Qz(——l>+2 ———————|B,¢sin
{ 2 € 1_\/m 1T ga;(m) 1] [ [ qb;(m)A; 2 € 1_@ 1 ¢

a(m—-yl-m .
—— —— + (higher harmonics=0, 1

whereag(m), a;(m), andb,(m) are given in the Appendix by Eq6A16)—(A18), respectively. Setting the independent term
and the coefficients of sim and cosp to zero, respectively, one gets the equationsAgr A;, andB;. The existence of a
nontrivial solution requires the determinant of the corresponding coefficient matrix to vanish, i.e.,

m a;(m—+y1l-m
QZ<——1)+23L gay(m)
2 1-yJ1-m o 8
m by(m)—+y1—m o
—qhby(m) QZ(——1)+281()—
2 1-V1-m
|
which gives|cf. Eq. (6)]
F=FY(m,T,7)
_ —a(m )= Ja3(m,T) —4a;(m)ag(mT, 7) ‘T T T T T e
a ay(m) ’ A
(19 :
where 6bf o\ .
_ 4fay(m)—VI—m][b;(m)—y1-m] oIV S
ay(m)= . (20 NN
(1—J1-m)? TN : .
) 8K2(m)(m/2— 1)[by(m)+ay(m)—2y1—m] 2r I
as(m,T)= ,
? T2(1—V1—m)
0 L L i) 1 1 1 L i
(21 1 2 3 4 5 6 7 8 9 10
T 16K4(m) (m L 2 T
a3(m! J])-T E 10
47%K?(m)
+ gz —a(mby(m). (22) st |
Now we make the following remarks. 6L
First, for trigonometric pulsesnf=0), one recovers the
first-order approximatiori12), as expected. F
Second, the first-order approximati¢h9)—(22) can pro- 4r
vide only a preliminary estimate of the stability boundary for
the maininstability tongue such that the narrower the pulse, 5L
the worse the accuracy of the theoretical estimaee Fig.
2). Nonetheless, this approximation reproduces fairly well T e
the stretching of the tongue’s tail toward ever higher values 01 2 3 4 5 6 7 8 9 10
of the period as the pulse narrojwee Fig. &)]. Also, the
extension of the instability region in tHeF parameter plane r

increases as the pulse narrows. This behavior is characterized i 2. Stability boundaries of the solution=dx/dt=0 in the

by an enlargement of the tongues’ areas and a simultaneotse parameter plane for elliptic pulsdsf. Eq. (4)] and 7=0.2.
reduction of their number, as can be seen by comparison gfistability regions(gray areaswere numerically calculated on a
Figs. 4@ and 2b). Since the stationary solutionx( grid of 300x 300 points. Black lines denote the stability boundaries
=0,dx/dt=0) is stable over the whole range of the param-obtained theoretically from Eqs(19)—(22). (8 m=0.5. (b) m
eters in the limiting casen=1, one then deduces the exis- =0.99.T andF are dimensionless parameters.
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FIG. 3. Fraction of points of the instability regions of the solu-
tion x=dx/dt=0 in the T-F parameter plandy, vs the shape pa- FIG. 4. Fraction of initial conditiondN vs number of drive
rameterm. N andm are dimensionless variables and solid lines arecyclesn needed to reach the equilibriur=dx/dt=0 for 7=0.2,
solely plotted to guide the eye. F=2, T=6, and three values of the shape parameter0 (0),

m=0.99(A), andm=0.995(5%). Also plotted are the correspond-
tence of a(narrow range ofvalug(s) of the wave form pa- ing Boltzmann fits[cf. Eq. (23); see the text N andn are dimen-
rameter, associated with a certain width of the pulse, fosionless variables.
which the extension of the entire instability regionnmaxi-
mal. Figure 3 shows the fraction of points belonging to thetrigonometric form. The elliptic fit confirms that the remark-
instability regions of the stationary solutiorx£0dx/dt  aple increase oh, from m~0.9 is a consequence of the
=0) in the T-F parameter plane wite[0.1,10 andF  dependence of the pulse function on the complete elliptic
€[0,10] on a 100< 100 grid,N, vs the shape parameter  integral of the first kindcf. Eq. (4)].
One sees indeed that the entire instability region is maximal Third, the functionF®(m,T=consty=const) presents
(after 400 drive cyclgsfor a shape parameter ranging from an overall increasing behavior as the pulse narrows, as ex-
m~1-10°to m~1-10"" Itis worth noting that in this pected. Figure 7 shows the instability region in theF pa-
interval the pulse widti{measured at half amplituflés at  rameter plane obtained by numerical calculation and the
least 8% of its period. To assess the distribution of transienfirst-order perturbation stability boundafggs. (19)—(22)].
times to the equilibrium for specifieg, F, andT, a grid of  The first-order approximation qualitatively reproduces the
500x 500 uniformly distributed initial conditions were se- gyerall form of the stability boundary for the main instability
lected from the phase plane. For each of such initial conditongue, in particular the expected behavior o asm— 1.
tions, we determined the tim@measured in drive cycles |t is clear, however, that the quantitative discrepancies ap-
required for the NIPKR to evolve to the equilibrium. The pearing for narrow pulses indicate that higher-order approxi-
accumulated data were then sorted to give the fraction ofations are required fan close to 1, as well as to obtain the
such initial conditions vs the transient duration. An illustra- stability boundaries for the secondary tongues.
tive example is shown in Fig. 4 foy=0.2,F=2, T=6, and
three values of the shape parameter. We found thagdoh

value of the shape parameter, the numerically obtained curve C. Comparison with chaotic boundaries

accurately fits a sigmoidal Boltzmann function In Ref. [14] it was theoretically and numerically demon-
strated that the extension of chaos in parameter space reaches
N(n)=A,+ 17 A2 23 a maximum as the pulse width is varied, which is coherent

with the aforementioned results concerning the instability re-
gion. Indeed, for fixed wave form and dissipation, the cha-
whereA;~0, A,~1, d=d(m), and wheren, provides an otic region in theT-F parameter plane presents a tonguelike
estimate of the time at whidd(n=ny)=0.5(see Fig. 4 An  structure which is similar to that of the instability region, as
instantaneous image of the transient basins of the equililis shown in Fig. 8. Now it is instructive to compare the
rium aftert= 25T is shown in Fig. 5 for the same parametersstability boundaries of the equilibrium with the respective
as in Fig. 4. Note how théinstantaneoystransient basin (for each tongue chaotic boundaries determined by
becomes ever sparser as the pulse narrows. Figure 6 showsyapunov exponentLE) calculations. We computed LEs by
plot of ny (as a parameter characterizing the duration of theusing a version of the algorithm developed in R&fL]. In a
transientg vs the shape parameter(dot9 together with the first step, we calculated the leading LE for each point on a
elliptic fit 26.02— 7/2+K(m). One sees a clear increase of 100X 100 grid, with periodT and amplitude~ given by the
the duration of the transients as the pulse narrows from ithorizontal and vertical axes, respectively. Second, we con-

1+exg(n—ng)/dn]’
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dx/ dt

-1 0 1

x/

FIG. 5. Transient basins of the equilibriuxs=dx/dt=0 (blank
regiong after t=25T (T is the pulse periodfor the same param-
eters as in Fig. 4a) m=0. (b) m=0.99.(c) m=0.995.x anddx/dt
are dimensionless variables.
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FIG. 6. Plot ofng [cf. Eq. (23)] vs the shape parameter(doty
along with an elliptic fit(solid line, see the textny and m are
dimensionless parameters.

structed the diagrams shown in Fig. 4 by plotting a point on
the grid only when the corresponding LE was larger than
103, One sees that the right-side chaotic boundaries ap-
proximately coincide with the right-side stability boundaries,
although chaotic tongues are shorter than the corresponding
instability tongues. A similar phenomenon was reported in
Ref.[32] for a parametrically damped pendulum. The reason
for such a coincidence is simple: the common side of both
types of boundaries corresponds to a crisis transition in both
systems, as will be discussed in the next section. Figure 8
also depicts the theoretical chaotic thresh@sblid line)
U(m,T,F)=0.2, where the chaotic threshold function is

FIG. 7. Stability boundary of the solutiox=dx/dt=0 in the
m-F parameter plane for elliptic puls¢sf. Eq. (4)], »=0.2, and
T=3. Instability regions(gray areaswere numerically calculated
on a grid of 30 300 points. The black lines denote the stability
boundaries obtained theoretically from E¢E9)—(22). m andF are
dimensionless parameters.
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f

pect too good a quantitative agreement between MA predic-
tions and LE calculations because the LE provides
information concerning only steady motions. The chaotic
threshold predicted from MA occurs just below the upper
left-side stability boundary of the main instability tongue ir-
respective of the pulse width, as can be seen in Fig. 8. It is
worth mentioning that a similar phenomenon is found for a
parametrically damped pendulu(of. Ref. [33]). Although
we have not checked the whole parameter space systemati-
cally, we have found multiple coexisting attractors inside the
instability tongues in th@-F parameter plane for sufficiently
weak dissipation. An illustrative example is depicted in Fig.
0 2 4 6 3 10 9 where one chaotic attractdblack pointg and two mutu-
ally symmetric period-1 attractofsenters of the circlesare

T shown together with their respective basins of attraction
(gray and blank regions, respectivelfFor the set of param-
eters employed=5.52F=1,7=0.2), we found that the
extension of the chaotic attractor diminishes as the shape
parameter is increased from=0 [Fig. 9a)] to m=0.6
= Mireshold (i-€., very near the chaotic threshold, Fig, 9
while its corresponding basin of attraction does so but to a
much lesser extent. Fan>Mmy,esnoie the chaotic attractor
disappears, as expected. It is worth mentioning that higher-
period attractors have much smaller basins of attraction and,

therefore, could not have been detected in our computer
simulations.

st ‘~mn&;;s==~swmsw==fmzm. ol

=)}
T

Ill. ORDER-CHAOS ROUTES

In this section we first analyze the bifurcation behavior of
FIG. 8. Instability regions(gray areap of the solution x the NIPKR[Eqs.(2) and(4)] when solely the pulse width is .
=dx/dt=0 and chaotic regiondlack circle$ in the T-F parameter _changed. We chose paramgter values_ for which the rotator is
plane for »=0.2. Black lines represent the theoretical chaotic!n a Ch,aonc state l’!nder anonpmgtrlc pulses=0). Ar?
thresholds[cf. Egs. (24) and (25)] from Melnikov analysis. The |IIustr§1t|ve _example is depicted in Fig. @&. The global b,_"
instability region (gray areaswas calculated on a grid of 300 furcation diagram was constructed by means of a Poincare
X 300 points and the chaotic region on a grid of XaMO points. Map at the parameters indicated in the caption to Fig. 10.
(a) Trigonometric pulsesm=0. (b) Elliptic pulses,m=0.99. Starting atm=0, and taking the transient time as 500 exci-
tation periods after every increment Aim=5x10"4, we
73 o sampled 30 excitation periods by picking up the folstdt
U(m,T,F)= ———— >, nZc,(m)b,(m,T,F) value of every excitation cycle. The same initial conditions
T2JFa’(m) n=1 were set for everyn after Am was added. The corresponding
(24)  behavior of the leading LE is displayed in Fig.(bp Figure
. 10(a) shows that over the rangesin<<0.268 the motion of
with the system is large-scale chaos. Then the system undergoes
an inverse interior crisis ah=m;;.=0.268, limiting the cha-
= m2K(m) —v1-m otic dynamics to within a smaller region, over the range
1-J1l-m ’ 0.268=m<0.531. An inverse attractor merging crisis occurs
at m=m;;,=0.531, splitting the symmetric chaotic attrac-
T +mﬂ<(1—m)} tor existing over the interval 0.268m<0.531 into two
— Sec , asymmetric chaotic attractors. These are mutually symmetric
(1=V1-mK(m) K(m) because of the NIPKR’s symmetry with respect to the trans-
5 formation x— —x), i.e., if [x(t),dx(t)/dt] is a solution of
nw (25) Egs. (2) and (4), then so is[ —x(t),—dx(t)/dt]. In other
TJFa(m)|’ words, nonsymmetric stationary solutions always occur in
pairs. For each of the aforementioned invetsgerior and
which is obtained from Melnikov analysi@viA) (cf. Ref.  attractor mergingcrises, we found crisis-induced intermit-
[14]). As is well known, MA predictions are generally related tency, as expectef34]. Over the range 0.531m=0.599,
to transient chaos, which is indeed observed above the préhe chaotic dynamics is confined to within an ever smaller
dicted thresholdJ(m, T,F)=0.2. Therefore, one cannot ex- region(phase-locked chapswvhich is interrupted by periodic

a(m)

Cp(m)=

bn(m,T,F)Ecch{
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FIG. 10. (a) Bifurcation diagram for thedimensionlessvari-
able dx/dt with the (dimensionless parametem in the range 0
-3.33 ; - 0'0 . 1 =m<1. (b) Values of the leading Lyapunov exponddtmension-
- ' less quantityas a function ofnin the same range as {n). NIPKR
x parametersy=0.2, F=1, andT=5.52.
FIG. 9. Multistability for the parameterg=0.2, T=5.52, and .
F=1.(a) m=0. (b) m=0.6, very near the chaos threshold. Chaotic On+1=26,mod 2m), (26)

(period-1 attractors are denoted by black poiritenters of the ) .
circles, while gray(blank) regions represent their basins of attrac- wherea, §, and® are parameters, and d@g+®;m) is the

tion. The basins of attraction were calculated on a grid of 250JEF of the parametem. Note th.at the_ f“'?Ct"?” .&090
% 250 points, and & 10* points are depicted in each version of the +@;m) represents a pulse function which is similar to that
chaotic attractorx anddx/dt are dimensionless variables. given by Eq.(4). Since we are interested in the case when
solely the pulse shape is varied, we fix its peribé const,
windows. Fromm=0.599 tom=1 the system’s overall be- making Q=Q(m)=2K(m)/T and ®=®(m,¢)
havior is inverse period doubling. The asymmetric period-2=2K(m)¢/T (¢e[0,T]). When m=0, then cA(Q6
attractor undergoes symmetry restoringvat 0.956. Form  +®;m=0)=cos(t/T+m¢/T) while, by increasingm, the
€[0.956,] there is the steady behavior of a symmetriceffective width of the pulse becomes ever smaller, i.e., the
period-2 attractor, which becomes unstable at a valumof functions cA(Q 6+ ®;m) andp(t;T,m) [cf. Eq.(4)] exhibit
very close to 1, the equilibriumi=dx/dt=0 being the re- the same required properties. Also, fo=0, ¢=0, andT
sulting attractor. The mechanism underlying the appearance 27 one recovers a map which is similar to that considered
of the aforementioned reshaping-induced crises can bi Ref. [35]. As was the case for that mdpf. Ref.[35]),
readily understood by studying the simple two-dimensionahumerical simulations indicated that, for certain parameter
map values, the map26) presents two attractorg=cc (which,
) for the present purposes, should be regarded as a generic
Zn+1:azn+zn+,30”2(Q O+ P;m), nonchaotic attractgrand a chaotic attractor located in the
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region ze[—0.1,0.1. The nonlinearity in Eq(26) is the 4
same as in the map studied in RE35], so that the same @
arguments concerning the appearance of crises carry over to
Eq. (26): by looking at the fixed points of Eq.26), one
deduces the critical parameter values® (8*,T*,¢*,m*)

for which the two fixed points4, ) ={(z.,0),(z,,0)} touch

(i.e., a crisis occups wherez, is the smallest value on the
upper ¢>0) basin boundary of the attractar=~ while z.

is the largest value on the chaotic attractor. Settifig- 0 in

Eqg. (26) and assuming that, is independent of, one has
z.={1—a*[(1— a)’—4Bcr?(2Ke/T;m)]¥2/2, and z, -4
=z,,2.,=2_. Therefore, a crisis occurs when=z_, i.e.,

for T

dx/dt

oL

2K(m*) o*
a=a*=1-2 ,B*cn%; * .

(27)

Let us suppose that for fixe@=pg*, T=T*, and p=¢*
(>0), andm=1 (sharply kicking pulsg one has that the
chosena<a*=a*(m). As m is decreased froorm=1,
a* (m) decreases so that the two fixed points move toward
each other and, in some case that depends upon the choice 2
(B*,T*,¢*,a), coalesce atm=m* for which a*(m
=m*)=a. Thus, a reshaping-induced crisis occurs as in the 4 !
NIPKR, the basic underlying mechanism being the same in 0 2 4 6 8 10
both casegbut with a pair of periodic orbits for the NIPKR T
instead of the pair of fixed points _ _ ) ) ) )
Second, we shall comment on the bifurcation behavior, FIG- 11. Bifurcation diagrams for theimensionlessvariable
when solely the period is varied. Figure 11 shows bifurcatior‘g)doIt with the (dlmens&onlfs)s;enod Tin ”E)e range 0.5T=10.
diagrams @x/dt vs T) constructed through a Poincaneap arameters arg=4 and»=0.2.(3) m=0. (b) m=0.99.
atF=4, 7=0.2, andT ranging from 0.5 to 10. In this route, properties of the NIPKR, in the sense that they are insensi-
the stationary solutior=dx/dt=0 becomes unstable as the tive to the specific wave form of the pulses.
period approaches the boundary of the corresponding insta- (ii) The stability boundaries of the equilibriur=dx/dt
bility tongue (compare the homonymous cases in Figs. 8 and=0 in the T-F parameter plane were estimated, to lowest
11, respectively With increasing period, chao@ strange (arbitrary perturbative order, for general ellipti¢rigono-
chaotic attractgr may appear(depending on the specific metri pulses by means of an elliptitcirculan balance
tongue by period-doubling bifurcations which are occasion- method. Numerical calculations indicated that the respective
a”y interrupted(for certain values of the pen@)cby jumps theoretical Cur\./es prOVidGO the tenth-order truncatia)m".‘x-
onto coexisting attractors. At even higher periotisthe cellent approximations for trigonometric pulses, and that

strange attractor is destroyed by a boundary crisisTat they are reliable(to the first-order truncationfor pulse
—Tpe=Tpo(M), the equilibrium x=dx/dt=0 being the shapes not too far from the trigonometric shape in the case of
Cc Cc 1

general elliptic pulses.

(iii ) The bifurcation behavior along the stability boundary
in the parameter planesF and m-F were obtained numeri-
IV. CONCLUSION cally. In particular, the order-chaos route when solely the

In this paper we have studied the dynamics of a dampe&"idth _Of th? pulses is altered_ appears to be especially rich,
kicked rotator subjected to a periodic string of asymmetricncluding different types of crisis.
single-maximum pulses of finite width and amplitude. It can Flnally,. we ;hou!d emphasize that none of the p.heno_mena
be expected that the findings remain approximately the Sam&haracterlzed in this work are present in the Clas.s'cal kicked
independently of the particular wave form of the pulses, asotator[4]- The present results could be useful in virtually
long as an invariance condition concerning the impulseany scientific field where periodic strings of pulses appear:

transmitted by the pulses is satisfied. The following is asum_nonline-_ar opti_cs and neurosciences are relevant instances.
mary of the main results Some interesting open problems remain. Among them, we

(i) The extension of the instability region associated with@® Presently considering the study of the Hamiltonian ver-

the equilibrium x=dx/dt=0 in pulse parameter space Sion Of the NIPKR.
reaches a maximum as the pulse width is varied. A prelimi-
nary estimate of the stability boundary in theF parameter

plane was obtained by means of an elliptic harmonic balance We thank Professor J. A. Blackburn for kindly providing a
method. These results represent well-behaved dynamicaéprint of Ref[20]. We acknowledge the Ministerio de Cien-

dx/dt
a

steady state foT =Ty,

ACKNOWLEDGMENTS

066217-9



R. CHACON AND A. MARTI NEZ GARCIA-HOZ

cia y Tecnologa of Spain(Project No. BFM2002-0002Gor
partial financial support.

APPENDIX: GENERALIZED FOURIER SERIES IN
WHICH JACOBIAN ELLIPTIC FUNCTIONS ARE USED

This appendix shows how to obtain the expansions of a

periodic functionf(7), with period 4(m), in terms of the

periodic set of so-calledlliptic harmonics[29],
cogp(mm)=1, cos(r;m)=cogneg),

sin,(7;m)=sin(ne), (A1)

where p=am(r;m), m<1, andn=1,2,.... Therefore, one

looks for the Fourier coefficients, ,b,, of

f(r)= %+n20 [a,cogng)+b,sinng)]. (A2)

They can be obtained by a standdidgonometri¢ Fourier
expansion of the transformed functidfie;m) in terms of
coshe) and sinfip):

1 (2n
an(m)=;f0 f(@;m)cogne)de, (A3)

1 (2n
bn(m>=;fo femsinne)de.  (Ad)

However, instead of changing the functibfr) into the form
f(¢@;m) [by using the inverse function=am (¢;m)], the

current procedure uses a set of orthogonal functions defineg},

in the 7 variable[the set(Al)]. One therefore has

Qo - )
f(r)=7+ ZO[ancos](r;m)+bn3|r}1(r;m)], (A5)

where, upon substituting expressi¢al) and the formula
de/dr=d[am(r;m)]/d7=dn(r;m) (cf. Ref.[16]) into the
expressiongA3) and (A4), one has

1 (4K
an(m)=;fO f(7)cos,(7;m)dn(m;m)dr, (AB)

PHYSICAL REVIEW E 68, 066217 (2003

1 (4K
bn(m)=;fo f(7)sin,(7;m)ydn(m;m)dr. (A7)

Thus, for the function dnf;m) and the products of JEFs
appearing in Eq(16), one straightforwardly obtains

3
cr?(r;m)=ch(r;m)+---, (A8)
sn(m;m)dn(7;m)=by(m)sn(7;m)+---, (A9)
cn(m;m)ydn(m;m)=a;(m)cn(m;m)+---, (A10)

3
srf’(r;m)zzsr(r;m)+---, (A11)
dan(7;m)=ag(m)+---, (A12)

where E(m) is the complete elliptic integral of the second
kind [16]. By using Egs(A6) and (A7), the coefficients are
given by

1 (4K
ag(m=— | dr’(r;m)dr, (A13)
7 Jo
1 4K
al(m):;fo cr?(m;m)dré(m;m)dr, (A14)
1 (4K
bl(m)=7—_rJO srt(7;m)dré(7;m)dr. (A15)

Finally, with the aid of standard tabl¢30], ag(m), a;(m),
db;(m) can be written as

4E(m)
ag(m)= py (Ale)
4
ay(m)= z——[(m+1E(m) ~(1-mK(m)],
(A17)
4
by(m)= z——[(2m—1)E(m)+(1~m)K(m)].
(A18)
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