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Relaxation and diffusion in a globally coupled Hamiltonian system
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The relation between relaxation and diffusion is investigated in a Hamiltonian system of globally coupled
rotators. Diffusion is anomalous if and only if the system is going towards equilibrium. The anomaly in
diffusion is not anomalous diffusion taking a power-type function, but is a transient anomaly due to nonsta-
tionarity. For a certain type of initial condition, in quasistationary states, diffusion can be explained by a
stretched exponential correlation function, whose stretching exponent is almost constant and correlation time is
linear as functions of degrees of freedom. The full time evolution is characterized by varying stretching
exponent and correlation time.
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I. INTRODUCTION In this paper, we study the globally coupled rotator system
considered in Refd.10,17], and we exhibit the relation be-
Relaxation to thermal equilibrium has been studied intween relaxation to equilibrium and anomalous diffusion
Hamiltonian systems with long-range interactiofls-6].  with a different type of initial condition from the one used in
One of the characteristic phenomena in the relaxation proRefs.[10,17. Then we show that diffusion becomes anoma-
cess is anomalous diffusion, since normal diffusion is exJous if and only if the state is neither stationary nor quasi-
pected at equilibrium. Anomalous diffusion was first investi- Stationary. In other words, diffusion is shown to be normal in
gated in a one-dimensional chaotic map to describe enhancéy@sistationary states, although a stretched exponential cor-
diffusion in Josephson junctiofig], and is observed in many relation function is present, contrary to previous claims that
systems both numericalf,8—11 and experimentally12].  rePort power law type functiofl7]. Simple scaling laws of
Anomalous diffusion is also observed in Hamiltonian dy- t_he correlation function imply that the result holds irrespec-
namical systems. It is explained as due to power-type distrit’V€ Of degrees of freedom. L
bution functions[8,13,14 of trapping and untrapping times . _Th|s paper is organized as follows. The mode_l, initial con-
of the orbit in the self-similar hierarchy of cylindrical cantori dition, and observed quantities are described in Sec. II. In
[15]. Self-similarity is expected to be one of the important S€C: !Il, we study relaxation process, which we divide into
concepts to understand statistics and motion in Hamiltonialf /€€ Stages: quasi-stationary, relaxational, and equilibrium
systems, but cannot be the main feature in systems witRtages. Diffusion process in each stage is investigated in Sec.

many degrees of freedom. Then, as the first step of approach\-/ by using stretched exponential correlation funptions of
ing the study of self-similarity, we have to clarify when momenta. Dependence on degrees of freedom is also re-

anomalous diffusion appears, and what is the origin of thé©rted both in Secs.
anomaly. summary.

Latoraet al. [10] discussed the relation between the pro-
cess of relaxation to equilibrium and anomalous diffusion in  I. MODEL, INITIAL CONDITION, AND OBSERVED
a globally coupled rotator system, by comparing the time QUANTITIES
series of the temperature and of the mean squared displace-

ment of the phases of the rotators. They showed that anoMYantical rotators confined to move on the unit circle, and the

lous diffusion changes to a normal diffusion after a Crossove[, . -itonian is composed of a kinetic part and a potential
time, and that the crossover time coincides with the tim art[1,2,5,10,17

when the canonical temperature is reached. They also clai

that anomalous diffusion occurs in the quasistationary states, N 02 N

which appear before the system goes towards equilibrium. H=K+V= dy E [1-cog6;—6;)]. (1)

The crossover from anomalous to normal diffusion deter- =12 2Nij=

mines the time when the anomalous diffusion finishes. How- . .

ever, it is not clearly pointed out when the anomalous diffu-11€ N particles are globally coupled through the mean field

sion starts, and hence the study of the relation between tHi€fined as

relaxation process and anomalous diffusion is still not com-

plete. Moreover, in Ref[10], the numerical calculations M=

were performed by using only one type of initial condition,

but different types of initial condition may change the con-

clusion[16]. where the modulu$1 (0<M<1) represents the magnetiza-
tion of this system. We remark that the poteniabnd the
kinetic energyK are related to the magnetizatidh as fol-

*Electronic address: yyama@i.kyoto-u.ac.jp lows:

Il and IV. Section V is devoted to

The model considered in this paper Hdsclassical and

Z| -

N
le (cosb;,sind;)=M(cose,sing), 2)
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2VIN=1-M?2, 2K/N=2U-1+M?, (3 0.35

whereU is the energy per particle, i.&J,=E/N, andE is the 03T

total energy. The free energy of this system has been ob-
tained in the canonical ensemtlg, 2,18, and it has been
shown that systeril) has a second-order phase transition at 02t
the critical energyJ.=0.75. If the energyJ is greater than
the critical energy, the largest Lyapunov exponent goes to " 0.15 f
zero in the thermodynamic limitN— <) [19]. Then, all ro-
tators freely rotate, and diffusion becomes ballistic. On the 0.1
contrary, if U is small compared tdJ., all rotators are
trapped in the potential well and no diffusion occurs. We are
therefore interested in a value of the energy which is near but
less than the critical energy in order to allow some particle
diffusion. Hereafter, we s&ff =0.69 (a value studied also in
Refs.[10,17,18).

0.25

M(z)

0.05

The canonical equations of motion for systéi can be FIG. 1. Temporal evolutions oM(t). U=0.69 andN=100,
cast in a form that uses the mean field E2).as follows: 1_000, 10 000. The horizontal line represents the cgnomgal equilib-
rium value of M. On each curve, two short vertical lines are
do: dp. marked. The first and the second ones are at the end of stages | and
d_t]: p; ., d_t]: —M(t)sin(6;— ¢(1)), (j=1,...N). Il, respectively. Solid curves are hyperbolic tangent functicr@.
4

whena=1 and ballistic fore=2. The quantityr(t) can be

We numerically integrate Eq4) by using fourth-order sym- rewritten by using the correlation function of momenta
plectic integrator§20,21. The time slice of the integrator is Cp(t;7) as

set atAt=0.2 or 0.4, and it suppresses the relative energy

error down to|AE/E|<5x10". t t

We have performed the integrations starting friwh§0) ff?g(t)ZJ' dtlf dty (pj(t)pj(ta))n
=0. To prepare these initial conditions numerically, we set 0 0
gj(0)=2mj/N, andp;(0) is taken from a uniformly random t t-s
distribution whose support fs—p,p], where the value is =2fodsfo dr Cy(si7), ©®
chosen to get the energy denslty The total momentum
EJ-N=1pj is an integral of the motion and we initially set it to _ _
zero. This initial state corresponds to a local entropy mini-whereCy(t;7) is defined as
mum[22], and to a stationary stable solution to the Vlasov-
Poisson equatiori2], although the system goes towards
Gibbs equilibrium due to finite size effedt§]. With respect
to theM(0)=1 initial condition chosen in Ref$10,17, the
one we choose has the advantage of being a quasistationa
state from the start. 6L

We numerically observe the time series of two quantities.
One is for the relaxation process and the other is for the
diffusion process.

To observe the relaxation process, we use the magnetizi
tion M(t). Note that observind/(t) corresponds to observ-
ing 2K (t)/N by using Eq(3), and X (t)/N is the time series
of the temperature, since the canonical averagekoi\2co-
incides with the canonical temperature. 4

To observe the diffusion process, we introduce the meat
square displacement of phasze%(t) defined as oF

Cp(t;7)=(p;(t+7)Pj(7)n - )

(4]
T

2 ol
~
T

log,tun,10

1 N
V=R 2, [6(0= 60 =({6(1)~ (0. log, N

©) FIG. 2. Dependence on degrees of freedomy,pf(squaresand

tym (crosses Stars represerit,, — 6. The lower straight line rep-
The symbok(- )y represents the average over all theota-  resents the power law!7/150. The upper curve is a theoretical

tors. The quantityo3(t) typically scales asrj(t)~t% and  prediction of the boundary timy, using Eqs(11) and(12) with
the diffusion is anomalous whem# 1,2, while it is normal ~ M=0.9M,.
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FIG. 3. Four parametem, b,c, andd are reported as functions of degrees of freed@nlLog-log plot ofac. (b) Log-log plot of 1.
(c) Liner-log plot ofc. (d) Log-log plot ofd. Solid curves are scaling functions described in @4g).

Moreover, if the system is stationary a@j(t;7) does not and between stages Il and Itl,, , as follows. The magne-
depend onr accordingly, tization takes the local minimum &t,,,, and we adopt,,
=tmin- We define the other boundary tintg,, as the first
passage time which satisfidé(t)=0.99M.,. Values of the
two boundary times are reported in Fig. 2 as functions of
degrees of freedom. The local minimum time is proportional
to N*7 for N=100 with our initial conditionM(0)=0, as
with another initial conditiorM (0)= 1 [23]. For smalIN, we
cannot neglect the initial time regidr<6 in which the level
of M(t) goes toO(1/y/N) coming from the law of large
numbers[see Fig. &)], and hence the power law breaks.
The power law recovers by subtracting the initial increasing
Temporal evolutions oM (t) are shown in Fig. 1. In order time 6 fromt,, as shown in Fig. 2, i.et;; —6~N%" (N
to suppress fluctuations, we have calculated averages overi0).
realizations. Throughout this paper, unless no comments ap- A theoretical prediction of,,,, , the upper curve in Fig. 2,

pear, the number of realizations are 1000, 100, and 8 for s obtained by fitting the magnetizativi(t) as hyperbolic
N=100, 1000, and 10000, respectively. We divide the temtangent function,

poral evolutions into three stages, I, I, and Ill. In stage I, the
value of magnetization is almost constant but smaller than
the canonical value. After stage |, magnetization rapidly in-
creases towards its equilibrium vali,,, and we call this
time interval stage Il. Finally the system reaches equilibriumThe parameted represents the initial level d¥1(t), andc
during stage Il the half width between initial and equilibrium levels of
Let us define boundary times between stages | arigll,  M(t). The productac is the slope at logt=Db, i.e., ac

Co(t;)=Cp(;0), (¥ 7>0) ®)

then Eq.(6) is simplified as
t
ag(t)=2fo(t—s)cp(s;0) ds. (9)

Ill. RELAXATION PROCESS

M(t)={1+tanHa(log;t—b)]} c+d. (10
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FIG. 4. (a) Double log-log plot of normalized correlation functi@),(t;te)/C,(0;teg) at equilibrium withte= 220 N=1000. We take
an average oven= 100 realizations. The straight line and the curve represent the stretched exponential f(iGtimnd the power-type
function (t/410)"%3%e, respectively. The upper horizontal line is fluctuation le@¢L/\/Nn). The inset shows a log-linear plot with the
stretched exponential functiofth) Log-log plot of o‘g(t;teo) with the approximate function produced by E¢s5) and(16).

=dM/d(Ioglot)||oglot:b, and 10 is the time scale. As shown

in Fig. 3, these four parameters are fitted as

JN 1
2N)= 150 oy 10N
C(N)=w, d(N)=\1/—'N7. (12)

By using the scaling law Eq11), we can predict wheM (t)
reaches a given threshold levil,,, as a function olN. Let
ty, be the threshold time, which satisfidd(ty,) =My,, then
ty, is expressed as

Mth_d

Meq_ Min

(In 10)/2a
) (12

tth: ld)(

In Fig. 2, ty, is reported forM,=0.99M,, and the predic-

tion is in good agreement with numerical results. We remar
that, roughly speakind,,, is asymptotically proportional to

Nl'7.

The system seems quasistationary in stage |. The exis-
tence of quasistationary states for sufficiently long time has
been questioned in Rdf23]. We will answer to the question

by observing dependence anof the correlation function
Cp(t;7) in Sec. IV B.

IV. DIFFUSION PROCESS

As described in Eq(6), the mean square displacement

A. Diffusion at equilibrium
Assuming the system has reached equilibriunt=ate,
we observeC (t;te) ando(t;te), where

0%(titeq =([ 6;(t+teg — Oj(teg 1N - (13)

At equilibrium we may assume that the system is stationary,

Cp(titegt N =Cy(titeg (¥ 7>0), (14)

and hence

aﬁ(t;teq>=2f;(t—s)cp(s;teo) ds. (15)

Now let us consider the correlation function fou
=1000. We adopte,=2?°~=10° which is long enough to
i{each equilibrium imaging from Fig. 1. The correlation func-
tion Cy(t;tey) is reported in Fig. &), and is well approxi-
mated by the stretched exponential functj@d],
Cp(t;teg =0.47 exp—(t/410°37, (16)
rather than by a pure exponentfake the inset of Fig.(4)
which is a log-linear plot ofC(t;teg)].

We remark that a stretched exponential function
exd —x#] with a small exponenB|<1 is indistinguishable
from a power-type function in the regid In x|<1:

exd —xP]=exd —exp(BInx)]

crf,(t) is obtained from correlation function of momenta

Cp(t;7), and hence we study diffusion process by observing ~exd—1-8Inx]
the correlation function. We start from the simplest stage,
stage Ill, because we may use the simple expres&pn =x"Ple.

Next, we progress to stage |, where we expect that the sys-

tem is quasistationary, and that we may use (Bpjagain. In  However the fitting function16) well agrees with the nu-
nonstationary stage, stage Il, we check whether diffusion isnerical result even aroun.32In¢/410)=1, whose two
of a power type. Finally we investigate dependence on desolutions aret=18, 9330. We therefore adopt a stretched
grees of freedom for some important parameters. exponential function as an approximation@f(t;tey).
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FIG. 5. Correlation function of momen@,(t; 7) for various values of=0, 1024,2048, 4096, 16 384, 65536, and 1 048 576 from left
to right. (a) Log-log plot. (b) Double log-log plot.(c) Relative error Eq(18) of Cy(t;7) from Cy(t;0).

By using the fitting function(16) and Eq.(15), we nu-
merically reproduceaé(t;teo), and the reproduced curve
well approximates the numerical result as shown in Fig).4
Note thatcrf,(t;teo) is proportional tot? in the limit of t
—0, since Cy(s;teg in Eg. (15 goes to the constant

R(T)=max7|f(t;7-)|
¢« Cp(0;0)

(18)
is also reported in Fig. (6) as a function ofr. The error
_ . oo e R(7) stays small up to the end of stage I, and hence we
Cp(0steg- On the other hand, in the limit af-, o(t;te))  conclude that the system is quasistationary in stage I. We
is proportional tot, because botlCp(s;teg) andsCy(Site)  pelieve that the quasistationary states correspond to station-

are almost zero in long time region, and hence their integralgry stable states of the Vlasov equat[@s]. We remark that
become constants. The crossover firto t is also observed R(7) is constant in stage Ill again due to stationarity at equi-

if we assume an exponential correlation function, and hencgprium.

we conclude that diffusion at equilibrium is normal as ex- |t seems natural that we regal,(t;7) as a series of
pected although a stretched exponential is present. stretched exponential functions bfrather than power-type
functions, since this function fit€,(t; 7) in more than two
decades of timgpower law fits of the correlation functions
hold in one decade Moreover, at equilibriumC(t;te) is

also a stretched exponential rather than a pure exponential, as
shown in Fig. 4.

In the quasistationary region, stage I, the mean square
displacementr%(t) can be derived by the correlation func-
tion Cy(t;0), which is reported in Fig. 6 forN
=100, 1000, and 10000. We approximafg(t;0) by a
stretched exponential function as

B. Diffusion in quasistationary state

Except for stage Ill, we cannot expect stationarity to hold
Eqg. (8) any more. However, from the temporal evolutions of
M(t), Fig. 1, we may expect quasistationarity in stage I,

Co(t; 1) =Cp(1;0) + €(t; 7), 17)

where 7 belongs to stage | and(t) is suitably small.

The correlation functiol€(t; 7) for various values of is
reported in Figs. &) and 5b) for N=1000, and the relative
error of correlation function defined as N=100: C,(t;0)=0.38expp—(t/20)°%,
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FIG. 6. Correlation function of momenta a0, i.e.,Cy(t;0). ] ) )
The inset is magnification of the horizontal axis aroure0 for FIG. 7. Time series of the mean square displacement of the
N=100. These numerical results are approximated by solid curveBhasesof(t). N=100, 1000, and 10000 from top to bottom. The
which are stretched exponential functiofis). vertical axis is the original scale only fd&=10 000, and is multi-

plied by 1¢ and 16 for N=1000 and 100, respectively, just for a
graphical reason. In stage | where the system is quasistationary, the
numerical results are approximated by solid curves which are ob-
tained from Eq.(9) using functions(19). After the system reaches
N=10000: C,(t;0)=0.38expp— (t/2200°°9. (19 equilibrium, diffusion becomes normal. Anomaly in diffusion is ob-
served only in stage Il. The two short vertical lines on each curve
show the end of stages | and Il, which correspond to those found in
Fig. 1.

N=1000: C,(t;0)=0.38exp—(t/180°1,

The prefactor 0.38 comes fro@,(0;0)=2K(0)/N.
Using the approximate functiori49) and Eq.(9), we are

a_lble.to reprqducero(t),_as §hown in F|g. 7', The approxima- ye investigate which of the three parameters is the most
tion is good in stage |, i.e., in the quasistationary time regionjmnortant to yield anomaly in diffusion.

irrespectiye O.f th? va_llue oN. Cor_lsequently,_ the_re i_s no The strategy is as follows. We reproduceﬁ(it)/dt by
an(_)maly in diffusion in stage_l, since th_e dlffu3|_on is ex- using the three parameters and the formula
plained by stretched exponential correlation function.

do? t
C. Diffusion in nonstationary state d—to(t)ZZJ dr Cp(O;T)EX[i—{(t—T)/tcorr(T)}ﬁ(T)].
0

After the quasistationary region, diffusion becomes (21
anomalous, which is faster than normal diffusion, in stage Il
If we fit af,(t) by a power-type function® in stage I, the 3
exponenta is estimated as 1.54, 1.59, and 1.74 fér
=100, 1000, and 10000, respectively. The values of expo-
nent tend to increase & increases as reported for the sys- oL ——— " “x,(‘ i
tem having the so-called two-dimensional egg-crate potentia x N=10000
[3]. On the other hand, the duration in which diffusion is ¢ - e,
anomalous becomes shorter and shorter in logarithmic timeg ; s XXXXXXXXXXWXxxxxx}«XX*"W“ "
scale asN increases, in accordance with the sharper change‘;’% i
of M(t). Moreover,aglt“ is not constant, but has a wave in 2
stage Il (see Fig. 8 Hence we guess that the anomaly in |
diffusion is not anomalous diffusion taking a power-type 0 . ++*++' ! E
function but a transient anomaly due to nonstationarity of N=100
stage Il.

Let us proceed to investigate the origin of anomaly in -1 ; : : y : ' :
diffusion. We focus on the behavior ft¢=1000. The mean
square displacemer&f,(t) is perfectly determined by the
correlation functionC(t;7) using Eq.(6), once we assume FIG. 8. Log-log plot ofo?(t)/t*. The exponent is estimated
that C,(t;7) is a series of stretched exponential functions.as 1.54, 1.59, and 1.74 féf=100, 1000, and 10 000, respectively.
We introduce three parameter(O;T), teord 7), @ndB(7), The two short vertical lines on each curve show the end of stages |

o
-
)
w
IS
o
o
~
<)

log ¢

to describe the stretched exponential function as and Il In stage 11,05/t is not constant. The vertical axis is the
original scale only foN=100, and is multiplied by 10 and 100 for
Cp(t;7)=Cp(0;m)exd — {t/teon ). (20 N=1000 andN=10 000, respectively for a graphical reason.
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0.5 r r r T T D. Dependence on degrees of freedom

045tk 1 In stage I(and I1l), we fit C,(t;0) [resp.Cp(t;te)] by a
stretched exponential function, which has three parameters:
Cp(0;0), teor(0), andB(0) [resp.Cp(0steg), teor(teg), and
B(teg]. In order to obtain scaling laws for the parameters,
we show them as functions of degrees of freeddniThe
parametersC,(0;0) andCp(0;tey) represent temperature at
t=0 and at equilibrium, respectively, and hence they do not
depend orN. We therefore focus on the other four param-
eters,teo(0), B(0), teor(teg), and B(tey). The correlation
functions,Cp(t;0) andC(t;tey), are shown in Fig. 11, and
values of the four parameters are reported as functiomé of
0 —————>——————:——,  inFig. 12.
log,,t For largeN, N=200, the correlation times are propor-
tional toN, that is,t;(0)=N/5 andt,(teg) =N/2, and the
FIG. 9. The three paramete(S,(0;7), teor(7), @nd B(7) @ stretching exponentg(0) andB(te) are almost constants.
functions of 7. The latter two parameterg,{(7) and 3(7) are  \e expect that these scaling laws for the four quantities are
mul_tlplled by 1/1000 and _1/2, respectlvel_y, for a grgphlqal reasonkept even in the thermodynamic limit, although they break
Solid curves are hyperbolic tangent functions described inE). for small N, wheret,,{0) is larger thanN/5 and B(0) is
smaller than the constant. The duration of stagg,, is
around 23 forlN=100, and hencé.,,(0) andB(0) are es-
Sfimated mainly not in stage | but in stage Il from Fig.(41
In stage Il,t.,(7) and B(7) are increasing and decreasing
functions of , respectively(see Fig. 9, and hence,.(0)

04

0.35

03

025

Scaled Parameters

02

0.15

We consider the first derivative af? instead ofo? itself,
because the former requires only single integration while th
latter requires double integratioii§). We first omit the de-
pendence omr of the paramete€,(0;7) and fix it to a con-
stant value to observe how it affects the anomaly in diffu-, B(0) are larger and smaller than expected values, re-
sion. We then fix the two other parametégs,(7) and B(7) .
: . : spectively.

to determine their effect on the mean square displacement.

From the numerical results &,(t;7), Fig. 5b), we de-
termine the values of three paramet€g0;7), to(7), and
B(7) at some value ofr by using the least square method.  As a summary, we have investigated the relation between
The discrete values of the parameters are not enough to reslaxation and diffusion in a Hamiltonian system with long-
producedag(t)/dt accurately, and then we approximate therange interactions. The relaxation process is divided into

V. SUMMARY

parameters by hyperbolic tangent functions as follows: three stages: quasistationary, relaxational, and equilibrium.
We showed that diffusion becomes anomalous only in the
Cp(0;7)=0.046 [1+tanh2.5log,o7—4.35)]+0.385, second nonstationary stage, where magnetization is increas-
ing and goes towards to the canonical value. The result men-
teor( 7) =80 [1+tanh(1.5log;qr— 3.4))]+ 170, tioned above does not depend on the number of degrees of

freedom, at least frord =100 to 10 000.
The interval where the anomaly in diffusion appears be-
comes shorter and shorter in logarithmic time scaleNas
) ) ) increase corresponding to a sharper change of magnetization.
_The hyperbolic tangent functions are in good agreemeni/oreover, a detailed investigation exhibits the absence of
W|th _numerlcal resultg, as shown in Fig. 9. To conflrm thepower-type diffusion even in the nonstationary stage. We
validity of the approximation, we reproduced§idt using  guess that anomaly in diffusion is a transient anomaly due to
Egs.(21) and(22), and the reproduced one is in good agree-nonstationarity.
ment with numerical results, as shown in Fig(d0 Diffusion is obtained by integrating the correlation func-
If we fix C,(0;7) at its middle value 0.431 we find that tion of momentaC,(t;7) and the correlation function is ap-
the dependence onof C(0;7) does not affect significantly proximated by a series of stretched exponential functions
dog/dt, as shown in Fig. 1®). By fiXing ter(7) at its  C(t;7)=Cp(0;7) ext —(t/teor(7))?7]. Among the three
middle value 250 we obtain the same conclusiontfgy( r) parametersC,(0;7), teord 7), and B(7), the stretching ex-
as forC,(0;7), particularly in stage I[(see Fig. 1(&c)]. On  ponentp(r) plays a crucial role to yield anomaly in diffu-
the contrary, if we fixg(7) at 0.6 or 0.9, we observe no sion. If we assume thad(7) is a constant, we never observe
anomaly in diffusion as shown in Fig. (@), because anomaly in diffusion. This result is consistent with the fact
doi(t)/dt is proportional tot and is constant in short and that anomaly in diffusion does not appearduasjstationary
long time regions, respectively, and the same behavior istate, because correlation functi@(t;7) and 8(7), ac-
obtained at equilibriunisee Fig. 4b)]. Consequently, among cordingly, are almost invariant with respect+o
the three parameterg@(r) plays a crucial role to produce We also investigated scaling laws concerning degrees of
anomaly in diffusion. freedomN. The duration of quasistationary stage is propor-

B(7)=0.31 [1+tani(1.5l0gyyr— 3.8))]+0.29. (22)
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FIG. 10. Time derivative of the mean square displacememﬁ(td/dt. (8 Numerical resultgcrossesand reproduced ongolid curve
using Eq.(21) and the approximate functions of the three parameters 2. In (b), (c), and(d), C(0;7), teor(7), andB(7) are kept
constant, respectively. Ifd), two constants foB(r) have been tested. Solid and dashed curves reprgsefité and 0.9, respectively. The
short vertical lines mark the end of stages | and Il.

Fluctuation Level »
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FIG. 11. Double log-log plots of correlation functions for various values of degrees of frebidga) C,(t;0) (stage ). (b) Cy(t;teg
(stage 11). In both (a) and (b), N=100(1000), 200(500), 300(300), 500(200), 1000(100), 2000(100), 3000(50), 5000(10), and
10000(10) from top to bottom, where the inside of parentheses represent numbers of realizatityft fg). For C,(t;0), the number is
1000 forN=1000 and is 100 for the others.

066210-8



RELAXATION AND DIFFUSION IN A GLOBALLY . ..

PHYSICAL REVIEW E 68, 066210 (2003

4 — 10 . . .
09 on 0 P00 8 |
3 : L
08 ]
Cd
; 07 ]
% 2 =8 B
= 06 (b) -
. 05 ]
W« N X XX x X
0 10 100 1000 10000 0 10 100 1000 10000
N N

FIG. 12. Two parameters of correlation function as functions of degrees of freedg(iN) (a) andB(N) (b). In both(a) and(b), squares
(X) represent values of the parameters @(t;0) (stage ) and crossesX) for Cy(t;tey (stage ll).

tional to N7, and relaxation time, at which the system choosing suitable forms foP(teor) [26,27. In our model,
reaches at equilibrium, is also proportionaN6’ asymptoti-  P(t,,,,) corresponds to the distribution of time scales of in-
cally although some corrections must be added. In both quatividual rotators. The investigation of the macrovariable
sistationary and equilibrium stages,,, is proportional toN  C(t;7) in relation with the microvariables of the individual
and 3 is almost constant. These simple scaling laws implyparticle correlation functions will be a subject of future
that fitting by stretched exponential functions is valid irre- work.
spective of degrees of freedom.

We have not understood the theoretical reason of the ap-
pearance of a stretched exponential function. If we assume
that several time scales with exponential correlation func- | thank Stefano Ruffo for a careful reading of the manu-
tion, exp(t/t..,), are present, and we assume probabilityscript and useful comments. | acknowledge valuable discus-
distribution function oftg,,, P(t.,), then we obtain a sions with Alessandro Torcini, Freddy Bouchet, and Julien
stretched exponential functiofP (o) eXp(—t/teon) dteor By — Barre
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