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Experimental demonstration of attractor annihilation in a multistable fiber laser
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We report on the experimental open-loop control of generalized multistability in a system with coexisting
attractors. The experimental system is an erbium-doped fiber laser with pump modulation of the diode laser.
We demonstrate that additional weak harmonic modulation of the diode current annihilates one or two stable
limit cycles in the laser. The ability of the method to select a desired state is illustrated through a codimension-
two bifurcation diagram in the parameter space of the frequency and amplitude of the control modulation. We
identify main resonances on the bifurcation lin@snihilation curvesand evaluate conditions for attractor

annihilation.
DOI: 10.1103/PhysReVE.68.066211 PACS nunier05.45.Gg, 05.45.Ac, 42.55.Lt, 42.65.5f
[. INTRODUCTION harmonic generation crystal. Several feedback control meth-

0ds[20] have been developed to stabilize unstable periodic
Many nonlinear systems exhibit the coexistence of mul-orbits embedded in a chaotic attractor and suppress undes-
tiple dynamic equilibrium states in some regions of param-red fluctuations. However, the complexity and strong non-
eter space. This phenomenon, referred to as generalized miikearity of the system result in coexistence of multiple at-
tistability, is found in a variety of systems from different tractors in this lasef19]. Thus, not all instabilities can be
fields, including electronic$l], optics[2], mechanicd3],  suppressed by the feedback control. We believe that an ap-
and biology{4], in addition to some standard models such aspropriate control of multistability may help in resolving the
Henon map[5], Duffing, van der Po[6], and Lorenz equa- green problem.
tions [7]. In such multiattractor systems the final state de- (iv) A time-delayed feedback is known to be an efficient
pends crucially on the initial conditions. However, in manytool for continuous-time control of chaotic systerfl].
practical situations multistability can create inconvenienceHowever, at certain conditions the delay in feedback stabi-
for instance, in construction of a commercial device withlizes not only a single periodic orbit, but simultaneously sev-
determinate characteristics. Below, we cite several examplesral periodic orbits embedded in a chaotic attractor and by
of where we believe multistability may represent a problemsuch a way it makes the system multistaf#&]. This phe-
for applications. nomenon was observed in an electro-optical bistable device
(i) The idea of optical communications using transmitterg 23] and in a laser diode pumped hybrid bistable syst24.
and receivers operating in nonlinear dynamical regimes hashus, multistability imposes the restriction on the delayed
recently attracted the attention of many researchers. This wdsedback control to stabilize a particular periodic orbit.
first studied using electronic circuif8] and then proposed in (v) In future generation nuclear reactors with two-phase
solid-statg 9], fiber[10], semiconductof11], and microchip  natural circulation loop$25], a coolant flow design is im-
laserq 12]. However, the lasers can exhibit multistability un- portant to avoid all sorts of instabilities which may lead to a
der pump modulatiof13,14], loss modulatiorf15], or opti-  holocaust. Therefore, multiple coexisting attractors in this
cal injection[16]. Such a behavior may give rise to techno- system might be considered as harmful while designing the
logical difficulties in efficient communication because theoperating regime of the coolant flow.
system may suddenly jump from one attractor to the other (vi) Recently much attention has been paid to the super-
and some information may be lost. Therefore, under theseonductivity electronic devices, Josephson junctions, which
circumstances multistability might be undesirable. have been suggested as voltage standards, oscillators, and
(ii) Solid-state lasers with nonlinear mirrors may havedetectors[26]. To increase the sensitivity or power output
more than one stable steady stai#g]. As a result, small beyond what one device would provide, the devices are
fluctuations in the pump rate can provoke sudden switchesoupled into array. However, complicated forms of coupling
between coexisting attractors that impairs the stability of thecan lead to a coexistence of several stable phase configura-
laser output. Such a behavior may restrict the developmeritons. In this case the coupled system is multistable: which of
of practical devices based on these lasers for signal or dataese configurations is realized depends on the initial condi-
processing18]. tions (in phase space this corresponds to existence of several
(iii) In solid-state laser technology, the use of the intrac-attractors with different basinsThis runs the risk of an
avity frequency doubling to transform the fundamental infra-asynchronousgout-of-phasgbehavior of the systef27] and
red laser radiation into visible radiation by the processes ofleteriorates the efficiency of the device. Other examples
second harmonic and sum-frequency generation is restrictaghere the existence of the multiattractor behavior in an array
due to irregular fluctuations of the output intensity. This be-of coupled oscillators may be undesirable are robotics, laser
havior, referred to as the green probl¢i®] arises from a arrays, frequency dividers, physiology, etsee Ref.[28],
coupling of the longitudinal modes of the laser by sum-and references thergin
frequency generation, which occurs in the intracavity second (vii) In medical science, a cardiac arrythmia has been suc-
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cessfully suppressed to a normal cardiac rhythm with the use LASER DRIVER Er-DOPED FIRER

of chaos control methods, i.e., a period-1 state has been st:

bilized [29]. However, under certain circumstances, the co- OgO FBG O FRG2
existence of a stable period-2 rhythm is also obse[@&dl It WoM

is evident that bistability in cardiac rhythm is undesirable. prumpLASER

Thus, the above few examples demonstrate that the con D2
trol of multistability in systems with coexisting attractors |
becomes an important problem in applied nonlinear science @

During the last decade the active search was underway t OSCILLOSCOPE

find possibilities to control systems with coexisting attrac- i ) .
tors. Some authors demonstrated that it is possible to en- /G- 1. Experimental setup. WDM is the wavelength-division
hance multistability by steering trajectories toward a desiret#:nU'lt'plex'ng coupler, PC S the polarization controller, FBG1 and
attractor by first making the system chaof&] or noisy BG2 are the Bragg gratings, and D1 and D2 are the photodetec-
[32] so that the regions associated with the original attractors

are randomly visited33], and then applying a correction Apart of the great importance for technological applica-

signal to the variable to drive the multistable system to thetions [41], the erbium-doped fiber laser is a rich dynamical
preselected attractdB4], regardless of where the trajectory system V\;ith many complex features, Different dynamical re-

is initialized. These methods do not allow a complete de-"?

struction of undesired attractors, they just change the basirﬁgéersv’vg;]sﬁg I(Ijlzé?en dd C:rz(;?eilgg]bls\l\/leor:eoobvseerr\?i? ;nvfl?seﬁber
of attraction of attractors so that a trajectory is attracted to P ' ’

desired state. However, the system may involuntary switch2N9e of parameters the erbium-doped laser displays the co-

from this state to the other if the initial conditions suddenly2:;t1egfc\?vh?éhn?suE'gtl:rrg?r:'e%dg: ?r:}galczgﬂgﬁi:;gagfﬁ’ or-
change, for example, due to any instabilities. y ' P

Another approach in controlling multistability was sug- tant difference of the heavily erbium-doped fiber laser from

gested in Refs35,36]. The authors call up the idea of com- other classB lasers is that the former laser represents self-

plete annihilation of undesirable attractors in order to mak ulsations at the fundamental laser ffeq“?f@ﬂ’ l.e., this
the system monostable. Distinct from many previous work aser acts as an autonomous system. In this sense the dynam-

on the control of chaos. where “control” means that it is 'CS of the erbium-doped fiber laser under external modulation

possible to obtain some specific solutions of the system, it moLe sophlsttlﬁatgdtthant.the d]}/rlﬁmms ?; :)tther CFB’
the context of attractor annihilation the control intends kill- S€'S P€cause the interaction of the modulation irequency
ing the undesired solutions so that only one remains. It wa |th_the frequgncy OT §elf-pu|sat|ons may lead to frequency
shown that stable fixed points or limit cycles can be annihi—OCkmg’ qugsmenodlcny, and c_hao[544]. However, fre-
lated by a weak periodic modulation applied to a systemquency locking tak_es place only n the low-frequency range,
parametef35,36| or by adding nois€7]. In the former case where the modulation frequency is lower than the half of the

due to the resonant interaction of the modulation frequenc%ugqamzmal dl}a}zer | frequertlcy. Ath h'grl];; frequgnmes the
with the frequency of damped oscillations of the attractor, roilum-doped Nber faser acts as other clasasers, 1., as a
nautonomous system. In this work we consider a relatively

the parametrical modulation induces chaos and the attractor. o ;
is destroyed in boundary crisis. Similar behavior is observe igh-frequency range where thr_ee periodic attractors coexist,
pd where the frequency locking has no influence on the

in the latter case, where a stochastic resonancelike behavi d .

is embodied in a Hopf-bifurcationlike sequence to chao as_le_;] ynamics. ized as foll In sec. II d i
evicted by noise, where the strength of noise acts as a bifur- € paper Is organized as Tollows. In Sec. 1l we describe
cation parametef7]. The annihilation methods have been our experl_mentgl Setl.Jp of the erblum-doped flber_laser and
developed with different theoretical models, including thePresent bifurcation diagrams dgmonstratmg coexistence .Of
Hénon map[36—3§, lasers[14,39, coupled D'uffing oscil- multiple attractors. We determine the parameter domain
lators [40], a time-aelayed Io:qist,ic mafs9], and Lorenz where different dyn.arr_ncal regimes coexist. In Sec. Il we
equationd7]. However, in spite of their evident universality show how the coexisting attractors can be destroyed by pe-

and simplicity, these methods have not been so far realizera'OdiC m_odulation of the pump current and plot annihilatk_)n
experimentall)’/ in a multistable system curves in space of the control parameters. The mechanisms

In this paper, we provide an experimental evidence fmunderlying the annihilation phenomenon are discussed in

annihilation of various coexisting attractors, thus making thesec' IV. Finally, the main conclusions are given in Section V.

system monostable. Specifically, we demonstrate how mul-

tiple attractors created in a pump-modulated erbium-doped [l. COEXISTING ATTRACTORS
fiber laser can be selectively destroyed by adding small and
weak modulation to the diode current of the pump laser and
evaluate best conditions for annihilation of a particular at- In our experiments, the erbium-doped fibre laser is
tractor. We use the laser as a paradigm of a dynamical sypumped by a commercial laser diodeavelength 976 nm,
tem, which exhibits damped oscillations inherent in manymaximum pump power 300 mWthrough a wavelength-
complex systems, when it is subjected to an external pertudivision multiplexing couplefWDM) and polarization con-
bation. troller (PO (Fig. 1). The laser cavity of 1.5-m length is

A. Experimental setup
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formed by a piece of a commercidtom IPHT Jenaheavily
doped erbium fiber (EOs-concentration 2300 ppmof
70-cm length and a core diameter of i, and two fiber FIG. 3. Time series demonstrating coexistence of different dy-

Bragg gratingdFBG1 and FBG2with a 2-nm FWHM(full  namical regimes afy=93 kHz andA4=0.8 V. The lower trace
width on half magnltud)ebandW|dth and reflect|V|ty of 91% shows the pump modulation signal.

and 95% at a 1560-nm wavelength. Output power of the
pumping laser diode and fiber laser are recorded with photaongues. With increasindy, different attractors appear in
detectors D1 and D2 and analyzed with an oscilloscope angaddle-node and period-doubling bifurcations giving rise to
a Fourier spectrum analyzer. The output power of the diodgeneralized multistability. In this paper we are interested in
laser depends linearly on the laser diode current. the frequency range where three periodic attractors coexist.
Without any external modulation, the output power of theAs seen from Fig. 2 this occurs at the driving frequencies
erbium-doped fiber laser represents self-oscillations at funde,>90 kHz.
mental laser frequencly, (in our casef,=30 kHz). Such a When we fix the driving frequency df;=93 kHz, three
self-pulsing behavior may be attributed to the presence of @eriodic attractors coexist within certain region of the driv-
saturable loss due to erbium ion pairs el excited state  ing amplitudes. The time series illustrating the coexistence of
absorption in the heavily doped fibpt5,46. The harmonic  the period-1, period-3, and period-4 regimes are shown in
signal, Agsin(2nf4t) (whereAy andfy are the driving ampli-  Fig. 3. In the lower trace in the same figure we show for
tude and frequengy applied from a signal generator to the comparison the intensity of the pump diode laser. The coex-
laser driver causes harmonic modulation of the diode curreristence of three attractors is also demonstrated in Fig. 4,
with fq. In our experiments, the signal with;=800 mV  where we display the bifurcation diagram of the laser peak
results in 50% modulation depth of the pump power, whileintensity with respect té\q. For small values of the driving

the average diode current is fixed at 40 mA. amplitude A4<<300 mV, only oneperiod-J attractor exists,
so that the laser behaves almost as a linear damped oscillator
B. Bifurcation diagrams periodically oscillating with frequencyfy. As Ay is in-

_creased, the period-4 and period-3 attractors appear in the
I,(,;‘orresponding saddle-node bifurcatio®NBS. The SNB
Doints (S; and S,) are found experimentally by slow de-
easingAy until the laser switches from the period-3 or
rom the period-4 to the period-1 regime.

The dynamics of the parametrically modulated erbium
doped fiber laser was studied extensively by various autho
[44] who demonstrated the coexistence of multiple attractor
at certain laser parameters. The bifurcation diagram of pea
intensity |, of the fiber laser withf4 as a control parameter
for A4=800 mV is shown in Fig. 2. This diagram is obtained
by a slow increase and decrease of the control parameter. IIl. ATTRACTOR ANNIHILATION

The laser dynamics is ruled mainly by the ratio fof to In order to control the multistability, we apply the addi-
fundamental laser frequendy defined by the saturable 10Ss tjonal harmonic modulationA.sin(2rf 1), to the pump cur-

in the fiber and pump power. In our experiments rent so that the total signal from the generator takes the form
=30 kHz for the pump power of 15 mW. In the low-

frequency rangef(;<14 kHz), we observe frequency lock- A=Ay 1+Asin2mft)]sin(27f 4t), (1)
ing, quasiperiodicity, and chaos. The laser dynamics in this
region(FL) represents a well known structure such as Arnoldwhere A, and f. are the control amplitude and frequency.
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FIG. 4. Bifurcation diagrams of peak laser intensity with driving
amplitude as control parameterfat= 93 kHz. The arrows show the
jumps to the period-1 regim@1) from the period 3P3 and the
period 4(P4), which occur in the saddle-node bifurcation poir8s,
andS,, whenA, is decreased. The dashed line indicates the initial
position of driving amplitudeA;= 0.8 V when the control modula-
tion is applied.

Control frequency, f, (kHz)

FIG. 5. Linear laser responses to control modulation with
=0.01 at fy4=93 kHz and A;=0.8 V. The maxima appear at
resonance frequencig$® and f*) of the period-3 and period-4
attractors.

. . . sequence of laser pulses. In Fig. 5 we plot thespectral
The valueA, is chosen to be in the range of coexistence of d P g plot faesp

i o =T component,S;, in the power spectrum of the laser output
the attractors, i.eAy=800 mV (dashed line in Fig. # The  \ersus the control frequency for the laser oscillating in the
control amplitudeA; is chosen such that the maximum value period-3 and period-4 regimes mi=0.01. One can see that
of A during the control modulation does not cross the SNBihe resonance frequency for the period-3 attractorf @
points where the period-3 and period-4 attractors are bor%2.5 kHz and for the period-4 attractorﬂ$4)~5.4 kHz.r
l.€., A;<<150 mV for the period-3 attractor am}<250 mV While m is increased, the laser response to the control

for_lEEe pen:)dlzétlhgtt;actor.f th trol is t inilat modulation becomes nonlinear which leads to the attractor
€ goal ot this type of the control IS to anniniiate one or 5, ipjjation. The annihilation curves for the period-3 and

two of the coexisting attractors so that the final state of theperiod-4 attractors in thef{,m) parameter space are shown
system is the period-1 limit cycle. In practical situations, it is; |

. . ; . ~in Fig. 6. Each attractor exists for the control parameters
Important to b_e able t_o_drlve most trajectories to the de.s'rbelow the corresponding curve, while above the upper curve
able attractor in an efﬂment and economic way, 1.e., by usiNgy, ¢ system is monostable, i.e., only the period 1 exists. While
only small _pertur.banons to an accgssmle parameter. HOWt'he parameters. and m approach the annihilation curves
ever, for trajectories deep in the basin of an undesired attra he system in e;ch of the regimes undergoes a sequenc,e of
tor, small perturbations cannot change the attractor to whic

the trajectory is asymptoting. Pecora and Carf8ll] dem-

onstrated that in periodically driven dynamical systems, mul- /9 16

tiple basins of attraction of attractors can be eliminated by 197 ! T
replacing the periodic driving by some appropriately choseng ! £/11 £18
but somewhat large-amplitude chaotic driving. In this work, £ 0.8 ! 14 l 1 7
instead of changing the periodic driving to chaotic one, We§ maen, | 1 A | /5
add the additional periodiccontro) modulation to the same g 0.6 \ | N (_,/ % j Aot [
system parameter E@l). As in the method of Pecora and & | {/J I \ e/ \ FATS
Carroll, the amplitude of the control modulation is not small, § 0.4 ! / 4 \ » /"/
so that the control is nonlinear. However, we will show that € y g /8 Y72 s
the control goal can be achieved gjatively small control, 2 ,, | o e ’d’lmf (10 211 \;\\ f% £4-f
i.e., Ac<Ay. I R P -7 '
. ) . (&} Y b e .'_'-'

When the amplitude of the control modulation is small ol

[M<0.05, wherem=(Ay—A.)/(Ag+A.) is the modulation o 2 4 6 8 10 12 14 16 18 20

depth, the laser response to the control modulation is almost
linear and appears as a slow envelope of the laser pulses i,
each nonlinear regime. In other words, this is the linear re- £\~ & ~ogimension-two bifurcation diagram inf(m)-
sponse of the nonlinear system to small perturbations. Thﬁarameter space #,=0.8 V andf,=93 kHz. The curvés con-
amplitude of this slow envelope depends on the control freecting the dots and squares are the crisis liaesihilation curves
quency and has a maximum at the resonant frequency of thgy the period-3 and period-4 attractors, respectively. Some reso-
attractor,f{") (n is the attractor period In our experiments nances are marked with the arrows. The dashed line indicates the
we estimatefﬁ”) from a Fourier transform of the generated control frequency at which the time series in Fig. 7 are recorded.

Control frequency, £ (kHz)
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(a) (b) exhibits damped oscillations before being attracted to the
limit cycle. This frequency is close to, but slightly lower
than,fﬁ“) due to the damping, as typical for a damped oscil-
lator [47]. When the system is subjected to two-frequency

04 0.4 P4 modulation with incommensurate frequencies, the attractor

becomes quasiperiodic with a toroidal surface in a three-

dimensional phase space. Moreover, the basin of attraction of

S0 04 06 o8 3 b0 o2 04 08 o8 the attractor also changg87]. The new attractor is less

stable in the sense that the absolute value of the leading

negative Lyapunov exponent is smaller, i.e., it is closer to

03 0.3 zero[37]. While the control amplitude is increased, each of
the tori transforms to a chaotic attractor which then under-

P3 goes boundary crisis at the certain valuef pfand the torus
disappears. The boundary crisis occurs when the chaotic at-

01 01 tractor reaches the boundary of its basin of attraction.

The appearance of the peaks and dips on the annihilation

0 02 04 06 08 1 0 02 04 06 08 1 curves in Fig. 6 can be understood if we take into account the

resonant interaction of three main frequencies in the system,

0.10 fq, fc, and (V. We identify some of the extrema in the

figure, but not all of them. One can see that several dips on

the annihilation curves appear when the control frequencies

is close to the resonance frequencies of the attra¢fags 5)

0.04 or their harmonics. This confirms the prediction made in Ref.

0.02 [36]: the best condition for attractor annihilation is realized

(i.e., the smallest control amplitude is requireghen f,

~ £ Actually, the minima coincide with the frequencies of

damped oscillations that are slightly lower thiR . As seen

FIG. 7. Time series demonstrating effect of control modulationfrom Fig. 6, when the control is applied at these frequencies,
with f.=4 kHz on period-1, period-3, and period-4 attractors for the period-3 and period-4 attractors can be destroyed with

(@ m=0.05 andb) m=0.06. f;=93 kHz andA4=0.8 V. Close to  m=0.05, i.e., by only 5% control modulation of the driving

the annihilation curve the laser undergoes the period-doubling biamplitude. Other local minima on the annihilation curves

furcation at control frequencgmiddle trace in(b)). may appear at difference frequenciesfb"? (for example, as
the dip atf,=fy/4—f* for the period-4 attractorand at
period-doubling bifurcations in control frequenfgye., in the  subharmonics of the fundamental laser frequeﬁﬂ/E fo

slow envelope, as shown in the middle trace of Fih)¥  (for example, wheri,= f{1/2 andf .= f()/3 for the period-3

terminated by chaos and crisis of the attractor. After destrucattractoy. The dips at the latter frequencies arise because the

tion, the chaotic transients jump to the basin of attraction otontrol at subharmonics of the fundamental laser frequency
the neighboring attractor. The sequence of the period dowgives the preference for the period-1 attractor, and hence the
bling and chaos are localized in a narrow parameter rangether attractors can be easier destroyed. On the contrary, the
close to the annihilation curves slightly below them. In fact,control at subharmonics of the driving frequency improves
the annihilation curves in Fig. 6 are crisis lines. One can sethe stability of the period-3 and period-4 attractéttse ab-

that these curves have several peaks and dips. In the dips tRglute value of the leading Lyapunov exponent increases

conditions for the control is better, because the modulatiofvhich makes it difficult or even impossible to destroy them.

amplitude required for the annihilation is smaller, whereas i ©" instance, wheii;~f4/9 or f.~f4/6 the period-3 attrac-
the peaks largem s required for the annihilation. Moreover, {OrS cannot be destroyed evennat-1. Therefore, the inter-

at some modulation frequencies it is impossible to kil the@Ction off with f4 is a reason of the several maxima on the

period-3 attractor. Now consider the origin of such a behav-anmh"mIon curves. However, some_peaks z_a_nd dips do not
ior of the annihilation curves. appear if the resonant frequency which stabilizes one of the

attractors is close to another resonant frequency which desta-
bilizes it. For example, the peak &4/9 does not appear on
the annihilation curve for the period-4 attractor, because this
frequency almost coincides with the second harmonic of

The physical mechanism underlying the annihilation phe-f§4)a which leads to the resonant destruction of the attractor.
nomenon is described in REB6]. The attractor annihilation However, the frequency® has no effect when the laser
results from a resonant interaction of the control frequencyperates in the period-3 regime. Thus, the shape of the anni-
with the frequency of damped oscillations of the associatedhilation curves in the high-frequency rangbcj(>f§”)) is de-
attractor, i.e., with the frequency at which a trajectory initi- fined by the competition between the main frequencies of the
ated in the basin of attraction of the corresponding attractosystem.
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The important feature of this control is that the attractorswhere two crisis lines coincide. Close to this point, it is
can be annihilated with a relativegfow modulation as com- possible to destroy selectively either the period-3 or period-4
pared with the driving frequency and the frequency of theattractor by changing just the control frequenfyto be
attractor to be controlled. The slow control is more conve-sslightly before or after the crossing point. Moreover, by
nient for practical applications because it can be realized¢hoosingm to be slightly above the crossing point it is pos-
with a weak modulation of the driving amplitude. By sible to kill both attractors with smallest value of the control
“weak” modulation we imply that the change in the driving amplitude. Figure 7 displays with time series the laser oscil-
amplitude,A4A. [see Eq.(1)] in the uncontrolled case, will lations for the control parameters slightly below the annihi-
lead to no bifurcation of the attractors, i.e., parameker lation curve for the period-3 attractor. At=4 kHz andm
=Aq4(1—A.) is smaller than the stationary position of each=0.05 the laser oscillates either in the period®1),
SNB point (Fig. 4). In practice, the control signal can be period-3 (P3), or period-4(P4) regimes depending on the
supplied from the same signal generator as amplitude moduiritial conditions[Fig. 7(a)]. Closer to the annihilation curve
lation of the driving signal. Moreover, the control does notfor the period-3 attractofat m=0.06), the period doubling
require anya priori knowledge of the system behavior be- appears in control frequendyn the slow envelopeof the
cause the first dips on the annihilation curves can be easiligser pulsegmiddle trace in Fig. )] and the amplitude of
found in experiments whefy, is slowly increased from zero. the slow modulation increasggompare with Fig. @)].

It is seen from Fig. 6 that the control modulation witp ~ However, almost no changes occur in the period-4 and
<fEn) also can destroy the attractors, bushould be larger. period-1 regimes. Whem is further increased so that the

However, the modulation at very low frequencids—0) control parameters cross the annihilation curve for the

’ o y " - eriod-3 attractor(at m=0.07), the period 3 disappears.
corresponds to a quasistationary change in the driving ampl Then, closer to the annihilation curve for the period-4 attrac-
tude and the attractor dies in the corresponding SNB whe :

. . tor (atm=0.14) the laser undergoes the period-doubling se-
the modulated parametévreaches the SNB poirisee Fig. quence to chaos in the slow envelope of the period-4 regime.

4). This occurs Wheﬂnzo.l§ for the period-3 regime _and_ Finally, the period 4 also disappeaat m=0.16) and only
m=0.7 for the period-4 regime. Such a slow modulation iSthe period 1 remains. Similar behavior is observed when we

not interesting for the control, because the different systeéngy m and manipulatef, in the vicinity of the annihilation
state can be easier achieved by just changing the drivingnes.

amplitude without any additional modulation.

Another feature of the system subjected to parametrical
modulation is a dynamical shift of bifurcation points. When a
parameter is changed in time so that the system passes
through a bifurcation point, the bifurcation delays in time In this paper we have reported on the experimental obser-
and appears at a different instant value of the parané8r  vation of attractor annihilation in a multiattractor system.
Such a dynamical shift of the bifurcation point depends orwith an example of the pump-modulated erbium-doped fiber
the velocity at which the parameter is changed. Similar betaser we have demonstrated that multiple coexisting attrac-
havior occurs when the parameter is periodically modulatedors can be selectively destroyed by adding a harmonic para-
in the vicinity of the bifurcation poin37,49,5Q. In the latter ~ metrical modulation with properly chosen control parameter
case the shifted position of the bifurcation point depends owalues. We have provided the experimental evidence of the
the frequency and amplitude of the parameter modulationability of the annihilation method to control multistability
This phenomenon was observed for different critical pointsand flexibility in manipulating the system’s dynamics to se-
including the period-doubling bifurcatidd9], SNB, and cri-  lect a desired behavior or to make the system monostable. In
sis point[37,50. The annihilation curve for the period-3 at- fact, this laser is a device with a well-defined number of
tractor in Fig. 6 demonstrates the dynamical shift of the SNBcoexisting states. We have demonstrated that the coexisting
point. Forf.>5 kHz the period-3 attractor still exists when attractors can be destroyed by sléwo orders of magnitude
parameterA crosses the stationary SNES( in Fig. 2), i.e.,  lower than the driving frequency and one order of magnitude
for m>0.16. As was shown in Ref37], the shift of critical  lower than the frequency of the attractor to be controlled
points results from a deformation of the basins of attractiorand weak(5% of the driving amplitudecontrol modulation.
of attractors and a change in their fractal dimensions. Th&@he method does not require a permanent tracking for the
shift of the SNB point is not observed for the period-4 at-system state; once the control is applied, the undesired state
tractor, becaus@ during the modulation never reaches thenever appears, because it does not exist.
stationary position of the SNB pointS§ in Fig. 4), i.e.,m We have proved theoretical predictions that this effect has
<0.7. The period-4 attractor is annihilated at much smalleia resonant character and identified some resonances on the
control amplitude because the basin of attraction of this atannihilation curves. The shape of the annihilation curve is
tractor is smaller. defined by the resonant interaction of the control frequency

The important advantage of our method is that each of thevith other main frequencies in the system: the driving fre-
coexisting attractors can telectivelydestroyed by the con- quency, the frequencies of the attractor and its damped oscil-
trol modulation with properly chosen amplitude and fre-lations, and the fundamental laser frequency. The best con-
guency. As seen from Fig. 6, the annihilation curves for thedition for the control (minimal amplitude of the control
period-3 and period-4 attractors are crossefl.&t4.3 kHz, = modulation is realized when the control frequency is close

V. CONCLUSIONS
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