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Experimental demonstration of attractor annihilation in a multistable fiber laser

A. N. Pisarchik, Yu. O. Barmenkov, and A. V. Kir’yanov
Centro de Investigaciones en Optica, Loma del Bosque 115, Lomas del Campestre, 37150 Leon, Guanajuato, Mexico

~Received 17 June 2003; published 30 December 2003!

We report on the experimental open-loop control of generalized multistability in a system with coexisting
attractors. The experimental system is an erbium-doped fiber laser with pump modulation of the diode laser.
We demonstrate that additional weak harmonic modulation of the diode current annihilates one or two stable
limit cycles in the laser. The ability of the method to select a desired state is illustrated through a codimension-
two bifurcation diagram in the parameter space of the frequency and amplitude of the control modulation. We
identify main resonances on the bifurcation lines~annihilation curves! and evaluate conditions for attractor
annihilation.
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I. INTRODUCTION

Many nonlinear systems exhibit the coexistence of m
tiple dynamic equilibrium states in some regions of para
eter space. This phenomenon, referred to as generalized
tistability, is found in a variety of systems from differen
fields, including electronics@1#, optics @2#, mechanics@3#,
and biology@4#, in addition to some standard models such
Hénon map@5#, Duffing, van der Pol@6#, and Lorenz equa-
tions @7#. In such multiattractor systems the final state d
pends crucially on the initial conditions. However, in ma
practical situations multistability can create inconvenien
for instance, in construction of a commercial device w
determinate characteristics. Below, we cite several exam
of where we believe multistability may represent a probl
for applications.

~i! The idea of optical communications using transmitt
and receivers operating in nonlinear dynamical regimes
recently attracted the attention of many researchers. This
first studied using electronic circuits@8# and then proposed in
solid-state@9#, fiber @10#, semiconductor@11#, and microchip
lasers@12#. However, the lasers can exhibit multistability u
der pump modulation@13,14#, loss modulation@15#, or opti-
cal injection@16#. Such a behavior may give rise to techn
logical difficulties in efficient communication because t
system may suddenly jump from one attractor to the ot
and some information may be lost. Therefore, under th
circumstances multistability might be undesirable.

~ii ! Solid-state lasers with nonlinear mirrors may ha
more than one stable steady states@17#. As a result, small
fluctuations in the pump rate can provoke sudden switc
between coexisting attractors that impairs the stability of
laser output. Such a behavior may restrict the developm
of practical devices based on these lasers for signal or
processing@18#.

~iii ! In solid-state laser technology, the use of the intr
avity frequency doubling to transform the fundamental inf
red laser radiation into visible radiation by the processes
second harmonic and sum-frequency generation is restri
due to irregular fluctuations of the output intensity. This b
havior, referred to as the green problem@19# arises from a
coupling of the longitudinal modes of the laser by su
frequency generation, which occurs in the intracavity sec
1063-651X/2003/68~6!/066211~8!/$20.00 68 0662
l-
-
ul-

s

-

,

es

s
as
as

r
e

s
e
nt
ta

-
-
f

ed
-

-
d

harmonic generation crystal. Several feedback control m
ods @20# have been developed to stabilize unstable perio
orbits embedded in a chaotic attractor and suppress un
ired fluctuations. However, the complexity and strong no
linearity of the system result in coexistence of multiple
tractors in this laser@19#. Thus, not all instabilities can be
suppressed by the feedback control. We believe that an
propriate control of multistability may help in resolving th
green problem.

~iv! A time-delayed feedback is known to be an efficie
tool for continuous-time control of chaotic systems@21#.
However, at certain conditions the delay in feedback sta
lizes not only a single periodic orbit, but simultaneously se
eral periodic orbits embedded in a chaotic attractor and
such a way it makes the system multistable@22#. This phe-
nomenon was observed in an electro-optical bistable de
@23# and in a laser diode pumped hybrid bistable system@24#.
Thus, multistability imposes the restriction on the delay
feedback control to stabilize a particular periodic orbit.

~v! In future generation nuclear reactors with two-pha
natural circulation loops@25#, a coolant flow design is im-
portant to avoid all sorts of instabilities which may lead to
holocaust. Therefore, multiple coexisting attractors in t
system might be considered as harmful while designing
operating regime of the coolant flow.

~vi! Recently much attention has been paid to the sup
conductivity electronic devices, Josephson junctions, wh
have been suggested as voltage standards, oscillators
detectors@26#. To increase the sensitivity or power outp
beyond what one device would provide, the devices
coupled into array. However, complicated forms of coupli
can lead to a coexistence of several stable phase config
tions. In this case the coupled system is multistable: which
these configurations is realized depends on the initial co
tions ~in phase space this corresponds to existence of sev
attractors with different basins!. This runs the risk of an
asynchronous~out-of-phase! behavior of the system@27# and
deteriorates the efficiency of the device. Other examp
where the existence of the multiattractor behavior in an ar
of coupled oscillators may be undesirable are robotics, la
arrays, frequency dividers, physiology, etc.~see Ref.@28#,
and references therein!.

~vii ! In medical science, a cardiac arrythmia has been s
©2003 The American Physical Society11-1
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PISARCHIK, BARMENKOV, AND KIR’YANOV PHYSICAL REVIEW E 68, 066211 ~2003!
cessfully suppressed to a normal cardiac rhythm with the
of chaos control methods, i.e., a period-1 state has been
bilized @29#. However, under certain circumstances, the
existence of a stable period-2 rhythm is also observed@30#. It
is evident that bistability in cardiac rhythm is undesirable

Thus, the above few examples demonstrate that the
trol of multistability in systems with coexisting attracto
becomes an important problem in applied nonlinear scien

During the last decade the active search was underwa
find possibilities to control systems with coexisting attra
tors. Some authors demonstrated that it is possible to
hance multistability by steering trajectories toward a desi
attractor by first making the system chaotic@31# or noisy
@32# so that the regions associated with the original attrac
are randomly visited@33#, and then applying a correctio
signal to the variable to drive the multistable system to
preselected attractor@34#, regardless of where the trajecto
is initialized. These methods do not allow a complete
struction of undesired attractors, they just change the ba
of attraction of attractors so that a trajectory is attracted t
desired state. However, the system may involuntary sw
from this state to the other if the initial conditions sudden
change, for example, due to any instabilities.

Another approach in controlling multistability was su
gested in Refs.@35,36#. The authors call up the idea of com
plete annihilation of undesirable attractors in order to ma
the system monostable. Distinct from many previous wo
on the control of chaos, where ‘‘control’’ means that it
possible to obtain some specific solutions of the system
the context of attractor annihilation the control intends k
ing the undesired solutions so that only one remains. It w
shown that stable fixed points or limit cycles can be ann
lated by a weak periodic modulation applied to a syst
parameter@35,36# or by adding noise@7#. In the former case
due to the resonant interaction of the modulation freque
with the frequency of damped oscillations of the attract
the parametrical modulation induces chaos and the attra
is destroyed in boundary crisis. Similar behavior is obser
in the latter case, where a stochastic resonancelike beha
is embodied in a Hopf-bifurcationlike sequence to cha
evicted by noise, where the strength of noise acts as a b
cation parameter@7#. The annihilation methods have bee
developed with different theoretical models, including t
Hénon map@36–38#, lasers@14,39#, coupled Duffing oscil-
lators @40#, a time-delayed logistic map@39#, and Lorenz
equations@7#. However, in spite of their evident universalit
and simplicity, these methods have not been so far real
experimentally in a multistable system.

In this paper, we provide an experimental evidence
annihilation of various coexisting attractors, thus making
system monostable. Specifically, we demonstrate how m
tiple attractors created in a pump-modulated erbium-do
fiber laser can be selectively destroyed by adding small
weak modulation to the diode current of the pump laser
evaluate best conditions for annihilation of a particular
tractor. We use the laser as a paradigm of a dynamical
tem, which exhibits damped oscillations inherent in ma
complex systems, when it is subjected to an external pe
bation.
06621
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Apart of the great importance for technological applic
tions @41#, the erbium-doped fiber laser is a rich dynamic
system with many complex features. Different dynamical
gimes, bistability, and chaos have been observed in the fi
laser with modulated parameters@42#. Moreover, for a wide
range of parameters the erbium-doped laser displays the
existence of multiple periodic and chaotic attractors@15#,
each of which is determined by initial conditions. An impo
tant difference of the heavily erbium-doped fiber laser fro
other class-B lasers is that the former laser represents s
pulsations at the fundamental laser frequency@43#, i.e., this
laser acts as an autonomous system. In this sense the dy
ics of the erbium-doped fiber laser under external modula
is more sophisticated than the dynamics of other class-B la-
sers because the interaction of the modulation freque
with the frequency of self-pulsations may lead to frequen
locking, quasiperiodicity, and chaos@44#. However, fre-
quency locking takes place only in the low-frequency ran
where the modulation frequency is lower than the half of
fundamental laser frequency. At higher frequencies
erbium-doped fiber laser acts as other class-B lasers, i.e., as a
nonautonomous system. In this work we consider a relativ
high-frequency range where three periodic attractors coe
and where the frequency locking has no influence on
laser dynamics.

The paper is organized as follows. In Sec. II we descr
our experimental setup of the erbium-doped fiber laser
present bifurcation diagrams demonstrating coexistence
multiple attractors. We determine the parameter dom
where different dynamical regimes coexist. In Sec. III w
show how the coexisting attractors can be destroyed by
riodic modulation of the pump current and plot annihilatio
curves in space of the control parameters. The mechan
underlying the annihilation phenomenon are discussed
Sec. IV. Finally, the main conclusions are given in Section

II. COEXISTING ATTRACTORS

A. Experimental setup

In our experiments, the erbium-doped fibre laser
pumped by a commercial laser diode~wavelength 976 nm,
maximum pump power 300 mW! through a wavelength-
division multiplexing coupler~WDM! and polarization con-
troller ~PC! ~Fig. 1!. The laser cavity of 1.5-m length i

FIG. 1. Experimental setup. WDM is the wavelength-divisio
multiplexing coupler, PC is the polarization controller, FBG1 a
FBG2 are the Bragg gratings, and D1 and D2 are the photode
tors.
1-2



th
ot
an
od

he
d

of

e
re

ile

m
o

to
e
r
d

et

s

-
-
th
ol

to
in

xist.
ies

iv-
of
in

for
ex-
. 4,
ak

llator

the

-
r

i-

orm

y.

g
m

r
,

dy-

EXPERIMENTAL DEMONSTRATION OF ATTRACTOR . . . PHYSICAL REVIEW E 68, 066211 ~2003!
formed by a piece of a commercial~from IPHT Jena! heavily
doped erbium fiber (Er2O3-concentration 2300 ppm! of
70-cm length and a core diameter of 2.7mm, and two fiber
Bragg gratings~FBG1 and FBG2! with a 2-nm FWHM~full
width on half magnitude! bandwidth and reflectivity of 91%
and 95% at a 1560-nm wavelength. Output power of
pumping laser diode and fiber laser are recorded with ph
detectors D1 and D2 and analyzed with an oscilloscope
a Fourier spectrum analyzer. The output power of the di
laser depends linearly on the laser diode current.

Without any external modulation, the output power of t
erbium-doped fiber laser represents self-oscillations at fun
mental laser frequencyf 0 ~in our casef 0530 kHz). Such a
self-pulsing behavior may be attributed to the presence
saturable loss due to erbium ion pairs and~or! excited state
absorption in the heavily doped fiber@45,46#. The harmonic
signal,Adsin(2pfdt) ~whereAd and f d are the driving ampli-
tude and frequency!, applied from a signal generator to th
laser driver causes harmonic modulation of the diode cur
with f d . In our experiments, the signal withAd5800 mV
results in 50% modulation depth of the pump power, wh
the average diode current is fixed at 40 mA.

B. Bifurcation diagrams

The dynamics of the parametrically modulated erbiu
doped fiber laser was studied extensively by various auth
@44# who demonstrated the coexistence of multiple attrac
at certain laser parameters. The bifurcation diagram of p
intensity I p of the fiber laser withf d as a control paramete
for Ad5800 mV is shown in Fig. 2. This diagram is obtaine
by a slow increase and decrease of the control param
The laser dynamics is ruled mainly by the ratio off d to
fundamental laser frequencyf 0 defined by the saturable los
in the fiber and pump power. In our experimentsf 0
530 kHz for the pump power of 15 mW. In the low
frequency range (f d,14 kHz), we observe frequency lock
ing, quasiperiodicity, and chaos. The laser dynamics in
region~FL! represents a well known structure such as Arn

FIG. 2. Bifurcation diagrams of peak laser intensity with drivin
frequency as control parameter at 50% modulation depth of pu
laser diode current. The fundamental laser frequencyf 0 is shown by
the dashed line. The dotted line bounds the frequency locking
gion ~FL!. P1, P2, P3, and P4 are the period-1, period-2
period-3, and period-4 regimes.
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tongues. With increasingf d , different attractors appear in
saddle-node and period-doubling bifurcations giving rise
generalized multistability. In this paper we are interested
the frequency range where three periodic attractors coe
As seen from Fig. 2 this occurs at the driving frequenc
f d.90 kHz.

When we fix the driving frequency atf d593 kHz, three
periodic attractors coexist within certain region of the dr
ing amplitudes. The time series illustrating the coexistence
the period-1, period-3, and period-4 regimes are shown
Fig. 3. In the lower trace in the same figure we show
comparison the intensity of the pump diode laser. The co
istence of three attractors is also demonstrated in Fig
where we display the bifurcation diagram of the laser pe
intensity with respect toAd . For small values of the driving
amplitude,Ad,300 mV, only one~period-1! attractor exists,
so that the laser behaves almost as a linear damped osci
periodically oscillating with frequencyf d . As Ad is in-
creased, the period-4 and period-3 attractors appear in
corresponding saddle-node bifurcations~SNBs!. The SNB
points (S3 and S4) are found experimentally by slow de
creasingAd until the laser switches from the period-3 o
from the period-4 to the period-1 regime.

III. ATTRACTOR ANNIHILATION

In order to control the multistability, we apply the add
tional harmonic modulation,Acsin(2pfct), to the pump cur-
rent, so that the total signal from the generator takes the f

A5Ad@11Acsin~2p f ct !#sin~2p f dt !, ~1!

where Ac and f c are the control amplitude and frequenc

p

e-

FIG. 3. Time series demonstrating coexistence of different
namical regimes atf d593 kHz andAd50.8 V. The lower trace
shows the pump modulation signal.
1-3
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PISARCHIK, BARMENKOV, AND KIR’YANOV PHYSICAL REVIEW E 68, 066211 ~2003!
The valueAd is chosen to be in the range of coexistence
the attractors, i.e.,Ad5800 mV ~dashed line in Fig. 4!. The
control amplitudeAc is chosen such that the maximum val
of A during the control modulation does not cross the S
points where the period-3 and period-4 attractors are b
i.e., Ac,150 mV for the period-3 attractor andAc,250 mV
for the period-4 attractor.

The goal of this type of the control is to annihilate one
two of the coexisting attractors so that the final state of
system is the period-1 limit cycle. In practical situations, it
important to be able to drive most trajectories to the de
able attractor in an efficient and economic way, i.e., by us
only small perturbations to an accessible parameter. H
ever, for trajectories deep in the basin of an undesired att
tor, small perturbations cannot change the attractor to wh
the trajectory is asymptoting. Pecora and Carroll@31# dem-
onstrated that in periodically driven dynamical systems, m
tiple basins of attraction of attractors can be eliminated
replacing the periodic driving by some appropriately chos
but somewhat large-amplitude chaotic driving. In this wo
instead of changing the periodic driving to chaotic one,
add the additional periodic~control! modulation to the same
system parameter Eq.~1!. As in the method of Pecora an
Carroll, the amplitude of the control modulation is not sma
so that the control is nonlinear. However, we will show th
the control goal can be achieved byrelatively small control,
i.e., Ac!Ad .

When the amplitude of the control modulation is sm
@m,0.05, wherem5(Ad2Ac)/(Ad1Ac) is the modulation
depth#, the laser response to the control modulation is alm
linear and appears as a slow envelope of the laser puls
each nonlinear regime. In other words, this is the linear
sponse of the nonlinear system to small perturbations.
amplitude of this slow envelope depends on the control
quency and has a maximum at the resonant frequency o
attractor,f r

(n) (n is the attractor period!. In our experiments
we estimatef r

(n) from a Fourier transform of the generate

FIG. 4. Bifurcation diagrams of peak laser intensity with drivin
amplitude as control parameter atf d593 kHz. The arrows show the
jumps to the period-1 regime~P1! from the period 3~P3! and the
period 4~P4!, which occur in the saddle-node bifurcation points,S3

andS4, whenAd is decreased. The dashed line indicates the ini
position of driving amplitudeAd50.8 V when the control modula
tion is applied.
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sequence of laser pulses. In Fig. 5 we plot thef c spectral
component,Sc , in the power spectrum of the laser outp
versus the control frequency for the laser oscillating in
period-3 and period-4 regimes atm50.01. One can see tha
the resonance frequency for the period-3 attractor inf r

(3)

'2.5 kHz and for the period-4 attractor isf r
(4)'5.4 kHz.

While m is increased, the laser response to the con
modulation becomes nonlinear which leads to the attra
annihilation. The annihilation curves for the period-3 a
period-4 attractors in the (f c ,m) parameter space are show
in Fig. 6. Each attractor exists for the control paramet
below the corresponding curve, while above the upper cu
the system is monostable, i.e., only the period 1 exists. W
the parametersf c and m approach the annihilation curves
the system in each of the regimes undergoes a sequen

l

FIG. 5. Linear laser responses to control modulation withm
50.01 at f d593 kHz and Ad50.8 V. The maxima appear a
resonance frequenciesf r

(3) and f r
(4) of the period-3 and period-4

attractors.

FIG. 6. Codimension-two bifurcation diagram in (f c ,m)-
parameter space atAd50.8 V and f d593 kHz. The curves con-
necting the dots and squares are the crisis lines~annihilation curves!
for the period-3 and period-4 attractors, respectively. Some re
nances are marked with the arrows. The dashed line indicates
control frequency at which the time series in Fig. 7 are recorde
1-4
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EXPERIMENTAL DEMONSTRATION OF ATTRACTOR . . . PHYSICAL REVIEW E 68, 066211 ~2003!
period-doubling bifurcations in control frequency@i.e., in the
slow envelope, as shown in the middle trace of Fig. 7~b!#
terminated by chaos and crisis of the attractor. After destr
tion, the chaotic transients jump to the basin of attraction
the neighboring attractor. The sequence of the period d
bling and chaos are localized in a narrow parameter ra
close to the annihilation curves slightly below them. In fa
the annihilation curves in Fig. 6 are crisis lines. One can
that these curves have several peaks and dips. In the dip
conditions for the control is better, because the modula
amplitude required for the annihilation is smaller, whereas
the peaks largerm is required for the annihilation. Moreove
at some modulation frequencies it is impossible to kill t
period-3 attractor. Now consider the origin of such a beh
ior of the annihilation curves.

IV. DISCUSSION

The physical mechanism underlying the annihilation p
nomenon is described in Ref.@36#. The attractor annihilation
results from a resonant interaction of the control freque
with the frequency of damped oscillations of the associa
attractor, i.e., with the frequency at which a trajectory in
ated in the basin of attraction of the corresponding attra

FIG. 7. Time series demonstrating effect of control modulat
with f c54 kHz on period-1, period-3, and period-4 attractors
~a! m50.05 and~b! m50.06. f d593 kHz andAd50.8 V. Close to
the annihilation curve the laser undergoes the period-doubling
furcation at control frequency~middle trace in~b!!.
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exhibits damped oscillations before being attracted to
limit cycle. This frequency is close to, but slightly lowe
than, f r

(n) due to the damping, as typical for a damped osc
lator @47#. When the system is subjected to two-frequen
modulation with incommensurate frequencies, the attrac
becomes quasiperiodic with a toroidal surface in a thr
dimensional phase space. Moreover, the basin of attractio
the attractor also changes@37#. The new attractor is less
stable in the sense that the absolute value of the lea
negative Lyapunov exponent is smaller, i.e., it is closer
zero @37#. While the control amplitude is increased, each
the tori transforms to a chaotic attractor which then und
goes boundary crisis at the certain value off c and the torus
disappears. The boundary crisis occurs when the chaotic
tractor reaches the boundary of its basin of attraction.

The appearance of the peaks and dips on the annihila
curves in Fig. 6 can be understood if we take into account
resonant interaction of three main frequencies in the syst
f d , f c , and f r

(n) . We identify some of the extrema in th
figure, but not all of them. One can see that several dips
the annihilation curves appear when the control frequen
is close to the resonance frequencies of the attractors~Fig. 5!
or their harmonics. This confirms the prediction made in R
@36#: the best condition for attractor annihilation is realiz
~i.e., the smallest control amplitude is required! when f c

' f r
(n) . Actually, the minima coincide with the frequencies

damped oscillations that are slightly lower thanf r
(n) . As seen

from Fig. 6, when the control is applied at these frequenc
the period-3 and period-4 attractors can be destroyed w
m50.05, i.e., by only 5% control modulation of the drivin
amplitude. Other local minima on the annihilation curv
may appear at difference frequencies off r

(n) ~for example, as
the dip at f c5 f d/42 f r

(4) for the period-4 attractor! and at
subharmonics of the fundamental laser frequencyf r

(1)[ f 0

~for example, whenf c5 f r
(1)/2 andf c5 f r

(1)/3 for the period-3
attractor!. The dips at the latter frequencies arise because
control at subharmonics of the fundamental laser freque
gives the preference for the period-1 attractor, and hence
other attractors can be easier destroyed. On the contrary
control at subharmonics of the driving frequency improv
the stability of the period-3 and period-4 attractors~the ab-
solute value of the leading Lyapunov exponent increas!
which makes it difficult or even impossible to destroy the
For instance, whenf c' f d/9 or f c' f d/6 the period-3 attrac-
tors cannot be destroyed even atm51. Therefore, the inter-
action of f c with f d is a reason of the several maxima on t
annihilation curves. However, some peaks and dips do
appear if the resonant frequency which stabilizes one of
attractors is close to another resonant frequency which de
bilizes it. For example, the peak atf d/9 does not appear on
the annihilation curve for the period-4 attractor, because
frequency almost coincides with the second harmonic
f r

(4) , which leads to the resonant destruction of the attrac
However, the frequencyf r

(4) has no effect when the lase
operates in the period-3 regime. Thus, the shape of the a
hilation curves in the high-frequency range (f c. f r

(n)) is de-
fined by the competition between the main frequencies of
system.

r

i-
1-5
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The important feature of this control is that the attract
can be annihilated with a relativelyslowmodulation as com-
pared with the driving frequency and the frequency of
attractor to be controlled. The slow control is more conv
nient for practical applications because it can be reali
with a weak modulation of the driving amplitude. By
‘‘weak’’ modulation we imply that the change in the drivin
amplitude,AdAc @see Eq.~1!# in the uncontrolled case, wil
lead to no bifurcation of the attractors, i.e., parameterA
5Ad(12Ac) is smaller than the stationary position of ea
SNB point ~Fig. 4!. In practice, the control signal can b
supplied from the same signal generator as amplitude mo
lation of the driving signal. Moreover, the control does n
require anya priori knowledge of the system behavior b
cause the first dips on the annihilation curves can be ea
found in experiments whenf c is slowly increased from zero
It is seen from Fig. 6 that the control modulation withf c

, f r
(n) also can destroy the attractors, butm should be larger.

However, the modulation at very low frequencies (f c→0)
corresponds to a quasistationary change in the driving am
tude and the attractor dies in the corresponding SNB w
the modulated parameterA reaches the SNB point~see Fig.
4!. This occurs whenm50.16 for the period-3 regime an
m50.7 for the period-4 regime. Such a slow modulation
not interesting for the control, because the different sys
state can be easier achieved by just changing the dri
amplitude without any additional modulation.

Another feature of the system subjected to parametr
modulation is a dynamical shift of bifurcation points. When
parameter is changed in time so that the system pa
through a bifurcation point, the bifurcation delays in tim
and appears at a different instant value of the parameter@48#.
Such a dynamical shift of the bifurcation point depends
the velocity at which the parameter is changed. Similar
havior occurs when the parameter is periodically modula
in the vicinity of the bifurcation point@37,49,50#. In the latter
case the shifted position of the bifurcation point depends
the frequency and amplitude of the parameter modulat
This phenomenon was observed for different critical poin
including the period-doubling bifurcation@49#, SNB, and cri-
sis point@37,50#. The annihilation curve for the period-3 a
tractor in Fig. 6 demonstrates the dynamical shift of the S
point. For f c.5 kHz the period-3 attractor still exists whe
parameterA crosses the stationary SNB (S1 in Fig. 2!, i.e.,
for m.0.16. As was shown in Ref.@37#, the shift of critical
points results from a deformation of the basins of attract
of attractors and a change in their fractal dimensions. T
shift of the SNB point is not observed for the period-4
tractor, becauseA during the modulation never reaches t
stationary position of the SNB point (S2 in Fig. 4!, i.e., m
,0.7. The period-4 attractor is annihilated at much sma
control amplitude because the basin of attraction of this
tractor is smaller.

The important advantage of our method is that each of
coexisting attractors can beselectivelydestroyed by the con
trol modulation with properly chosen amplitude and fr
quency. As seen from Fig. 6, the annihilation curves for
period-3 and period-4 attractors are crossed atf c54.3 kHz,
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where two crisis lines coincide. Close to this point, it
possible to destroy selectively either the period-3 or perio
attractor by changing just the control frequencyf c to be
slightly before or after the crossing point. Moreover,
choosingm to be slightly above the crossing point it is po
sible to kill both attractors with smallest value of the contr
amplitude. Figure 7 displays with time series the laser os
lations for the control parameters slightly below the anni
lation curve for the period-3 attractor. Atf c54 kHz andm
50.05 the laser oscillates either in the period-1~P1!,
period-3 ~P3!, or period-4 ~P4! regimes depending on th
initial conditions@Fig. 7~a!#. Closer to the annihilation curve
for the period-3 attractor~at m50.06), the period doubling
appears in control frequency~in the slow envelope! of the
laser pulses@middle trace in Fig. 7~b!# and the amplitude of
the slow modulation increases@compare with Fig. 7~a!#.
However, almost no changes occur in the period-4 a
period-1 regimes. Whenm is further increased so that th
control parameters cross the annihilation curve for
period-3 attractor~at m50.07), the period 3 disappear
Then, closer to the annihilation curve for the period-4 attr
tor ~at m50.14) the laser undergoes the period-doubling
quence to chaos in the slow envelope of the period-4 regi
Finally, the period 4 also disappears~at m50.16) and only
the period 1 remains. Similar behavior is observed when
fix m and manipulatef c in the vicinity of the annihilation
curves.

V. CONCLUSIONS

In this paper we have reported on the experimental ob
vation of attractor annihilation in a multiattractor system
With an example of the pump-modulated erbium-doped fi
laser we have demonstrated that multiple coexisting att
tors can be selectively destroyed by adding a harmonic p
metrical modulation with properly chosen control parame
values. We have provided the experimental evidence of
ability of the annihilation method to control multistabilit
and flexibility in manipulating the system’s dynamics to s
lect a desired behavior or to make the system monostable
fact, this laser is a device with a well-defined number
coexisting states. We have demonstrated that the coexis
attractors can be destroyed by slow~two orders of magnitude
lower than the driving frequency and one order of magnitu
lower than the frequency of the attractor to be controlle!
and weak~5% of the driving amplitude! control modulation.
The method does not require a permanent tracking for
system state; once the control is applied, the undesired s
never appears, because it does not exist.

We have proved theoretical predictions that this effect
a resonant character and identified some resonances o
annihilation curves. The shape of the annihilation curve
defined by the resonant interaction of the control freque
with other main frequencies in the system: the driving f
quency, the frequencies of the attractor and its damped o
lations, and the fundamental laser frequency. The best c
dition for the control ~minimal amplitude of the contro
modulation! is realized when the control frequency is clo
1-6
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to the frequency of damped oscillations of the attractor to
annihilated. We believe that the results of this paper will
useful for experimentalists in many areas of science, w
work with multiattractor systems and wish to avoid unde
ired attractors or to make the system monostable.
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