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Scaling properties of saddle-node bifurcations on fractal basin boundaries
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We analyze situations where a saddle-node bifurcation occurs on a fractal basin boundary. Specifically, we
are interested in what happens when a system parameter is slowly swept in time through the bifurcation. Such
situations are known to be indeterminate in the sense that it is difficult to predict the eventual fate of an orbit
that tracks the prebifurcation node attractor as the system parameter is swept through the bifurcation. In this
paper we investigate the scaling @ the fractal basin boundary of the stafie., unsweptsystem near the
saddle-node bifurcation2) the dependence of the orbit's final destination on the sweeping (@tehe
dependence of the time it takes for an attractor to capture a swept orbit on the sweeping rétp, thad
dependence of the final attractor capture probability on the noise level. With respect to noise, our main result
is that the effect of noise scales with the 5/6 power of the parameter drift rate. Our approach is to first
investigate all these issues using one-dimensional map models. The simplification of treatment inherent in one
dimension greatly facilitates analysis and numerical experiment, aiding us in obtaining the new results listed
above. Following our one-dimensional investigations, we explain that these results can be applied to two-
dimensional systems. We show, through numerical experiments on a periodically forced second-order differ-
ential equation example, that the scalings we have found also apply to systems that result in two-dimensional
maps.
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[. INTRODUCTION =u, . Now assume that, for a parameter interjal ,ugr]
with u; <u, <pug, in addition to the node, there are also
It is common for dynamical systems to have two or moretwo other attractors A and B and that the boundary of the
coexisting attractors. In predicting the long-term behavior ofbasin of attractor A, attractor B, and the node is a fractal
such a system, it is important to determine sets of initialbasin boundary. We are interested in the typical case where,
conditions of orbits that approach each attradice., the  before the bifurcation, the saddle lies on the fractal basin
basins of attraction The boundaries of such sets are oftenpoundary, and thus, at the bifurcation, the merged saddle-
fractal ([1], Chap. 5 of 2], and references thereiriThe fine-  node orbit is on the basin boundary. In such a case an arbi-
scale fractal structure of such a boundary implies increasegar”y small ball about the saddle node @t u, contains
sensitivity to errors in the initial conditions: Even a consid- pieces of the basins of both A and B. Thus, asslowly
erable decrease in the uncertainty of initial conditions may, . -aases through, , it is unclear whether the orbit follow-
yield_ only a relqtively Sm?"! depreas_e in th_e probabili.ty_ .Ofing the node will g*o to A or to B after the node attractor is
gg’;}lﬂﬂ%ﬁnbirlfr: ggezt]err'?cl)rrur;g él?svggls(;ri]o?nasgp fsrggtha?%g:itr']aldestroyed by the bifurcation. In practice, noise or round-off
98,2 error may lead the orbit to go to one attractor or the other,

boundaries in experiments, see Chap. 1430f "
Thompson and Solima] showed that another source of and the result can often depend very sensitively on the spe-
I;;ific value of the slow rate at which the system parameter

uncertainty induced by fractal basin boundaries may arise ivanes

situations in which there is slowadiabati¢ variation of the . .
system. For example, consider a fixed-point attractor of a V& note that the study of orbits swept through an indeter-

map (a node. As a system parameter varies slowly, an orbitmina}te sac_JdIe-n(_)de bifurcation belongs to the theory of d_y-
initially placed on the node attractor moves with time, namical bifurcations. Many authors have analyzed orbits
closely following the location of the solution for the fixed swept through other bifurcations, like the period doubling
point in the absence of the temporal parameter variation. Aifurcation [5], the pitchfork bifurcation[6,7], and the
the parameter varies, the node attractor may suffer a saddlgranscritical bifurcatior7]. In all these studies of the bifur-
node bifurcation. For definiteness, say that the node attract@ations listed above, the local structure befarel after the
exists for values of the parameterin the rangeu<u, and  bifurcation includes stable invariant manifolds varying
that the saddle-node bifurcation of the node occurswat smoothly with the bifurcation parametére., a stable fixed
point that exists before or after the bifurcation and whose
location varies smoothly with the bifurcation paramgter
*Permanent address: Department of Econometrics, University of his particular feature of the local bifurcation structure, not
Groningen, P.O. Box 800, NL-9700 AV, Groningen, The Nether-shared by the saddle-node bifurcation, allows for well-posed,

lands. locally defined problems of dynamical bifurcations. The
TAlso at Department of Electrical and Computer Engineering,static saddle-node bifurcation has received much attention in
University of Maryland, College Park, MD 20742. theory and experiments8—10], but so far, no dynamical
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bifurcation problems have been defined for the saddle-node 1 '.
bifurcation. In this work, we demonstrate that, in certain :
common situations, global structui@g., an invariant Cantor 0.8r
set or a fractal basin boundagdds to the local properties of .
the saddle-node bifurcation and allows for well-posed prob- x 06] !
lems of dynamical bifurcations. )
Situations where a saddle-node bifurcation occurs on a 04 :
fractal basin boundary have been studied in two-dimensional 0.2
Poincaremaps of damped forced oscillatdr,11,19. Sev- ) ;
eral examples of such systems are knofnl2], and it 0 - . . . (@)
seems that this is a common occurrence in dynamical sys- 0 10.2 0.4 06 0.8 1
tems. In this work, we first focus on saddle-node bifurcations = 0.01 L ' ' '
that occur for one-parameter families of smooth one- gali !
dimensional maps having multiple critical poir( critical = 0 TR T
point is a point at which the derivative of the map vanighes =X ! (b)
Since one-dimensional dynamics is simpler than two- ‘0-010 '0'2 0'4 0I6 0‘8 ’

dimensional dynamics, indeterminate bifurcations can be X

more simply studied, without the distraction of extra math-

ematical structure. Taking advantage of this, we are able to FIG. 1. Construction of the functiofi,(x) starting with(a) the

efficiently investigate several scaling properties of these bithird iterate of the logistic mapg(x) =rx(1-x), with r=3.832,

furcations. In particular, we investigate the scalingfthe ~ and adding a perturbatiai) x sin(3mx) (x=5.4x10"%).

fractal basin boundary of the statice., unswept system - )

near the saddle-node bifurcatiéBecs. Il B and Il G, (2) the  increases through a critical valyg, , and this saddle-node

dependence of the orbit final destination on the sweeping ratdifurcation occurs on the common boundary of the basins of

(Sec. 11D, (3) the dependence of the time it takes for antN€ two attractors. _ _

attractor to capture the swept orbit following the bifurcation e first recall the saddle-node bifurcation theorésee,

on the sweeping ratéSec. Il B, and (4) the dependence of for example,[8]). If the mapf,(x) satisfies(@) f, ()

the final attractor capture probability on the noise le@dc. =X, , (b) (9f, /9x)(x,)=1, (c) (&zfﬂ* 18°%)(x,)>0, and

Il F). Following our one-dimensional investigations, we ex-(d) (9f/du)(x, ;u,)>0, then the mapf,, undergoes a

plain that these results apply to two-dimensional systems. Weackward saddle-node bifurcatigie., the node attractor is

show, through numerical experiments on the periodica”ydestroyed ak, asu increases through, ). If the inequality

forced Duffing oscillator, that the scalings we have foundin either (c) or (d) is reversed, then the map undergoes a

also apply to higher-dimensional syste(@ec. Il)). forward saddle-node bifurcation, while if both these in-
For one-dimensional maps, a situation dynamically simi-equalities are reversed, the bifurcation remains backward. A

lar to that in which there is indeterminacy in which attractor saddle-node bifurcation in a one-dimensional map is also

captures the orbit can also occur in cases where there are twalled a tangent or a fold bifurcation.

rather than threéor more attractorg(Sec. I\). In particular,

we can have the situation where one attractor persists for all A. Model

values of the parameters we consider and the other attractor ) ) ) ) )

is a node which is destroyed via a saddle-node bifurcation on AS an illustration of an indeterminate saddle-node bifur-

the basin boundary separating the basins of the two attra&ation in a one-dimensional map, we construct an example in
tors. In such a situation, an orbit starting on the node andhe following way. We consider the logistic map for a param-

swept through the saddle-node bifurcation will go to the re-eter value where there is a stable periO([ds]three orbit. We de-
maining attractor. It is possible to distinguish different ways”g‘]e this mapg(x) and its third iterateg™(x). The map
that the orbit initially on the node approaches the remaining.. (X) has three stable fixed points. We perturb the map

attractor. We find that the way in which this attractor is ap-g- (X) by adding a functioriwhich depends on a parameter
proached can be indeterminate. ) that will cause a saddle-node bifurcation of one of the
attracting fixed points but not of the other tjsee Figs. (@)
and Xb)]. We investigate
1. INDETERMINACY IN WHICH ATTRACTOR
IS APPROACHED f,,()=gB(x)+ u sin(3mx),

We consider the general situation of a one-dimensional where g(x)=3.83X%(1—X). (1)
real mapf ,(x) depending on a parameter We assume the
following: (1) the map is twice differentiable with respect to Numerical calculations show that the functiby(x) satisfies
x and once differentiable with respect to (the derivatives all the conditions of the saddle-node bifurcation theorem for
are continuous (2) f,, has at least two attractors sharing ahaving a backward saddle-node bifurcatiorxat=0.159 70
fractal basin boundary for parameter values in the vicinity ofand u, ~0.002 79. Figure @) displays how the basins of
My » and(3) an attracting fixed point, of the mapf ,(x) is  the three attracting fixed points of the mép change with
destroyed by a saddle-node bifurcation as the parameter variation of . For x=0 the third iterate of the logistic map
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1 0.163
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0 0.145
0 : 0.0054 0.00275 " 0.00355

FIG. 2. (Color) (a) Basin structure of the maf, versus the parameter on the horizontal axis. The attractor having the blue basin is
destroyed au~2.79x 10 3. (b) Detail of the region shown as the white rectanglgan

is unperturbed, and it has three attracting fixed points whos8 shows that the boundary dimensibnexperiences a dis-
basins we color coded with blue, green, and red. For evergontinuous jump at the saddle-node bifurcation when

value of u, the red regiorR[ 1] is the set of initial condi- =u, . We believe that this is due to the fact that the basin
tions attracted to the rightmost stable fixed point which weB[ ] suddenly disappears for> u, .
denoteR,, . The green regio®[ «] is the set of initial con- The existence of a fractal basin boundary has important

ditions attracted to the middle stable fixed point which wepractical consequences. In particular, for the purpose of de-
denoteG,, . The blue regiorB[ 1] is the set of initial condi-  termining which attractor eventually captures a given orbit,
tions attracted to the leftmost stable fixed point which wethe arbitrarily fine-scaled structure of fractal basin bound-
denoteB,, . aries implies considerable sensitivity to small errors in initial

For u<u, , each of these colored sets has infinitely conditions. If we assume that initial points cannot be located
many disjoint intervals and a fractal boundary. Asin- more precisely than some>0, then we cannot determine
creases, the leftmost stable fixed pdit is destroyed via a  which basin a point is in, if it is withire of the basin bound-
saddle-node bifurcation on the fractal basin boundary. Irary. Such points are calleel uncertain. The Lebesgue mea-
fact, in this case, fou<pu, , every boundary point of one sure of the set ogé-uncertain pointgin a bounded region of
basin is a boundary point for all three basifihat is, an interesj scales likee®0~ P, whereD,, is the dimension of the
arbitrarily smallx interval centered about any point on the phase spacely=1 for one-dimensional mapandD is the
boundary of any one of the basins contains pieces of theox-counting dimension of the basin boundaty. For the
other two basing.The basins are so-called Wada bagit3). case of a fractal basin boundanD{—D)<1. WhenD,
This phenomenon of a saddle-node bifurcation on the fractal-D is small, a large decrease inresults in a relatively
boundary of Wada basins also occurs for the damped forced

oscillators studied in Ref$11,12. Alternatively, if we look 0.96 ;
at the saddle-node bifurcation as decreases through the :
value u, , then the basiB[ »] of the newly created stable 0.955
fixed point immediately has infinitely many disjoint intervals :.'s"-,.,“
and its boundary displays fractal structure. According to the 0.95 P e .
terminology of Roberet al. [14], we may consider this bi- | A
furcation an example of an “explosion.” 0 0945
B. Dimension of the fractal basin boundary 0.94 i

Figure 3 graphs the computed dimensrof the fractal 0935 _—__‘—/ i
basin boundary versus the parameter For u<u, , we !
observe thaD appears to be a continuous function of 0.93 H
Parket al.[15] argue that the fractal dimension of the basin 0 1 2 3 4 5
boundary neaj, , for u<u, , scales as H x 107

D(um)~D, —K(uy _M)1/2, 2 FIG. 3. Fractal dimension of the basin boundary vergudNo-

tice the continuous variation far< ., and the discontinuous jump
with D, the dimension aj=pu, (D, is less than the di- atu, , the parameter value at which the saddle-node bifurcation on
mension of the phase spa@ndk a positive constant. Figure the fractal basin boundary takes place.

066213-3



BREBAN, NUSSE, AND OTT PHYSICAL REVIEW E68, 066213 (2003
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X,—»

FIG. 4. (a) Detail of Fig. 2b),
with the horizontal axis changed
from u to (u—u,) Y2 for u

R'N >u, ;. The green stripes from
0.145 Fig. 2(b) are colored black and the
298 p red stripes are colored white. The
() approximate position of the point
X, Where the saddle-node bifurca-
0.954 ' ' ' ' ' s tion takes place is showm, indi-

cates the nearest critical poirth)
(o ki - Detail of Fig. 3, displaying how
{1t ‘ : It R # 111 (R the box dimensio of the fractal

0.953 ‘ b (] basin boundary varies with u(
o | ‘ ’ —u,) Y2 The horizontal axes of
; ‘ I | | (a) and(b) are identical.
0.952 .

285 280 275 270
)—1/2

(nn,

small decrease ia®oP. This is discussed in Reffl] which ~ For u> pu, , there are many parameter values for which the
defines the uncertainty dimensioD,,, as follows. Say we map has a saddle-node bifurcation of a periodic orbit on the
randomly pick an initial conditionx with uniform probability  fractal basin boundary. At such parameter values, which we
density in a state-space regi& Then we randomly pick refer to as saddle-node bifurcation parameter values, the di-
another initial conditiony in S such thatly—x|<e. Let  mension is expected to be discontinuoas it is at the
p(e,S) be the probability thax andy are in different basins. saddle-node bifurcation of the fixed point=pu, ; see Fig.
[We can think ofp(e,S) as the probability that an error will - 3) | fact, there exist sequences of saddle-node bifurcation
be made in determining the basin of an initial condition if theparameter values converging jo, [16]. Furthermore, for
initial condition has uncertainty of size.] The uncertainty o5ch parameter valye> u, for which the map undergoes a
dimension of the basin boundaidy, is defined as the limit of  5qqje-node bifurcation, there exists a sequence of saddle-
In p(e,S)/ Inl(f) ase gogs tODZO?réEl]' Tr?us, tfhe ;?roba?ngy of  hode bifurcation parameter values converging to that param-
Errordsc_ag ESI%(Zl)NTEh' . d Wt ere ﬁr ra(cj:ta a_lts_lr_1t eter value. The basins of attraction of the periodic orbits
oundarnieso—Dy=1. [hiS Indicates enhanced Sensiivity . 410 by saddle-node bifurcations of high period exist only
to the small uncertainty in initial conditions. For example, |ff ) .
o - o or very small intervals of the parametar We did not en-
Do—D,=0.2, then a decrease of the initial condition uncer- : . LT .
counter them numerically by iterating initial conditions for a

tainty € by a factor of 10 leads to only a relatively small ~. :
decrease in the final-state uncertaimte,S), sincep de- dlsqrete set O.f value§ of the parameferas we did for the
basin of our fixed-point attractor.

creases by a factor of about%¥%-1.6. Thus, in practical
terms, it may be essentially impossible to significantly
reduce the final-state uncertainty. In REf] it was conjec-
tured that the box-counting dimension equals the uncertainty
dimension for basin boundaries in typical dynamical Just pasiu, , the remaining green and red basins display
systems. In Ref[17] it is proved that the box-counting an alternating stripe structufsee Fig. 2)]. The red and
dimension, the uncertainty dimension, and the Hausdorff digreen stripes are interlaced in a fractal structure. As we ap-
mension are all equal for the basin boundaries of one- angroach the bifurcation point, the interlacing becomes finer
two-dimensional systems that are uniformly hyperbolic onand finer scaled, with the scale approaching zerqu aap-
their basin boundary. proachesu, . Similar fine-scale structure is present in the
We now explain some aspects of the character of the deseighborhood of all preiterates of, . If one changes the
pendence oD on u (see Fig. 3 From Ref.[18] it follows horizontal axis of Figs. @ and 2Zb) from u to (u
that the box-counting dimension and the Hausdorff dimen— u, )2 then the complex alternating stripe structure ap-
sion coincide for all intervals of. for which the mapf , is  pears asymptotically periodifsee Fig. 4a)]. [Thus, with
hyperbolic on the basin boundary and that the dimensiondentical horizontal scale, the dimension plot in Fidb)
depends continuously on the parameiein these intervals. appears asymptotically periodic, as welMe now explain

C. Scaling of the fractal basin boundary
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why this is so. We restrict our discussion to a small neigh-

borhood ofx, . Consider the second-order expansiorf pf
in the vicinity of x, andu, :

X=X—X, ,

H= = g

fa(0)=p+x+a%?, where{ (3)

anda~89.4315. The trajectories 61;1 in the neighborhood

of X=0, for & close to zero, are good approximations to

trajectories off , in the neighborhood at=x,, , for u close
to u, . Assume that we start with a certain initial condition

for fﬂ, Xo=Xs, and we ask the following question: What are
all the positive values of the parameigrsuch that a trajec-
tory passes through a fixed positikp>0 at some iterata?
For any giverx; which is not on the fractal basin boundary,
there exists a range qf such that iterates of; underf,
evolve to the same final attractor, for all valueswoin that
range. In particular, oncaX’ appreciably exceedg, the
subsequent evolution is approximately independentiof
Thus, we can choosi>/ix/a, but still small enough so
that it lies in the region of validity of the canonical for(8).
There exists a range of suéh values satisfying these re-
quirements provided thdf| is small enough.

Since consecutive iterates 6)§ in the neighborhood of
x=0 for i close to zero differ only slightly, we approximate
the one-dimensional map

§(n+1:f,}(s\(n):/’l+5\(n+akﬁ (4)

by the differential equatioh9]
ax s .
an " AtaXxs, )

PHYSICAL REVIEW E 68, 066213 (2003

a2 b
0
(n+1)a’n
______/' ”
_;_;____;_._._cﬁ‘ na x
PEEECCEEE PR S TTrooooIIiiiis F e ()i
1 1 1 ~
0 X

a(n+1) an a(n-1)

s

FIG. 5. Qualitative graphs of the solution of E&), iz, Y4(%o),
for three consecutive values aof Note the horizontal asymptotes
[~ Y2=(n—1)a'?m, na'?m, and fi+1)aY?x], the vertical as-
ymptotes (X%;=[a(n—1)]"%, (an)~%, and [a(n+1)] %), both
shown as dashed lines, and the intersections of the solid curves with
Xo=0 which are marked with black dots.

u a
nyap~ 57 arctar( \/;Rs .
o

Let m,(Xs) denote the solution of EE8) for i. Equation(8)
implies the behavior ofi, Y*(%.) as function of andn as
sketched in Fig. 5. For a fixed, i, ¥? has a horizontal
asymptote at the valua\a/7 as Xs— — and a vertical
asymptote to infinity ak;=1/(an). For X;<0, we have an
infinite number of values of the parameter for which an
orbit of f i starting aiks passes through the same positign
after some number of iterations. Fy=0 (i.e.,Xxs=X, ), we
also have an infinite number @, ¥%0), butwith constant
step 2/a/ 7 rather thanJa/ = (see the intersections marked
with black dots in the Fig. b This is hard to verify from
numerics, since i, Y% d%s)(0)=a%32n/m)? increases
with n?, and the stripes become very tilted in the neighbor-

®

where in Eq.(5) nis considered as a continuous, rather tharhood of X=X, =0. [See Fig. 4a), where the approximate

a discrete, variable. Integrating E@) from X, to X; yields

a a
n\/a,&=arctar( \ﬂ)‘q —arctar( \ﬁ)‘(S .
o o

Close to the saddle-node bifurcatidre., 0< <1 andXs

close to zerp ?‘ﬁ is a good approximation td,. For
|%s | V(a/it)>1, Eq.(6) becomes

n@%m
~ =112

The values ofg, ' satisfying Eq.(7) increase withn in
steps ofya/w. For our example we have~89.4315; thus,
Ja/7~3.010. Counting many periods like those in Fig. 4 in
the region ofx., the closest critical point tx, [see Fig.
4(a)], we find that the period of the stripe structure is 3.015
which is in good agreement with our theoretical value.

(6)

()

positions ofx. andx, on the vertical axis are indicatdd-or
%s>0, i, Y2 has only a limited number of values with
Nmax< 1/(aXo).

D. Sweeping through an indeterminate
saddle-node bifurcation

In order to understand the consequences of a saddle-node
bifurcation on a fractal basin boundary for systems experi-
encing slow drift, we imagine the following experiment. We
start with the dynamical syster), at parameteus<pu, ,
with X, on the attractor to be destroyed at=pu, by a
saddle-node bifurcatiofi.e., B,). Then, as we iterate, we
slowly changew by a small constant amou@j. per iterate,
thus increasinge from ug to us>pu, :

Xﬂ+1:fﬂn(xn)l

Mn=pstNOp. 9

In order to investigate the structure of the fractal basin

boundary in the vicinity of the saddle-node bifurcatiom.,
Xs close tokx, =0), we consider E¢6) in the case where we
demand only%¢|(a/i)>1. Thus, Eq(6) becomes

When pu=pu; we stop sweeping the parameter and by
iterating further, we determine to which of the remaining
attractors offo the orbit goes. Numerically, we observe that,
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FIG. 6. (a) Final attracting state of swept orbits versfis. We have choseps= i+ u, =0 andu;=4.5x10 3. The attractoRR,, is
represented by 1 and the .31ttrac!tb‘g;f is represented by @b) Detail of (a) with the horizontal scale changed frafp to 1/6u. The structure
of white and black bands becomes asymptotically perigdjc-inal state of orbits for the systefﬁ versus 16u. The final state of an orbit
is defined to be 0 if there existssuch that 108.X,<250 and is defined to be 1, otherwise. We have chggaen— u, , so that(b),(c) have
the same asymptotic periodicity.

if (us— uy) is not too small, then by the time; is reached, widths of the white bands decrease &s decreases, such
the orbit is close to the attractor df, to which it goes. that, for smalldu, we see only black.

[From our subsequent analysis, “not too smjal ;— s, |” If (ui—py) is large enoughi.e., (Su)*<|mi— ],
translates into choices ofu that satisfy u)2%<|ue _numerics and our su_bsequent analysis show that Fig. 6 is
— ., |.]1 We repeat this for different values dfu and we independent ofu¢. This fact can be understood as follows.

graph the final attractor position for the orbit versys[see ~ ONCE# =k, the orbit typically lands in the green or the red
Fig. 6(@)]. For convenience in the graphical representation oPaS'n of attra(?t|on.a.nd goes to the corres.pondmg attractor.
Figs. 6a) and &b), we have represented the attractor of theDu,e tq sweeping, itis poss!ble for t.he qrb|t to switch from
green regiorG[ u], denotecGMf, as a 0, and the attractor of being in one baS|_n of attractlc_)n of thiene-independennap

. : f,, to the other, since the basin boundary betw&gp | and
the red regiorR[ 1], denotedR,,, as a 1. In Fig. @) we use R[ ] changes withu. However, the sweeping gf is slow
25000 points having vertical coordinate of either 0 or 1,(ie. su is smal), and once — u,) is large enough, the
which we connect with straight lines. In an interval®t for  orpit is far enough from the fractal basin boundary, and the
which the system reaches the same final attregitiner O or  fractal basin boundary changes too little to switch the orbit
1), the lines connecting the points are horizontal. Such interhetweenG[ 1] and R u].
vals appear as white bands in Fig. 6 if they are wider than the e also find numerically that Figs(# and &b) are in-
width of the plotted lines connecting 0's and 1's. For ex-dependent of the initial conditioxy, provided that it is in the
ample, in Fig. 6a), the white band centered a=0.8  plue basinB[us], sufficiently far from the fractal basin
X107 has at the bottom a thick horizontal line, which indi- houndary, and thaljus— x| is not too smalli.e., (5u)??
cates that for the whole of that interval, the orbit reaches th%ms_ﬂ* 1.
attractorG,, which we represented by 0. Adjacent intervals |f one changes the horizontal scale of Figa)drom S to
of width less than the plotted lines appear as black bands./su [see Fig. &)], the complex band structure appears as-
Within such black bands, an uncertainty dp of size equal ymptotically periodic. Furthermore, we find that the period
to the width of the plotted line makes the attractor that thein (1/6u) of the structure in Fig. ®) asymptotically ap-
orbit goes to indeterminate. Figure(ap shows that the proaches—1/(us— w1, ) asdu becomes small.
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In order to explain this result, we again consider the mapo solve for 7 yields 7~ O[£(0)e?$(®]>1. For positive
fﬁ, the local approximation df,, in the region of the saddle- large values of¢(n) (i.e., for n small enough using the
node bifurcation. Equation®) can be approximated by corresponding asymptotic expansions of the Airy functions

A [19], the lowest order i approximation to Eq(12) is
Rn1=Fa, (%) = o+ %o+ 257,

o Hstnép
fen= ftsT N (10) K(n)=—\/— — (14)

We perform the following numerical experiment. We con- ith th tion t ¢ hiah der i bei
sider orbits of our approximate two-dimensional map givenWI e correction term of higher order i being nega-

by Eq. (10) starting atk.= —\— fe/a. We define a final- tive. Thus_, forn sufficientl){ smalle.r than—.,&SAIB,u., trle
state function of an orbit swept with parametu in the ~ Swept orbit lags closely behind the fixed point forwith z
following way. It is O if the orbit has at least one iterate in a constant. FOE<0, we use the fact tha is large to approxi-
specified fixed interval far from the saddle-node bifurcation™mate Eq.(12) as
and is 1 otherwise. In particular, we take the final state of a
swept orbit to be 0 if there existssuch that 108:%,<250 . Ai’ (&)
and to be 1 otherwise. Figuréd graphs the corresponding X(n)~ Ai(é)
numerical results. Similar to Fig.(6), we observe periodic
behavior in 16u with period—1/4. In contrast to Fig. @)
where the white band structure seems fractal, the structufdote that
within each period in Fig. @) consists of only one interval
where the final state is 0 and one interval where the final Ai’(0)
state is 1. This is because ¥08<250 is a single interval,  X(—s/op)~ AI(0)
while the green basifdenoted 0 in Fig. @)] has an infinite
number of disjoint intervals and a fractal bounddsee
Fig. 2.

gWit)h the similarity between Figs.(B) and 6c) as a guide, gives the lag of the swept orbit relative_to the_ fixed—poir)t
we are now in a position to give a theoretical analysis exAttractor evaluated at the saddle-node blf_urcatlon. Equation
plaining the observed periodicity in d. In particular, we (15 does not apply fon>npa,, whereng,, is the value of
now know that this can be explained using the canonical map for which ¢(nn.) =€, the largest root of Ai§)=0 (i.e.,
(10) and that the periodicity result is thus univergae., Z=-2.338l...). Atn=n,,,, the normal-form approxima-
independent of the details of our particular example,(B.  tion predicts that the orbit diverges to. Thus, forn near
For slow sweepindi.e., du smal), consecutive iterates of n__.. ., the normal-form approximation of the dynamical sys-
Egs. (10) in the vicinity of x=0 and x=0 differ only  tem ceases to be valid. Note, however, that @&) can be
slightly, and we further approximate the system by the fol-valid even for£(n) close t0&(npay. This is possible be-

1/3
op

= 15)

1/3
= (—0.729...)

1/3
op

a2

ou

a2

(16)

lowing Ricatti differential equation: causedu is small. In particular, we can consider times up to
ds the timen’ wheren’ is determined by’ =&(n')=¢+ 8¢
— =i+ ndu+ase. (11) (6>0 is smal) provided [%(n’)|<1 so that the
dan normal form applies. That is, we requir@Ai’'(¢’)/

Ai(£')](6ula®)*<1, which can be satisfied even if
[AI"(&)IAI(E)] is large. Furthermore, we will take the small
quantity 5¢ to be not too smal[i.e., 6¢/(adu)¥*>1], so
that (Nya—Nn')>1. We then consider Eq15) in the range
13 —(jfxs/ Su)<n<n’', where the normal form is still valid.
' (12) We use Eq.(15 for answering the following question:
What are all the values of the paramew (Su smal)
for which an orbit passes exactly through the same
where position X;>0 at some iteraten;? All such orbits would
R further evolve to the same final attractor, independent of
g(n):_al/sl"“SJrnﬁ” (13  Ow provided ax?> g+ nidu—i.e., X is large enough
Su? that ;= s+ n; du does not much influence the orbit
after X reaches X;. [Denote &(n;) as &(np)=¢&;.]
and 7 is a constant to be determined from the initial condi-Using Eq. (15 we can estimate when this
tion. We are only interested in the case of slow sweepingoccurs, as¢=[Ai’(&;)/Ai( &)1%(6u?la) > (fus+n; o)
Su<1, andk(0)=%s=— \— ixs/a (which is the stable fixed or [Ai’(&;)/Ai( &)]?>&; . This inequality is satisfied when
point of fﬁ destroyed by the saddle-node bifurcationfat &; gets nearé, which is the largest zero of Ali.e., &=¢
=0). In particular, we will consider the case wheig<0 + 8¢, wheredé is a small positive quantily We now rewrite
and | g > 6u?® [i.e., |£(0)|>1]. Using x(0)=—V—fs/a  Eqg. (15 in the following way:

The solution of Eq.(11) can be expressed in terms of the
Airy functions Ai and Bi and their derivatives, denoted by
Ai’ and Bi:

op

A (€)+Bi'(§)
TPAI(ETBI(E) | a2

XM= A&+ Bi(e)
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FIG. 7. Numerical results for the inverse of the limit period in
1/8u versus us. The fit line is [A(1/6u)] ? 0.9986u

+0.0028 and indicates good agreement with the theoretical expl

nation presented in text.

ng
173

ou

: (17

(6u)? 2

a

a
on

1/3
X

/A/fs_

representing a transcedental equatiodinwhere g andX;
are fixed,n; is a large positive integeli.e., n;—1 is the
integer part of fu;— ixg)/ Su], andK({) is the inverse func-
tion of Ai'(¢§)/Ai(¢) in the neighborhood of ¢

= (a2 6u) V%> 1. Thus|K[(a? 6u)Y3%]|=<|K ()| =[¢.
The difference [1/6u(Xs,ns+1)—1/6u(Xs,n¢)], where
Su(xs,n;) is the solution of Eq(17), yields the limit period
of the attracting state versusdl/ graph (see Fig. 6. We
denote this limit period byA(1/6w). For smalldu, the term
involving K[ (a%/ 5u) 3] in Eq. (17) can be neglected, and
we getA(1/6u)=—jug '=(— s+ uy) L. Figure 7 graphs
numerical results of A(1/6u)]~ ! versusug for our map
example given by Eq(9). The fit line is[A(1/6ux)] 1=
—0.9986u,+0.0028, which agrees well with the prediction
of the above analysis and our numerical value goat the
bifurcation, u, ~0.002 79.

An alternate point of view on this scaling property is asparameteruw where u> u, .

follows. Foru<O0 (i.e., u<pu, ) and slow sweepingj.e., Su

smal)), the orbit closely follows the stable fixed-point attrac-

PHYSICAL REVIEW EB8, 066213 (2003

FIG. 8. Qualitative graphs ozfﬁ(k) in the vicinity of the saddle-
node bifurcation at different values of the paramgierThe black

dots indicate the stable fixed pointsqu for different values ofa.

For of fﬁ, until =0, and the saddle-node bifurcation takes
place. However, due to the discretenessothe first non-
negative value ofx depends orits and su (see Fig. 8 Now
consider two values ofu: one du, satisfying s+ moum,
=0 and anotheBu,, 1 satisfying g+ (m+1)Sum, 1=0.
Becausedu,, and du,, 1 are very closgfor largem) and
both leadz(n) to pass throughi= i, =0 (one at timen
=m and the other at tim&=m+1), it is reasonable to
assume that their orbits fqi /Su<<n<n' are similar(ex-
cept for a time shiftn—n+1); i.e., they go to the same
attractor. Thus, the period of d& is approximately
A(USp) = USphm1— USpm=— fus .

We now consider the intervals of 34 between the cen-
ters of consecutive wide white bands in Figb)6 Figure 9
graphs the calculated fractal dimensibri of the boundary
between white bands in these consecutive intervals versus
their center value of Bu. From Fig. 9, we see that aséi/
increases, the graph of the fractal dimens®h does not
converge to a definite value, but displays further structure.
Nevertheless, numerics show that agil/becomes large
(i.e., in the range of 6:810°), D’ varies around the value
0.952. This is consistent with the numerics presented in Fig.
4(b) which graphs the dimension of the fractal basin bound-
ary for the time-independent mdp, at fixed values of the
Thus, for large 18w, D' pro-
vides an estimate of the dimension of the fractal basin
boundary in the absence of sweepinguat u, .

0.952

0.951

0.95

0.949

0.948

FIG. 9. The calculated fractal
dimensionD’ of the structure in
the intervals between the centers
of consecutive wide white bands
in Fig. 6(b) versus their center
value of 16u.

/8
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slightly on every iterate. Ik, is a fixed-point attractor of ,
(with u constan, then a small changéu in the parameten
yields a change in the position of the fixed-point attractor:

o (f1ap) (X )
_XM)= OX=0u 1_(ﬁf#/(9x) (X,u) .

600 f;

(x

ot ou

capture time
TR
S

I T

We consider the swept orbit to have reached its final attractor

3006 miﬁ ' i if consecutive iterates differ by abodk (which is propor-
9848960‘0' ‘ 98489900 tional to Su). For numerical purposes, we consider that the
1/8u orbit has reached its final state|¥, ;— X,/ <105u. In our

numerical experiments, this condition is satisfied by every
orbit before u reaches its final valugs. We refer to the
number of iterations withu> u, needed to reach the final
state as theapture timeof the corresponding orbit. Figure
10 plots the capture time by the attrac@y, (having the

We now discuss a possible experimental application of€€n basin in Fig.2versus 1. for a range corresponding
our analysis. The conceptually most straightforward method® On€ period of the structure in Fig(t8. No points are
of measuring a fractal basin boundary would be to repeal?loned for values ofsu fgr which the orbit reaches the at-
many experiments each with precisely chosen initial condi{r@ctorR,, . The capture time graph has fractal features, since
tions. By determining the final attractor corresponding tofor many values oféu the orbit gets close to the fractal
each initial condition, basins of attraction could conceivablyboundary betweeR[ ] andG[ «]. Using the fact that the
be mapped ouf3]. However, it is commonly the case that final destination of the orbit versus §/ is asymptotically
accurate control of initial conditions is not feasible for ex- periodic[see Fig. @)], we can provide a further description
periments. Thus, the application of this direct method is lim-of the capture time graph. We consider the series of the larg-
ited, and as a consequence, fractal basin boundaries ha@st intervals of 1du for which the orbit reaches the attractor
received little experimental study, in spite of their fundamen-G,,, [see Fig. 6b); we refer to the wide white band around

tal importance. If a saddle-node bifurcation occurs on thel/su=2400 and the similar ones which ai@symptotically
fractal basin boundary, an experiment can be arranged to takparated by an integer number of perjod3rbits swept
advantage of this. In this case, the purpose of the experimeniith su at the centers of these intervals spend only a small
would be to measure the dimensibri as an estimate of the number of iterations close to the common fractal boundary of
fractal dimension of the basin boundaB; The measure- R[u] andG[u]. Thus, the capture time of such similar or-
ments would determine the final attractor of orbits starting abits does not depend on the structure of the fractal basin
the attractor to be destroyed by the saddle-node bifurcatiogoundary. We use Eq15) as an approximate description of
and swept through the saddle-node bifurcation at differenthese orbits. A swept orbit reaches its final attracting state as
velocities (i.e., the experimental data corresponding to thex(n) becomes large. Then, the orbit is rapidly trapped in the
numerics in Fig. & This does not require precise control of neighborhood of one of the swept attractors pf Thus, we

the initial conditions of the orbits. It is sufficient for the equate the argument of the Airy function in the denominator
initial condition to be in the basin of the attractor to be de-to its first root[see Eq.(15)], solve for n, and subtract
stroyed by the saddle-node bifurcation; after enough time,
the orbit will be as close to the attractor as the noise level
allows. Then, the orbit may be swept through the saddle-
node bifurcation. The final states of the orbits are attractors;
in their final states, orbits are robust to noise and to measure-
ment perturbations. The only parameters which require rig-
orous control are the sweeping velociiye., u) and the
initial value of the parameter to be swdpe., u.); precise
knowledge of the parameter value where the saddle-node bi-
furcation takes placéi.e., u, ) is not needed|lt is also re-
quired that the noise level be sufficiently Idaee Sec. Il ]

FIG. 10. Capture time by the fixed-point attractdy, versus
1/6u. We have choseps=0. The range of Wu is approximately
one period of the graph in Fig(l). No points are plotted for values
of su for which the orbit reaches the fixed-point attraciyy,.

300

capture time
—
o
Q

E. Capture time

) ) ) . X 30 -8 I—7 —6
A question of interest is how much time it takes for a 10 19 10
swept orbit to reach the final attracting state. Namely, we ask o
how many iterations withu> u, are needed for the orbit to FIG. 11. Capture time by the middle fixed-point attractorf pf
reach a neighborhood of the attractor having the green basikersussu (us=0). The best fitting line(not shown has slope
Due to slow sweeping, the location of the attractor changes-0.31, in agreement with the theory.
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— s/ (the time for o to reach the bifurcation valjie 1
This yields the following approximate formula for the cap-
ture time: 0.8

nc~|€l(adu) '3, (18 % 06

5 .

whereé=—2.338L. .. is the lagest root of the Airy func- g 0.4
tion Ai. Thus, we predict that for smadiu, a log-log plot of
the capture time of the selected orbits versuss a straight 0.2
line with slope —1/3. Figure 11 shows the corresponding
numerical results. The best fitting lifeot shown has slope 0 , , , ,
—0.31, in agreement with our predicti¢20]. 002 0.04 0.06 008 0.1

noise amplitude A x10~3

F. Sweeping through an indeterminate saddle-node bifurcation

) - FIG. 12. Probability that one orbit reaches the middle fixed-
in the presence of noise

point attractor off , versus the noise amplitudg for five different
We now consider the addition of noise. Thus, we changealues ofdu (107°, 107°+2.5x10 % and 10°+5x10 °). We

our swept dynamical system to have chosens=0.
Xn+1:fun(xn)+A€nv As in the previous subsection, we take advantage of the
asymptotically periodic structure of the noiseless final desti-
Un= st NS, (19 nation graph versus 8/ [see Fig. @)]. We consider centers

of the largest intervals of &fx for which an orbit reaches the
wheree, is random with uniform probability density in the middle attractor in the absence of noise. We chose five_ such
interval[ — 1,1] andA is a parameter which we call the noise Values of du, spread over two decades, where the ratio of
amplitude. See Fig. (6 which shows the numerical results consecutwg_values 1S app(oxmately 3. Flgyréaligraphs _
of the final destination of the orbits vers@ in the case the probability that an orbit reaches the middle fixed-point
A=0. The graph exhibits fractal features of structure at ar&{tractor versus the noise amplituéefor the five selected
bitrarily small scales. The addition of small noise is expected/@lués oféu. We notice that all the curves have qualitatively
to alter this structure, switching the final destination of or-Similar shape. For a range from zero to smalithe prob-
bits. In this case, it is appropriate to study the probability ofaPility is 1, and as increases, the probability decreases to a
orbits reaching one of the final destinations. For everwe  horizontal asymptote. The rightmost curve in the family
compute the final attractor of a large number of orbits havingforresponds to the largest value @j (ou~3.445974
identical initial condition and parameters, but with different <10 ), and the leftmost curve corresponds to the smallest
realizations of the noise. We estimate the probability that ayalue of du (8u~4.243522¢10" 7). Figure 13b) shows
orbit reaches a certain attractor by the fraction of such orbit§he same family of curves as in Fig. (88 but with the
that have reached the specified attractor in our numericdorizontal scale changed fromto A/(5u)>°. All data col-
simulation. Figure 12 graphs the probability that an orbitlapse to a single curve, indicating that the probability that a
reaches the attract@,, versus the noise amplitude We ~ SWept orbit reaches the attractGy, depends only on the

present five graphs corresponding to five different values ofeduced variable\/(5u)>°. Later, we provide a theoretical
Su equally spaced in a range of 10centered at 10° (i.e.,  argument for this scaling.

Su=10"° 10°+25x107% and 10°+5x107%). We In order to gain some understanding of this result, we
notice that the probability graphs have different shapes, but llow the idea of Sec. Il D and use the canonical fd‘rgm
common horizontal asymptote in the limit of large noise. Thepropose a simplified setup of our problem. We modify Egs.
value of the horizontal asymptote, approximately equal tq10) by the addition of a noise terrAe, in the right-hand
0.5, is related to the relative measure of the correspondingide of the first equation of EqEL0). We are interested in the

basin. probability that a swept orbit has at least one itefgtén a
1 1
@ (b) FIG. 13. Probability that an orbit reaches the
0.9 0.9 middle fixed-point attractor of ,, for five se-
Z0.8 2 lected values o spread over two decades)
§ Eo.a versus the noise amplitudd and (b) versus
207 207 A/l(51)%8. We have choseps=0. From right to
06 left, the Su values corresponding to the curves
’ 0.6 are approximately 3.4459%410 5, 1.147 767
05 X 107%, 3.820 744 10 %, 1.27316(x 10 ¢, and
1 2 3 4 5 0.1 0.2 0.3 4.24352X% 10",
noise amplitude A x 107 Asgu®®
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1

0.9 (b)
0.8 0.8
£ 20.7
g 0.6 g 06
S0.4f 505
0.4
0.2t 0.3

1 2 3 4 5 0.1 0.2 0.3
noise amplitude A x 107° A/du>®

FIG. 14. Probability that an orbit cffﬂ reaches a fixed interval far from the saddle-node bifurcati@n, [100, 25Q), for five values
of su spread over two decade®) versus the noise amplitud and(b) versusA/(5u)>®. We have chosep.s=0. From right to left, the
Su values corresponding to the curves are approximately 3.45% 5@0°, 1.149 16X 10 5, 3.82976% 10 %, 1.276 061X 10 °, and
4.253018¢10° 7.

specified fixed interval far from the vicinity of the saddle- with scaling and not with an exact solution of EQQ), a

node bifurcation. More precisely, we analyze how this prob-airly crude analysis will be sufficient.

ability changes versua and su.. Depending on the choice of First we consider a solution of Eq20) with the noise

interval and the choice ofiu, the graph of the probability term omitted and the initial conditiofsee Eq.(16)]

versusA (not shown has various shapes. For numerical pur- R 13

poses, we choose our fixed interval to be the same as that of X(0)=(-0.729 .. .)(oula®)™.

Sec. 11D, 106<x<250. Wethen select values obu for

which a noiseless swept orbit, starting fat= —\— zs/a,

reaches exactly the center of our fixed interval. The invers

of these values ofu are centers of intervals where the final

state of the swept orbits is[8ee Fig. €)]. We consider five %()~%(0)+ a(n)(n? Spw), (21)

such values oBu, where the ratio of consecutive values is

approximately 3. Figure 1d) shows the probability that a where a(n) is a slowly varying function ofn of order 1

swept orbit has an iterate in our fixed interval versus thg1/2<a(n)<1 for n<n,]. SettingaX’*~néu, we find that

noise amplitude for the selected valuesdpf. Figure 14a) N, is given by

shares the qualitative characteristics of Fig(al,3with the

only noticeable difference that the value of the horizontal N~ (adu) 3, (22)

asymptote is now approximately 0.1. Figurgl4shows the )

same family of curves as in Fig. @&, where the horizontal corresponding técf. Eq. (21)]

scale has been changed fromto A/(5u)%®. As for Fig. %~ (Sula®)

12(b), this achieves good collapse of the family of curves. n H '
We now present a theoretical argument for why the prob+orn>n,, [i.e., x(n)>%,], Eq. (20) can be approximated as

ability of reaching an attractor depends ép andA only  ds/dn~a%®. Starting atk(n)~X,,, integration of this equa-

through the scaled variabl/(5u)>® when du and A are  tion leads to explosive growth 6f to infinity in a time of

small. From our results in Fig. 14, we know that the scalingorder (@su) ~Y3 which is of the same order as,. Thus,

we wish to demonstrate should be obtainable by use of thghe relevant time scale isagu) 2 [this agrees with Eq.

canonical formf,l. Accordingly, we again use the differen- (18) in Sec. Il E.

We define a characteristic point of the orlit,(n,,), where
gkﬁ,wnn, Su. For n<ng, ndu<dx/dn<2n Su, and we
can approximate the noiseless orbit as

tial equation approximatior(11), but with a noise term Now consider the action of noise. Forn,;, we neglect

added, the nonlinear terma%?, so that Eq.(20) becomesdX/dn
=ndéu+A€(n). The solution of this equation is the linear

dx o superposition of the solutions ofix,/dn=n éu and

gn = noptax’+Ae(n), (200 dx,/dn=A%(n), orX(n)=X&a(N) +Kp(N): X4(N) is given by

Xa(n)=%X(0)+n?6ul2, and%,(n) is a random walk. Thus,
where(n) is white noise, for n_<nn,,A.there is diffusive spreading of the probability
density ofX:
(&(n))=0, (&(n+n")&(n))=a(n’), Agir(n)=(X3(n))~n'A, (23
and we have redefined the origin of the time variablso  This diffusive spreading can blur out the structure in Fig. 6.

that the parameteir sweeps through zero at=0 (i.e., we  How large does the noise amplitudehave to be to do this?
replacedn by n—|us|/Su). Because we are only concerned We can estimaté\ by noting that the periodic structure in
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3000 3200 3400 3600 3800 4000
1/8u

FIG. 15. Final attracting state of swept orbits of the Duffing oscillator verség.1The structure of white and black bands becomes
asymptotically periodic. We have chosgg=0.253 andu;=0.22. The attractor in the potential well for-0 is represented as a 1, and the

attractor in the potential well fox<<0 is represented as a 0.

Figs. 6b) and Gc) results from orbits that take different The unforced Duffing systeffi.e., u=0) is an example of an

integer times to reack~X,,. Thus, forn~n, we define a
scaleA, in X corresponding to the periodicity indu by [cf.

Eq. (21)]

5\(nIiAnI’\N“s\((O)"_(nnli:I-)Z o,

which yields

Ap~ny .

If by the timen~n,, the diffusive spread of the probability
density ofk becomes as large ds,, then the noise starts to
wash out the periodic variations withdll. SettingA 4i¢(ny)
from Eg. (23) to be of the order ofA, from Eq. (24), we

obtainn?A~n,, su, which with Eq.(22) yields

A~ ( 51“’)5/6-

Thus, we expect a collapse of the two-parameters)
data in Fig. 14a) by means of a rescaling &f by du raised

to an exponent 5/@i.e., A/(5u)%].

Ill. SCALING OF INDETERMINATE SADDLE-NODE
BIFURCATIONS FOR A PERIODICALLY FORCED
SECOND-ORDER ORDINARY
DIFFERENTIAL EQUATION

oscillator in a double-well potential. It has two coexisting
fixed-point attractors corresponding to the two minima of the
potential energy. For smalk, the forced Duffing oscillator
has two attracting periodic orbits with the period of the forc-
ing (i.e., 2m), one in each well of the potential. At= u,
~0.2446, a new attracting periodic orbit of period @rises
through a saddle-node bifurcation. In RE21], it is argued
numerically that for a certain range @f>u, the basin of
attraction of the @ periodic orbit and the basins of attraction
of the 2 periodic orbits have the Wada property. Thusuas
decreases through the critical valug , the period-6r at-
tractor is destroyed via a saddle-node bifurcation on the frac-
tal boundary of the basins of the other two attractors. This is
an example of an indeterminate saddle-node bifurcation of
the Duffing system which we study by considering the two-
dimensional map in thex(x) plane resulting from a Poin-
caresection at constant phase of the forcing signal. We con-
sider orbits starting in the vicinity of the period-3 fixed-point
attractor, and as we integrate the Duffing system, we de-
creaseu from ug>p, to ui<u, at a small rate obu per

one period of the forcing signal. As approacheg, (with
u>uw,), the period-3 fixed-point attractor of the unswept
Duffing system approaches its basin boundary, and the
slowly swept orbit closely follows its location. For— u,

<0 small, the orbit will approximately follow the one-
dimensional unstable manifold of thee=u, period-3
saddle-node pair. Thus, we can describe the sweeping
through the indeterminate bifurcation of the Duffing oscilla-

In this section we demonstrate the scaling properties ofpr by the theory we developed for one-dimensional discrete
sweeping through an indeterminate saddle-node bifurcatiopyaps. Figure 15 shows the final destination graph of a swept

in the case of the periodically forced Duffing oscillai@2]:

%—0.15¢— x+x3= u cost.

@

probability
o o [=]
N o ©

e
o

e
o

o

0.2 0.4 0.6 0.8
noise amplitude A x 10

1

_3

orbit initially situated in the vicinity of the period-3 fixed
point of the Poincarenap. The final attracting state is repre-
sented a a 1 ifsituated in the potential well whese>0 and

FIG. 16. Probability the Duff-
ing oscillator reaches the attract-

(b)

0.8 ing periodic orbit in the potential
Zos well at x>0 for three values of
3 Su spread over one decadé)
§ versus the noise amplitude and
507 (b) versus A/(Su)>®. We have

chosenus=0.253. From right to

06 left, the Su values corresponding

to the curves are approximate-

0.5, 5 2 6 ly 4.628716<10°5 1.461574

Ay X107°, and 4.621 73% 10" °.
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(@)

(b)

FIG. 17. (a) Graph of f ,(x)
versusx at the bifurcation param-
eter. (b) Basin structure of map
f.(x) versus the parametgr The
basin of attraction of the stable
fixed point created by the saddle-
node bifurcation is black while the
basin of attraction of minus infin-

ity is left white.
0.3
is representedsaa O if situated in the potential well where IV. INDETERMINACY IN HOW AN ATTRACTOR
x<0. As expected, the structure in Fig. 15 appears asymp- IS APPROACHED

totically periodic if graphed versus di. In addition to _ . . . .
slowly sweeping the Duffing system, consider an additive In this sgctlon we consider the case of a one-d|men3|0nal
noise termAe(t) on the right-hand side of Eq26), where ~ MapPf, having two attractors A and B, one of whicke., A)

on every time stefg(t) is chosen randomly if—1,1] and the ~ ©Xists for allu €[5, u¢]. The othei.e., B) is a node which
time step used idt=2/500. Figure 163) shows the de- IS destroyed by a saddle-node bifurcation on the boundary
pendence of the probability of approaching the attractor repPetween the basins of A and B, asincreases through,
resented sa 1 versus the noise amplitudefor three spe-  (#« €[ s, 1¢]). When an orbit is initially on B angx is
cially selected values ofu (centers of white bands in the slowly increased througj, , the orbit will always go to A
structure of Fig. 15 where the swept orbit reaches the attractwhich is the only attractor fop.> u, ). However, it is pos-

ing state represented by &pread over one decade. Figure sible to distinguish between tw@r more different ways of
16(b) shows collapse of the data in Fig. (#6to a single approaching Alln particular, we are interested in ways of
curve when the noise amplitudeis rescaled by §u)%®, as  approach that can be distinguished in a coordinate{ireg
predicted by our previous one-dimensional analy@ec. invarian) manner] As we show in this section, the way in

Il F). Thus, we believe that the scaling properties of the in-which A is approached can be indeterminate. In this case, the
determinate saddle-node bifurcation we found in onedindeterminacy is connected with the existence of an invariant
dimensional discrete maps are also shared by higheronattracting Cantor séa chaotic repellerembedded in the

dimensional flows. basin of A foru>u, .
2 0.41
x x
_ ~0.09 " :
-0.3 i 0.3 -0.00 u 0.015

FIG. 18. (Color) (a) Basin structure of , versusu. We split the basin of attraction of minus infinity into two components: one plotted
as the green region and the other plotted as the red region. The green region is the collection of all points that go to minus infinity and have
at least one iterate bigger than the unstable fixed mpjntThe red set is the region of all the other points that go to minus infifiyDetail
of Fig. 15a) in the region shown as the white rectangle.
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FIG. 19. The chaotic repeller df, versusu generated by the

PHYSICAL REVIEW E68, 066213 (2003

tractor which is at minus infinity. The basin of this attractor
is the whole real axis. Ag decreases through, =0, a new
fixed-point attractor is created &af =0. The basin of attrac-
tion of this fixed point has infinitely many disjoint intervals
displaying fractal featurelsndicated in black in Fig. 1(b)].
This is similar to the blue basiB[ ] of the attractoB,, of
the previous one-dimensional modske Sec. Il A

The blue region in Fig. 1®) is the basin of attraction of
the stable fixed point destroyed asincreases througj, .
For every value ofu we consider, the map,, has invariant
Cantor sets. The trajectories of points which are located on
an invariant Cantor set do not diverge to infinity. One way to
display such Cantor sets is to select uniquely defined inter-
vals whose end points are on the Cantor set. For example,
Fig. 18a) shows green and red regions. For every fixed pa-
rameter valueu, the collection of points that are boundary
points of the red and green regions constitutes an invariant
Cantor set. In order to describe these green and red regions

PIM-triple method.,, is an approximate parameter value where We introduce the following notation. For each parameter
an indeterminate saddle-node bifurcation of a periodic orbit takeyalue u, let p,, be the leftmost fixed point of , [see Fig.

place; see Fig. 20.
As an illustration, we construct the following model:

_ 2 4 6 8
f (X)=—pu+Xx=3x—x"+3.6x°— X"

(27)

17(a)]. For every xo<p,, the sequence of iteratef,
=flM(xo)} is decreasing and diverges to minus infinity. For
each value ofu, letq,, be the fixed point of , to the right of
x=0 at which @f,/dx)(q,)>1. A point (x;u) is colored
green if its trajectory diverges to minus infinity and it passes
through the interval q, ,), and it is colored red if its tra-

Calculations show thdft, satisfies all the requirements of the jectory diverges to minus infinity and it does not pass
saddle-node bifurcation theorem for undergoing a backwarthrough the intervald, ,»). Denote the collection of points

saddle-node bifurcation at, =0 andu, =0. Figure 17a)
shows the graph of , versusx at u=u, . Figure 17b)
shows how the basin structure of the nfgpvaries with the
parameteru. For positive values of, f,, has only one at-

(x;u) that are colored green @[ ] and the collection of
points (x; «) that are colored red bR[ «]. Using the meth-
ods and techniques ¢22], it can be shown that the collec-
tion of points &; ) which are common boundary points of

R T R oy ity

e R e R L LA

=

=0

FIG. 20. The chaotic repeller
of the mapf, in the vicinity of
the saddle-node bifurcation with

the horizontal axis rescalgdrom

p t0) (@ (m—pe) Y2 (notice
that the chaotic repeller becomes
asymptotically periodic and (b)
(m— Mosese )_1/21 where Mo
=0.23495384. We believe that

M. Corresponds to the approxi-
mate value of the parametex
where a saddle-node bifurcation
of a periodic orbit off, takes
place on the Cantor s&@[ «]. In
this case, the chaotic repeller also
becomes asymptotically periodic.

yi2

(TN
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G[u] andR[ 1] is a Cantor se€[ 1] [23]. In particular, the aries. Such situations are known to be indeterminate in the
results of[22] imply that for u=pu, =0 the pointx, =0  sense that it is difficult to predict the eventual fate of an orbit
belongs to the invariant Cantor s€f u, |. that tracks the prebifurcation node attractor as the system

Figure 18b) is a close-up of Fig. 1®) in the region of parameter is swept through the bifurcation. We have first
the saddle-node bifurcation. For values @f>u, , in the  analyzed the case of one-dimensional discrete maps. Using
vicinity of (X, ; ), one notices a fractal alternation of red the normal form of the saddle-node bifurcation and general
and green stripes. The green and red stripe structure in Figroperties of fractal basin boundaries, we established the fol-
18(b) shares qualitative properties with the structure in Fig.lowing universal(i.e., model independenscaling results(i)
2(b). All the analysis in Sec. Il can be adapted straightfor-scaling of the fractal basin boundary of the stdtie., un-
wardly to fit this situation. swep} system near the saddle-node bifurcatii),the scal-

Figure 19 shows how the chaotic repeller of the nhgp  ing dependence of the orbit’s final destination with the in-
C[ ], varies withu. The chaotic repeller is generated nu- verse of the sweeping ratéiii) the time it takes for an
merically using the proper interior maximuPIM)-triple  attractor to capture a swept orbit scales with th&/3 power
method. For an explanation of this method see Nusse anaf the sweeping rate, ar{@/) scaling of the effect of noise on
Yorke [24]. Using arguments similar to those in Sec. Il C, we the capture probability of an attractor with the 5/6 power of
predict that changing the horizontal axis of Fig. 19 framm the sweeping rate. All these results were demonstrated nu-
to (u—u,) Y2 makes the chaotic repeller asymptotically merically for a one-dimensional map example.
periodic. Numerical results confirming this are presented Following our one-dimensional investigations, we have
in Fig. 2Qa). For f, given by Eq.(27), we were able to explained and demonstrated numerically that these new re-
find a parameter valug,, =0.23495384(see Fig. 19  sults also apply to two-dimensional maps. Our numerical ex-
where changing the horizontal axis of Fig. 19 frggmto = ample was a two-dimensional map that results from a Poin-
(= gy )~ Y2 [see Fig. 2(b)] apparently makes the chaotic care section of the forced Duffing oscillator. In the last
repeller asymptotically periodiavith a different period than section of the paper, we have discussed how the new results
that of Fig. 2@a)]. As in the case discussed in Sec. Il, pastlisted above apply to the case where a saddle-node bifurca-
the saddle-node bifurcation df, at u, , infinitely many  tion occurs on an invariant Cantor set which is embedded in
other saddle-node bifurcations of periodic orbits take place basin of attraction, and we have supported our discussion
on the invariant Cantor s&[ u«]. We believe thaj,, isan by numerics.
approximate value oft where such a saddle-node of a peri-
odic orbit takes place.
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boundary point if every open neighborhood ®fcontains
points of at least two different colords a Cantor set that
contains the Cantor set described above.
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