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Self-stabilization of high-frequency oscillations in semiconductor superlattices
by time-delay autosynchronization
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We present a scheme to stabilize high-frequency domain oscillations in semiconductor superlattices by a
time-delayed feedback loop. Applying concepts from chaos control theory we propose to control the spatiotem-
poral dynamics of fronts of accumulation and depletion layers which are generated at the emitter and may
collide and annihilate during their transit, and thereby suppress chaos. The proposed method only requires the
feedback of internal global electrical variables, viz., current and voltage, which makes the practical implemen-
tation very easy.
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Semiconductor superlatticg4] have been demonstrated  Control methods can be either local or glob20]. Local
to give rise to self-sustained current oscillations rangingmethods require our ability to measure, and apply forcing
from several hundred megahef—4] to 150 GHz at room directly to, the spatially resolved state variables of the sys-
temperaturg5], which promises potentially important appli- tem under study. However, in nanotechnology such vari-
cations as electronic oscillators. Various mechanisms witlables, being, e.g., electron densities in some quantum wells,
[6—9] or without [10] the involvement of propagating field are not easily accessible, and thus local methods cannot be
domains have been discusssed. In any case, a superlattiggplied. Unlike those, global methods require access only to
constitutes a highly nonlinear systdril], and instabilities some macroscopic variali# characterizing some integral
are likely to occur. Indeed, chaotic scenarios have beeputput of the system. Such output can generally be reliably
found experimentally12—14 and described theoretically in measured, and thus global methods seem to be the only op-
periodically driven[15] as well as in undriven systemi$6].  tion for the control of devices such as superlattices. How-
For a reliable operation of a superlattice as an ultrahighever, as we will show below, they are not straightforwardly
frequency oscillator such unpredictable and irregular condiapplicable to nanosystems whose structure is spatially dis-
tions should be avoided. In principle, synchronization of oscrete. In this paper we present a general approach to self-
cillations in a superlattice by an external sigfi2J17] could  stabilization of irregular oscillations in semiconductor de-
be exploited to achieve a desired periodic behavior. Howvices based upon essentially discrete quantum structures.
ever, in reality, the control of the forcing frequency in the  We consider a model for nonlinear electronic transport in
ultrahigh range presents substantial technical problems.  semiconductor superlattices that yields complex and chaotic
Here, we propose a simple self-stabilizing scheme that islynamic behavior under fixed time-independent external
especially suitable for semiconductor devices such as supeveltage in a regime where self-sustained dipole w333
lattices. It uses a profound concept of chaos control fromare spontaneously generated at the emitter. Those dipole
nonlinear dynamics and chaos theory. Within this approachyaves are associated with traveling field domains, and con-
an intrinsically unstable time-periodic motion is stabilized sist of electron accumulation and depletion fronts that, in
using a simple feedback loop, which couples back the differgeneral, travel at different velocities and may merge and an-
ence of an output variable at the actual titnend the same nihilate. Such moving fronts are widespread in nonlinear,
variable at a delayed time— 7 [18]. This type of control spatially extended systems, and similar chaotic front patterns
needs only small control forces initially, and they vanishoccur in many other systems, e.g., spatially continuous mod-
once control has been achieved. A sound advantage is thals describing bulk impurity impact ionization breakdown in
the oscillation mode to be stabilized need not be known besemiconductorg32] or globally coupled heterogeneous cata-
forehand, in contrast to other chaos control schemes. Rathdytic reactiong33]. Thus the time-delay autosynchronization
a simple delay line in combination with a difference ampli- method proposed in this work could be readily applied to
fier leads to autosynchronization of the system. Methods o$tabilize similar space-time patterns in a variety of systems.
nonlinear control theory19,2Q have been usefully applied Our model of a superlattice is based on sequential tunnel-
to real world problems in various areas of physics, chemistrying of electrons[31]. In the framework of this model the
and biology[21-29, but no use has been made of this in thequantum wells are assumed to be only weakly coupled, and
field of semiconductor self-oscillators. electrons are localized at these wells. Although this approxi-
mation is based upon a small miniband width, the resulting
transport characteristics have a much wider range of appli-
*Permanent address: School of Mathematical Scienceszability in the high-temperature or the high-field regime
Queen Mary/University of London, Mile End Road, London (where current oscillations ocqueven for strongly coupled
E14NS, U.K. quantum wells, as has been demonstrated by a detailed com-
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parison of the velocity-field characteristics with a full quan- 6
tum transport mode]31]. In Ref.[17] our model was suc-
cessfully applied to reproduce the observed high-frequency
oscillations in a strongly coupled superlattice. The resulting
tunneling current density,,_ m+ 1(FmNm,Nms 1) from well —
m to well m+21 depends only on the electric fiekd, be- 8
tween both wells and the electron densitigsandn,,; in ]
the respective wellén units of cm 2). A typical dependence Z
of Jh_m+1 ON the electric field between two consecutive 2
wells isN shaped and exhibits a pronounced regime of nega-
tive differential conductivity.

The total applied voltagll between emitter and collector
imposes a global constrailt= —EﬁZOFmd, whered is the
superlattice period. This, together with Gauss’s law, allows
us to calculate the fields,(n;, . .. ,ny,U) for a given elec-
tron density distribution.

The rate of variation of the electron density in wedlis

governed by the continuity equation FIG. 1. One-parameter bifurcation diagram: Time differences
between consecutive maxima of the electron density in well no. 20
dnp, vs voltageU at 0=0.5 QO 'm~'. Time series of length 600 ns
eWz‘Jm*lﬂm_‘Jmﬂmﬁ’l for m=1,... N, (1 have been used for each value of the voltage. The inset shows a

two-parameter bifurcation diagram: black squares denote chaotic
oscillations, light shading indicates periodic oscillations, and the
white region shows the absence of oscillations. Simulation Nf a

. . =100 superlattice with Al:Ga&, ;As barriers of widthbo=5 nm and
At the contacts we choose Ohmic boundary conditions. IfGaAs quantum wells of widthw—8 nm, doping densityNg

the contact conductivitw_ is chosen appropriately, electron —1.0x 10" cm 2 and scattering induced broadenifig:8 meV at
accumulation and depletion fronts are generated at the emit-_ 1 |
ter [16]. Those fronts form a traveling high-field domain,
with leading electron depletion front and trailing accumula-otic front patterns with irregular sequences of annihilation of
tion front. This leads to self-generated current oscillations. Aront pairs at varying positions within the superlattice occur.
fixed voltageU imposes a constraint on the lengths of thewe have calculated the largest Lyapunov exponent as
high-field domains and thus on the front velocities.Nf  1.1x10° s%, which is a clear indication of chaos.
accumulation fronts anblly depletion fronts are present, the  We shall now introduce a feedback loop to control the
respective front velocitiesy, and vy must obeyvy/v, chaotic front motion and stabilize a periodic oscillation mode
=N,/Nq. Since the accumulation and depletion fronts canwhich is inherent in the chaotic attractor. Our scope is two-
have different velocities, they may collide in pairs and anni-fold. We want to suppress the chaotic motion, but in addition
hilate. At certain combinations of contact conductivityand  the control force should be small, i.e., asymptotically zero, in
voltage U, chaotic motion arises, when the annihilation of order to stabilize a proper periodic state of the system. Thus
fronts of opposite polarity occurs at irregular positionswe have to resort to noninvasive control schemes. For the
within the superlatticd16]. The inset of Fig. 1 shows the noninvasive stabilization of time-periodic target states a very
plane of and U, where regions with distinct regimes are simple and successful scheme has been progdsidising
marked by different shading. As a computationally conve-time-delayed signals. An extension of that idea was sug-
nient criterion for chaos we have used the rapid decay of thgested by Socolaet al. [34], using multiple-time delays in
autocorrelation function estimated fromg(t). Chaotic re-  order to improve the control performance. Analytical insight
gimes are found at low contact conductivity and low volt- into those schemes has been gained only rec¢@8y-37,
ages, and at higher contact conductivity and higher voltageand various ways of coupling of the control force, including
Although chaotic motion occurs only in relatively small por- local and global schemes, have been compfB&d38—44Q.
tions of the control parameter plane, the chaotic regime$Vhereas local coupling schemes usually lead to efficient
have an intricate structure, and it appears difficult to predictontrol in a large control domain, they are not easily imple-
and avoid these in real experiments. For a stable operatiomented in real systems since local, spatially resolved mea-
even in case of parameter fluctuations it is desirable to supsurements are necessary. Therefore, here we propose a much
press these throughout the oscillatory regime. In Fig. 1, aimpler global scheme.
one-parameter bifurcation diagram is given, obtained by In our problem, as a global output signal that is coupled
plotting the time differenced\t between two consecutive back in the feedback loop, it is natural to use the total current
maxima of the electron density in a specified well. Chaoticdensity J defined as fO"OWS:\]:Em:OJm_)erll/(N"‘1)
bands and periodic windows can be clearly seen. [31]. For the uncontrolled chaotic oscillationkjs given in
The transition from periodic to chaotic oscillations is en-Fig. 2(a) by gray, showing irregular spikes at those times
lightened by considering the space-time plot for the evoluwhen two fronts annihilate. Note that the gray current time
tion of the electron densitig$ig. 2(a)]. At U=1.15 V cha-  trace is modulated by fast small-amplitude oscillati¢dise

where N is the number of wells in the superlattice, aad
<0 is the electron charge.
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FIG. 3. (8 Control circuit including the low-pass filter with
cutoff frequencya and the time-delayed feedback logf) and its
extension to multiple time delaysRj. (b) Control domain for glo-
bal voltage control. Full circles denote successful control, small
dots denote no control. Parameters as in Fig. 2.

whereU, denotes a time-independent external bias@dpis
the control voltage. The control parameters are given by the
amplitude of the control forc& and the memory parameter
R, whereas the delay time is adjusted to the period of the
orbit. The periodr, i.e., suitable choices for the delay time,
can be determined priori by observing the resonance-like
350 360 370 380 390 400 behavior of the_me_an co_ntrol forc_e verstsA sketch of the
t[ns] whole control circuit is displayed in Fig.(&. Such a global
control scheme is easy to implement experimentally. It is

FIG. 2. Control of chaotic front dynamics by extended time- o ninyasive in the sense that the control force vanishes when
delay autosynchronizatioifa) Space-time plot of the uncontrolled

charge density, and current densitys time.(b) Same with global
voltage control with exponentially weighted current dengite-
noted by the black curyeParameters as in Fig. U=1.15V, 7
=2.29 ns,K=3x10"% Vmm#A, R=0.2, «=10° s *. Light and
dark regions denote electron accumulation and depletion fronts i
the space-time plots of the charge densities, respectively.

2 3
to well-to-well hopping of depletion and accumulation fronts f[GHz] fIGH
in our discrete modgl which are not resolved in the plot. §
However, as the variablgis fed back to the system for the © | c)

the control loop unstable. They need to be filtered out by & '
using, e.g., the following low-pass filter <
75}

— t ,
J(t)=af J(t)e "Dt ) f[GHz]
0

N
with a cutoff frequencyw. 5
The information contained in the low-frequency part of T 02 ‘-'E

g

=

w

’mm*/GHz]
&

the current(Fig. 2, black curveis then used as input in the
extended multiple-time autosynchronization scheme. TheZ<,
voltage across the superlattice is modulated by multiple dif-» 0'00 L
ferences of the filtered signal at timend at delayed times f [GHz]
t—r7

0.1

2 3

f [GHz]
FIG. 4. Fourier power spectra of controlled oscillations as com-

pared to those of uncontrolled ones. Fe=0.50"1 m™?! three

values of applied voltag®l are taken at which the system demon-
strates chaotic oscillationgsee Fig. L (a),(b) U=1V, 7

U=Uy+U((t)

Uo(t)=—K@(t)—I(t— 7))+ RU(t—7)

w =2.0091 ns,(c),(d) U=1.15V, 7=2.2900 ns,(e),(f) U=1.25 V,
=_K Z R”(j(t— vT) —T[t— (v+1)7]) (3) 7=2.4469 nsR=0.5. Left column: without control, right column:
v=0 with control. Other parameters as in Fig. 2.
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the target state of perioelhas been reached. This target statecontrolled oscillations are given in Figs(@}, 4(c), and 4e)
is an unstable periodic orbit of the uncontrolled system. Thdor U=1 V, U=1.15V, andU=1.25 V, respectively. All
result of the control is shown in Fig(ld). The front dynam- three spectra are continuous over frequency, although they
ics exhibits annihilation of front pairs at fixed positions contain distinct peaks. The spectra of the controlled oscilla-
within the superlattice, and stable periodic oscillations of theions become discreféigs. 4b), 4(d), and 4f)] thus reflect-
current are obtained. ing their periodicity. The spiky shape of the oscillations re-
In Fig. 3(b) the control domain is depicted in the param- sults in a large content of harmonics. With respect to the
eter plane ofR and K. A typical hornlike control domain implications of global chaos control for the generation of
similar to those known from other coupling schenigg] is  tunable high-frequency oscillations, it is important to note
found. Control is achieved in a range of values of the controthat the fundamental frequency decreases with increasing
amplitudeK, which is widened and shifted to largrwith ~ voltage U from 0.5 GHz[U=1V, (b)] to 0.4 GHz[U
increasing memory parameter Typically, the left-hand con- =1.25V, (f)].
trol boundary corresponds to a period-doubling bifurcation To conclude, we have demonstrated that time-delay auto-
leading to chaos for smallé, while the right-hand bound- synchronization represents a convenient and simple scheme
ary is associated with a Hopf bifurcation. The shape of ourfor the self-stabilization of high-frequency current oscilla-
control domain and its size resemble the results obtainetions due to moving domains in superlattices. This approach
analytically for diagonal control schemes where observablelacks the drawback of synchronization by an external
are measured and controlled locally. In particular we do notiltrahigh-frequency forcing, since it requires nothing but de-
observe the influence of other branches of the Floquet eigertaying of the global electrical system output by the specified
value problem, which might reduce the size of the controltime lag. The proposed low-pass filtering of the output signal
domain severely41]. Thus our control scheme is of similar presents a solution of the problem one necessarily encounters
control performance as local control. when trying to control a nanosystem with a crucially discrete
To illustrate the effect of control on the distribution of quantum structure leading to superimposed fast well-to-well
oscillation energy over the frequencies, we present Fouriehopping oscillations in our case.
power spectra of the current densityithout control, to be This work was supported by DFG in the framework of
compared with those when the control is applied. Wedfix Sfb 555 and through Grant No. JU261/3-1. N.J. acknowl-
=0.50"*m ! as in Fig. 1, and select three valuesf edges partial support by EPSRC. We gratefully acknowledge
where chaotic oscillations exist. The Fourier spectra of undiscussion with A. Wacker.
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