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Controlling chaos in a Lorenz-like system using feedback
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We demonstrate that the dynamics of an autonomous chaotic laser can be controlled to a periodic or steady
state under self-synchronization. In general, past the chaos threshold the dependence of the laser output on
feedback applied to the pump is submerged in the Lorenz-like chaotic pulsation. However there exist specific
feedback delays that stabilize the chaos to periodic behavior or even steady state. The range of control depends
critically on the feedback delay time and amplitude. Our experimental results are compared with the complex
Lorenz equations which show good agreement.
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I. INTRODUCTION feedback error signal was generated by analog subtraction

using a coaxial delay line. When the laser was controlled to

To observe chaos in nonlinear systems with two degreed periodic state, the feedback signal was itself periodic, so
of freedom one parameter must be modulated in order t¥e can think of this as self-synchronization. It has also been
create a third degree of freedom. Many laser chaos experfhown that this type of laser operating above the chaos

ments are performed this wdit]. If a system already has threshold could be synchronized to another chaptlc system
three degrees of freedom, then it is possible for chaos i@ the pumf6]. Here we make a detailed theoretical analy-

emerge without modulation and thus without an externall is of th.e. subtractive fgedback System to.elu0|date the range
imposed time frame. The Lorenz-like chaos in the ammonifff ?onﬁhtlons ulnfo)llerhwhlch C0|r1tl’]9| E pos&bli. In an attemr()jt
: ' o further simplify the control of chaos we have examine
o e i o POSSDIY O A0king 0 subacion process 1 1 Gen-
tensively, both numerically3], and experimentallyf4—6]. ration of the feedback error signal. NowR({t) =G(x(t))

) henF(t) is nonzero in general. This type of feedback has
Recently, there has been much effort put into control Oftbeen investigated and is known to destabilize a system in

chaos. This can be separated into two categories: feedbagfeneral10]. The advantage would be that no subtraction of
control (active control and nonfeedbackpassivé control. A delayed signals would be required. This type of control was
number of feedback schemes can be used to control a chaotigserved in a loss modulated ¢@ser[11,12 where nega-
system, such as control by occasional proportional feedbadlye feedback of subharmonic components extracted from the
[7], control by synchronizatiofl], and the well-known Ott-  intensity signal was applied. This was achieved using a loga-
Grebogi-Yorke (OGY) method. All these methods vary in rithmic amplifier followed by a “washout filter.” Here we
complexity, and may be difficult to implement in a system numerically investigate control without, and with, a low and
with limited bandwidth. This is because the computationhigh pass filter, which is simpler than the washout filter
time to calculate detailed information about the system igmethod.

significant. There are other feedback methods that do not

require any computation, but instead rely on extracting a Il. NUMERICS

system variable and feeding that back into another variable The Lorenz model is used to describe the dynamics of an

or parameter. This control method is often called *feedbackye | o level atom interacting with a traveling wave in a

control” and is understood in the literature to mean subtrac—ring resonator. Although the atoms are pumped like a three

tive feedback. That is, the control sign_al is expresse_d in the, a| system, it can be shown that the three level system can
form F(t)=G(x(t) —x(t— 7)), where 7 is the delay time,  oq,ce to a two level system to a good approximafibsi.
and G is some function with the condition th&(0)=0. o autonomous system has been shown to have a wide
One example is control of a chaotic G@ser by feedback of  ange of dynamics for various parameter ranges. Nearly all
a variable which has been subtracted from its value at at,is pehavior has been reproduced using the Lorenz equa-
ear_lier time[8]. F(t) can be thought of as an error signal tions or the complex Lorenz equatiofis4]. The complex
which tends to zero as the system approaches control, contrghy ations take into account the fact that in the case of laser
meaning a periodic state wher¢t)=x(t—7). The advan-  gygiems the cavity frequency is detuned from the atomic
tage of this type of scheme is that no knowledge of the sysgesonance in general. We use the complex Lorenz equations

tem other than the average pulsation period is requited- i, oyr simulations of delayed feedback on a chaotic system.
trol is only achieved for certain values ofin the vicinity of e complex Lorenz equations are

the average pulsation peripcExperiments with subtractive
feedback on the Lorenz-like ammonia laser showed that con- E=—-[(1+i8)E—\P],
trol to periodic and even steady state is possl§le The

P=—(lo)[(1-i8)P—ED], 1)
*Electronic address: kociuba@physics.ug.edu.au D=(Blo)[1-D+f(t)—1U2AE*P+P*E)],

1063-651X/2003/68)/0662128)/$20.00 68 066212-1 ©2003 The American Physical Society



G. KOCIUBA AND N. R. HECKENBERG PHYSICAL REVIEW EB8, 066212 (2003

where *x

*77777777777777:777& 77777777777 4 Periodl4,
6 * : % Period 5
o=xly., B=l7.. < S0 . * e
H5.5 * g §
E, P, andD are the electric field, polarization, and inversion, &
respectively;\ is the average pump levéi}) is the modu- 8 > :
lation applied tq the pumpé is t.he.detumng of the cavity —§4_5 :
resonance relative to the atomic line centery;, andy, §
are the cavity, polarization, and inversion decay rates, re;$ 4 i
spectively. In all our simulations the parameters are 3 s
=1.5, 8=0.25, §=0.2, and\=46. For chaos to occur the §3-5 o R
relation between the decay rates mustdey|+ y, . This is P oo
known as the bad cavity condition since a lossy cavity is e
required. 25 e
Variations in the pump power directly affect the popula- 1
tion inversion so the feedback term appeard @$. We in- ple i Rl 2?

vestigate two cases of feedback, the first being of the form of z'ss,calei’i Dif3fgrenc‘f‘: deféfz T
subtractive feedbacK15] f(t)=A[l(t)—I(t—7)] where

| (t)=E(t)E*(t) represents the laser intensity, aAds the FIG. 1. Control to various periods by subtractive feedback of
feedback amplitude. This type of feedback was experimen?aximum amplitude of 0.04% of the pump. The difference delay
tally implemented by driving an acousto-optic modulatorand the feedback delal are both dimensionless, see text for de-
(AOM) with a signal generated using a coaxial cable delay?!s-

line to perform the subtractiof®]. To compare these results ) ) )

with our numerical results, we introduce an additional delaySince the intensity pulsations range between 80 and 120
in the feedback loop of our model to account for the propanits, this sets the maximum feedback amplitude to be about
gation delayT within the AOM used to convert the error 0.04% of the average pump power. The average scaled pul-
signal into a modulation of the pump power. For the secondation period is 3.08. Only periods greater than 3 exist for
case of nonsubtractive feedback, we dispense with the sule€ry weak feedback as is evident in Fig. 1. If the feedback
traction step and set the feedback toflfg) =Al(t—T) and amplitude is increased to 0.001, equivalent to 10% of the
investigate the amplitude-feedback delay parameter space. fiyerage pump power, we find this increases the number of
both these feedback cases the system is operating well aboPgriodic states and leads to the existence of period 0—the
chosen such that inf(+ f(t))>\,. In all our calculations indicates the average scaled pulsation period for the chaotic
time is scaled[16] as xt which is dimensionless since  Sytem without feedback3.08. Many of the features in the

represents the cavity decay rate, hence the feedback variabl&#§ak feedback case in Fig. 1 are evident in Fig. 2, such as
T and = are also dimensionless. the rings of period 4 in parameter space. In the stronger

feedback case, these rings have been distorted and the posi-

A. Control by subtractive feedback tions shifted slightly. These rings contain regions of control

As explained above, in all our experiments there was an
additional delayT within the AOM, so we define the feed-
back term to be

Period 0
Period 1 [
Period 3
Period 4
Period 5
Period 6

f(O=AlIt-=T)—I({t—(T+7))]. (2

ck delay T

The difference delay is the time between the two measure-
ments of output intensity, the difference between which con-%s
stitutes the error signal. The feedback delay is defined as th:3
time T for the feedback signal to enter back into the system.% g
We integrate the complex Lorenz equations using this feed-z
back term, and for different pairs of parametetsT and
amplitudeA, construct the time serielt) associated with
each of the parameters. Periodic solutions were identifiec
from the time series and the periodicity bft) was deter-
mined ignoring the initial transient behavior before long term
dynamics took over. The period of the time trace was plotted
on the difference delay—feedback delay parameter space, for
periods up to 6. Where no period was identified, the plot was FIG. 2. Control to various periods by subtractive feedback of
left blank. The first result was calculated using a very weaknaximum amplitude 10% of the pump. The difference delay, is
feedback amplitude 0.0004 and the plot is shown in Fig. land the feedback delay &

3.5

1 1.5 5 5.5

25 335 4 45
Scaled Difference delay t
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FIG. 3. Control to various periods by subtractive feedback of FIG. 4. Control to various periods by subtractive feedback of

maximum amplitude 10% of the pump. The difference delay,is maximum amplitude of 60% of the pump. The difference delay; is

and the feedback delay s The error signal has been inverted with and the feedback delay &

respect to Fig. 2.

to less than period 4 where period 0 dominates. As might b&°rded. Thus it is possible that what appeared to be period 2
expected, islands of control exist at multiples of the averagd/@s actually a long transient which approaches period 1.
pulsation period along the feedback delay axis. The samé&his is always a problem with any finite time series since one
applies for the difference delay axis. If we leave the feedbackannot be sure whether the dynamics in a finite time series is
amplitude at 0.001 but change the sign of the feedback t§ermanent or transient.

negative, the result is shown in Fig. 3. There are similar The islands of stability have a definite preferred orienta-
structures here as in the previous figure except that the igion, in particular the period 0 islands all have a slope of
lands are displaced half an average pulsation period upwards.3. This can be understood the following way. Period 0
This can be understood by considering the change of sign ajccurs after the oscillation is completely damped so just be-
the feedback term to be equivalent to a phase shift of half fore it is extinguished it is a sinusoid to a very good approxi-
period. These well defined islands of stability are destroyegnation. So we can write the signal B¢) = asin(wt) and the

if the feedback amplitude is too large. We increased the feetdelayed signal will bef(t+ ¢)=asin(w(t+ ¢)), where ¢
back amplitude to 0.006 which would correspond to an avis the phase difference between the two signals due to
erage of 60% of the average pump power. The result ighe subtraction timer so ¢=rw. Since f(t)—f(t+ ¢)=
shown in Fig. 4. Since the feedback amplitude modulation is_ 2asin(w@l2)cogw(t+ ¢/2)), the generated difference sig-

lso Iarglt_e It is Ti Iolrzl_ger pirtur:batlv;ah and the sys'Felm :js N%al has an effective delay equal to half the detayithin the
Onger Lorenz fike. Figure & SNOWS tere aré Now Isianas Ok 6| island which can be compensated by an equal but

control which are not at multiples of the average pulsatlonoploosite change in the feedback delay

period of the unperturbed system in either the difference de- I . .
lay axis or the feedback delay axis. The size of the period O We now look at the_ stab|l|ty of thg fixed points of-the
onlinear system to gain some insight into the mechanism of

islands are significantly smaller in the strong feedback cas8 .
compared to the moderate feedback case as in Fig. 2. off@ntrol- The eigenvalues of the feedback system cannot be
would expect the islands to be smaller since if the system iobtained analytically since the determinant of the Jacobian is

not very close to the periodic state, then the large feedback transcendental fun_cti_or_1, so this can only be solved _numeri-
amplitude drives the system quickly away from the periodiccaHY- There are an infinite number of complex solutions to
state. Previous experiments on the ammonia lg8eshowed  this type of equation in general, and the system will be stable
that the laser was controlled to period 0 when the feedbaci all the eigenvalues are negative. We search the same pa-
amplitude was 3% and 7%. The difference detaysed was rameter space as in Fig. 2 and set 0.001 and plotFig. 5
about one laser pulse period. Control to period 1, 2, 4, 6 wawhenever all the eigenvalues of the determinant of the Jaco-
observed at 5% modulation depth. Numerically, we foundbian are less than or equal to zero. Without the feedback
control to period 0, 1, 3, 4, 5, 6 with a modulation depth of[ f(t)=0 in Eq.(1)] the eigenvalues of these fixed points are
10% for the second multiple of the average pulsation periogbositive. It is clear that the position of the islands of control
as well as the first multiple. We did not find any period 2 atto period 0 and period 1 are contained within the islands in
this amplitude. This could be due to the fact that numericallyFig. 5. This shows that the eigenvalues of the fixed points of
we calculated the period of the intensity traces which conthe system are all negative during control to period 0 and
tained about 1000 pulsations. The experiments have the limperiod 1. Control to a periodic state by stabilizing an existing
tation that only about 70 pulses during control could be re-unstable periodic orbit of a chaotic attractor has previously
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FIG. 5. Islands represent the nonpositive Lyapunov spectrum of - k1. 6. Control to various periods by subtractive feedback for a
Eq. (1) for the feedback parametér=0.001. The difference delay high and low pass cutoff scaled frequenciesare 1 and 0.01, re-
is 7, and the feedback delay % spectively. The scalettlimensionlessaverage pulsation frequency
wo iS 2
been demonstrated experimentally and theoretically as dis; , . . ' . o
cussed in the Introduction. These methods of control rely o% (which is unfiltered, but is found to look similar to a cut off

the state of the system having a reasonable probability o equency of & where the islands of control retain their ori-

visiting the desired unstable periodic orbit where a controlentatlon but decrease in size. All the period 0 islands were

mechanism can take full effect. This is not the case for peIound to have been extinguished for a cutoff frequency of

: : g : ."0.5, and the lowest period was 4. These results show that the
E|1070]I Ovi;n%?/(;[?c?)ritg t(ihir;e\g;r ;Eg@i:]ge ttﬁzstfzzkggbgﬁekd .?ﬁ;ggffects of ac coupling and the limited bandwidth of the AOM
changes the stability of the unstable fixed points, allowing al ?12r(;eizsc?r“abelxysib(re]if{z:zﬂfg?ggrégct;Svhtgﬁc:ﬁzlgzlnﬁgtﬂ”cq)?.
initially inaccessible region of phase space to be visited for y-asign han the ch S
certain values of feedback parameters as shown in Fig. 5. the feedback signal is equal to or Igss than the c aractenspc
In previous feedback experimeriig] and in our experi- frequency of the system, and this just causes the control is-

mental results following this section, the feedback signal t jands to shrink and get d_estroyed if the bandwidth is much
the laser system is ac coupled. This will only give a nonzer ess than the charactenistic frequency.

final error signal if the unfiltered error signal is varying with
time, and a constant unfiltered signal will appear as zero final
error signal. To check what effect this might have, we in- We now simplify the feedback term so that there is no
clude this effect in our model by applying a high pass and aubtraction and simply takg(t)=Al(t—T). As before we

low pass filter tof(t) and using this modified(t) as the integrate the complex Lorenz equations using this feedback
feedback signal in the differential equations. The high passerm, and for different pairs of parametefsand amplitude
filter models the ac coupling while we also include a low A, construct the time seridgt) associated with each of the
pass filter to model the finite bandwidth of the AOM. We parameters. The periodicity ¢ft) was calculated the same
apply this procedure to the subtractive feedback case for siway and a map of the results as a function of delay and
different values of low pass cutoff angular frequencies 6, 2feedback amplitude was constructed as shown in Fig. 7. To
1, 0.85, 0.75, and 0.5 where in each case the high pass cutafave time, relatively larger steps in the feedback amplitude
was set to 0.01. The result for the high cut off angular fre-were used. Again the scaled average pulsation period of the
quency of 1 is shown in Fig. 6. The characteristic scalecunperturbed system is 3.08 as indicated by the dashed line.
pulsation period is 3.08hence the scaled angular frequency Period 0 dominates the regions near multiples of the scaled
is =~2), where time has been scaled to the parametéthe  average pulsation period, 3.08 and 6.16, which first appear at
cutoff frequency 6 is~ three times the average pulsation a feedback amplitude of 11102 corresponding to about
frequency and we found that this results in only a slight11% modulation depth. As this amplitude increases more dif-
decrease of the amplitude of the fundamental frequency conferent period numbers emerge. The numerical results in Fig.
ponent allowing control to proceed. As the cutoff frequency7 show that control to period 1 occurs only on the right hand
decreases, there is a greater attenuation of the fundamentitle of the large period 0 block. This segment of period 0
frequency which gets fed back into the equations. This rebegins at slightly more than the average pulsation period of
sults in an effective lower modulation amplitude at the fun-the unperturbed system. This is the only region we can ex-
damental frequency and therefore the range of control beplore experimentally since there are delays in the acousto-
comes narrower. This is evident by comparing Fig. 6 to Fig.optic modulator which cannot be removed.

B. Control by nonsubtractive feedback
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kcontrol emerges, phase slips, and average phase difference, as a
function of feedback amplitude are shown(a, (b), (c), and(d),
respectively.

FIG. 7. Control to various periods by nonsubtractive feedbac
as a function of the difference delayand feedback amplituda.

The eigenvalues of the Jacobian of Et). are calculated by comparing each successive intensity peak time and feed-
and regions where all eigenvalues are non-positive are delilack peak time keeping track of their relative orientation,
eated in Fig. 8. The period 0 and period 1 islands from Figand counting the number of times the sign of the difference
7 appear in a similar position to the islands in Fig. 8. Thishetween these peak times changes. This measure is used
shows that the stabilization of the fixed points during controlsince there are situations where the average frequencies of
to period 0 and period 1 allows an initially inaccessible re-two quantities are the same yet there may be an equal num-
gion of phase space to be reached. ber of positive and negative phase slips which cannot be

Three measures are introduced to extract informatiorextracted from the average phase difference measure alone.
about the dynamics during and near a control window. The The feedback delay has been setTte3 which corre-
periodicity is calculated as before, and the number of transponds to a vertical line &=3 in Fig. 7, and the measures
sient pulses before control was achieved is calculated angre calculated for the same range of amplitude points as Fig.
referred to as “transient pulses.” The difference between they, except the number of amplitude points was increased ten-
number of cycles of output intensity and the feedback signafold for higher resolution. The number of transient pulses
was calculatedwhich is related to the average frequency before control emerged is shown in FighPindicating that
dif‘ferencé then this difference is determined over the dura-the fastest rate of convergence to the periodic state is
tion of the feedback. This measure is referred to as the “avihe center of the amplitude control window shown in Fig.
erage phase difference.” Finally, “phase slips” are calculatedg(a)_ There is a period 6 orbit ah=0.0004 which has a
corresponding low number of transient pulses.

The average phase difference, which is related to the av-
erage frequency, is displayed in Figdy and the difference
is less than 4 rad where the number of cycles 461000.

g This shows that the weakest form of generalized synchroni-
zation occurs for the whole amplitude range calculated for
== the fixed feedback delay of=3. To determine which re-
gions of the generalized synchronization states are phase
locked, the number of phase slips was calculated and is
shown in Fig. 9c). There are generally few phase slips dur-
ing the controlled state, indicating phase locking. Phase slips
were not calculated for the amplitude range corresponding to
period 0 as synchronization has no meaning at steady state.

There are some phase slips fé+<0.0011 but this
amounts to only 18% of the data points in this region giving
a high synchronization ratio of 82%.

The measures used in this analysis show that generalized
synchronization occurs for a wide range of feedback param-
eters, and perfect synchronization occurs before control

FIG. 8. Islands represent an all nonpositive Lyapunov spectrunemerges for 0.00KA<0.0013. The phase slip measures
of Eq. (1). The feedback delay i§ and amplitude isA. can show when a dynamical state is approaching the edge of
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i i ) beam. There is a second detecfowhich is used to monitor
FIG. 10. Control to various periods by nonsubtractive feedbackthe pump dynamics. This signal is simultaneously recorded

for a scaled cutoff angular frequency of 1. The low pass cutoff iSWith detectorB onto a digital storage oscilloscope
0.01. '

L . IV. EXPERIMENTAL RESULTS
an Arnold tongue which is not observed by comparing aver-

age frequencies, and quantifies the quality of the synchro- The delay timeT was adjusted so that this corresponded
nized state. to the average pulsation period of the laser. Control to period
We now modify the nonsubtractive feedback system byl was observed as shown in Fig. 12. Here the average feed-
including filtering and the result for the cutoff angular fre- back amplitude was 5%. Before the feedback control was
guency of 1 is shown in Fig. 10. Again as the low pass cutoffturned on(at t=1.2 ms) the laser produced Lorenz-like
is decreased there is less modulation at the fundamental frehaos. Initially the control signal caused the Lorenz-like pul-
guency so a greater feedback amplitude is required to consations to break into transient pulses before the system
pensate. This is evident in the figure as the islands of contrdettled to period 1 pulsations, and the feedback signal was
move towards a higher amplitude of feedback as the cutoff islso periodic. The phase difference between the feedback
decreased. These results show that limiting the bandwidth afignal and the intensity output was locked only during the
the error signal has the effect of raising the threshold forcontrolled state as expected. The smallest feedback delay
control and for a sufficiently large bandwidth the results arewhich could be achieved in the experiment was about twice
essentially the same as the unfiltered case. the average pulsation period of the unperturbed system so
that we could not explore<<6.0 in Fig. 7.

Ill. EXPERIMENTAL

Our experimental system consists of &0, laser which §§§ gl T R li
optically pumps a**NH; ring laser though a vibration tran- = o KuRMMEENALARIA NN SNUERMCIAS
sition at 10.7@&m. The lasing occurs through a rotational ~ -0.04% o pr= s o —
transition at a wavelength 0.153 mm. We use a semi-confoca 0.6 ‘ d
ring cavity as shown in Fig. 11 to achieve unidirectional = 8;33 A [l I
lasing, where the backward traveling wave is chosen in pref- ;9 AR TS ERRRIRRERUTRN "
erence to the forward wave because the ac Stark effect split 0%, i L1
the gain line in the forward directiofi8]. This allows us to 0.06} ‘
use the Lorenz equations to describe the dynamics of ous 8;83
laser systenfi13]. The intensity of the backward wave in the ¢k
ring laser is measured with a Schottky barrier di@&erhis 004
signal is monitored by a spectrum analyzer and recorded by g6
a digital storage oscilloscope. In order to implement the non-2 sl
subtractive feedback scheme a signal proportional to the la '3’842?

L

ser output has to be fed back to modulate the pump power ~
The signall (t) is therefore fed into a buffering amplifier,
amplified, then applied to the acousto-optic modulator. The F|G. 12. Control to period 1 using nonsubtractive feedback of
finite acoustic velocity in the AOM creates a delay that couldthe FIR laser withA~0.05. The average pulsation period before
be varied by~ 20% of the fundamental pulsation period by and during control is 1.178s and 0.9747s, respectively. The
adjusting the AOM’s position transverse to the £LQump  intensity is in arbitrary units.

Time (ms)
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FIG. 13. Synchronization by nonsubtractive feedback. Average ) )
pulsation period before feedback and during feedback are FIG. 14. This shows the frequency of occurrence for the time
1.1933us and 1.068us, respectively. There are no phase slipsdifference between the FIR intensity peaks, and the associated

when the non subtractive feedback is turned on. The intensity is iPUMP fluctuation peaks, corresponding to Fig. 13. The average pul-
arbitrary units. sation period is 1.068s. Peak detection error ranges from 0.05 to

0.1 us.

We also find that when the sign of the feedback is re- g
versed, control can still be achieved by adjusting the delay opack control methods. The first case was subtractive feed-
the feedbacknot shown since it looks the same as nonre-back of intensity including loop delay. We found that for a
versed feedbagk small amplitude control to periods greater than 3 existed. At

We also found that outside the range where control wasnoderate feedback amplitude, control to period 0, 1, 3, 4, 5,
achieved, the initially chaotic intensity can be synchronizedand 6 emerged where large islands of period O dominate the
so that the output and feedback is fully phase locked, and thgifference delay—feedback delay parameter space. These is-
time series is shown in Fig. 13. It appears that a differenfands are separated by the average pulsation period of the
type of chaos is produced during feedback. This resemblesystem. They can be shifted half a period by inverting the
Lorenz-like chaos operating closer to the chaos thresholghedphack signal. We showed that islands of period 0 and
(from above compared to the unperturbed system due to thgeriod 1 correspond to a nonpositive set of eigenvalues of
lengthening of the spirals. To check for phase slips a histogg chaotic system with feedback emphasizing that a nonper-
gram is calculated for the time difference between the FIR,ative picture is necessary to understand the full range of
intensity peaks and the feedback signal, and the result I3pportunities for control, which are not limited to preexisting

shown in Fig. 14. During synchr_onization bt sig_nifi- nstable periodic orbits. We then examined the effect of ap-
cant lag between the FIR intensity, and the feedback S'gnaEIying an ac filter to the feedback signal and varied the band-

223 _erlllznlmoeGgﬁferences are within the average pulsation PEWidth before feeding it into the chaotic equations. Control is

The histogram contains two peaks where the larger pea] il possible even if the high pass cutoff frequency was
corresponds to the start of the spiral, and the smaller to th lightly less than the characteristic frequency of the system.

end of the spiral which is preceded By ten cycles with a he results are in good agreement with previously published

S . Fxperimental results.
5|gp|f|cant!y larger period than_ the average. The average pul- The second feedback case consisted of a simpler
sation period decreases with increasing pump strength Wheghbtraction-free feedback with only a loop delay. We found
no feedback is applied, so the feedback has increased tl%

iod during the last f | fth iral despite the f Bntrol to the same periodic cycle numbers as in the subtrac-
period during the fast tew cycles ol Ine spiral despite In€ 1ac, o 556 at the same feedback amplitude, and with the addi-
that the average energy of the pump during that region i

slightly higher than at the start of the FIR spiral. Yion of period 2. The period 0 and period 1 islands dominate

These results show that control to period 1 can bthe feedback delay—amplitude parameter space. These is-

hieved by choosi iate delay ti Svnch Qands corresponds to the fixed points of the feedback system
achieved by choosing an appropriate delay ime. sync ror"(:ontaining no positive eigenvalues. Phase slips were calcu-

zation can also be achieved, which can be used to create T L

o . o . 1§ted indicating not only perfect synchronization just before

modified chaos which has a higher bandwidth than the UNrand during control, but also for very low feedback ampli-
perturbed system which is phase locked to the delayed Sigi des. Modifying the feedback signal by applying the same
nal. a.c. filtering and finite bandwidth as in the subtractive feed-
back case, we find that this has the effect of raising the
V- CONCLUSION threshold amplitude for control as the bandwidth approaches
We numerically investigated control of Lorenz-like chaosthe characteristic frequency of the system. Experimentally
to various periodic states including period 0 using two feed-we were able to control a chaotic Lorenz-like laser to period
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1 by this nonsubtractive method and found control to periodesults confirms that control of a strongly chaotic system can

1 but were prevented from demonstrating period 0 by timeébe achieved by controlling a single parameter using an error

delays in the AOM. Phase synchronization was experimensignal based on a single variable, without any computations.

tally observed for a relatively large frequency mismatch ofFurther, the system can be controlled not only to periodic

11.7% between the initial and final average pulsation frestates but also to the technically more useful steady state

guencies. even though this region of phase space is inaccessible in the
Overall, the concordance of experimental and theoreticabriginal system.
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