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Self-stabilization of high-frequency oscillations in semiconductor superlattices
by time-delay autosynchronization
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We present a scheme to stabilize high-frequency domain oscillations in semiconductor superlattices by a
time-delayed feedback loop. Applying concepts from chaos control theory we propose to control the spatiotem-
poral dynamics of fronts of accumulation and depletion layers which are generated at the emitter and may
collide and annihilate during their transit, and thereby suppress chaos. The proposed method only requires the
feedback of internal global electrical variables, viz., current and voltage, which makes the practical implemen-
tation very easy.
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Semiconductor superlattices@1# have been demonstrate
to give rise to self-sustained current oscillations rang
from several hundred megahertz@2–4# to 150 GHz at room
temperature@5#, which promises potentially important appl
cations as electronic oscillators. Various mechanisms w
@6–9# or without @10# the involvement of propagating fiel
domains have been discusssed. In any case, a superl
constitutes a highly nonlinear system@11#, and instabilities
are likely to occur. Indeed, chaotic scenarios have b
found experimentally@12–14# and described theoretically i
periodically driven@15# as well as in undriven systems@16#.
For a reliable operation of a superlattice as an ultrahi
frequency oscillator such unpredictable and irregular con
tions should be avoided. In principle, synchronization of
cillations in a superlattice by an external signal@2,17# could
be exploited to achieve a desired periodic behavior. Ho
ever, in reality, the control of the forcing frequency in th
ultrahigh range presents substantial technical problems.

Here, we propose a simple self-stabilizing scheme tha
especially suitable for semiconductor devices such as su
lattices. It uses a profound concept of chaos control fr
nonlinear dynamics and chaos theory. Within this approa
an intrinsically unstable time-periodic motion is stabiliz
using a simple feedback loop, which couples back the dif
ence of an output variable at the actual timet and the same
variable at a delayed timet2t @18#. This type of control
needs only small control forces initially, and they vani
once control has been achieved. A sound advantage is
the oscillation mode to be stabilized need not be known
forehand, in contrast to other chaos control schemes. Ra
a simple delay line in combination with a difference amp
fier leads to autosynchronization of the system. Methods
nonlinear control theory@19,20# have been usefully applie
to real world problems in various areas of physics, chemis
and biology@21–29#, but no use has been made of this in t
field of semiconductor self-oscillators.
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Control methods can be either local or global@30#. Local
methods require our ability to measure, and apply forc
directly to, the spatially resolved state variables of the s
tem under study. However, in nanotechnology such v
ables, being, e.g., electron densities in some quantum w
are not easily accessible, and thus local methods canno
applied. Unlike those, global methods require access onl
some macroscopic variable~s! characterizing some integra
output of the system. Such output can generally be relia
measured, and thus global methods seem to be the only
tion for the control of devices such as superlattices. Ho
ever, as we will show below, they are not straightforward
applicable to nanosystems whose structure is spatially
crete. In this paper we present a general approach to
stabilization of irregular oscillations in semiconductor d
vices based upon essentially discrete quantum structure

We consider a model for nonlinear electronic transport
semiconductor superlattices that yields complex and cha
dynamic behavior under fixed time-independent exter
voltage in a regime where self-sustained dipole waves@31#
are spontaneously generated at the emitter. Those di
waves are associated with traveling field domains, and c
sist of electron accumulation and depletion fronts that,
general, travel at different velocities and may merge and
nihilate. Such moving fronts are widespread in nonline
spatially extended systems, and similar chaotic front patte
occur in many other systems, e.g., spatially continuous m
els describing bulk impurity impact ionization breakdown
semiconductors@32# or globally coupled heterogeneous cat
lytic reactions@33#. Thus the time-delay autosynchronizatio
method proposed in this work could be readily applied
stabilize similar space-time patterns in a variety of system

Our model of a superlattice is based on sequential tun
ing of electrons@31#. In the framework of this model the
quantum wells are assumed to be only weakly coupled,
electrons are localized at these wells. Although this appro
mation is based upon a small miniband width, the result
transport characteristics have a much wider range of ap
cability in the high-temperature or the high-field regim
~where current oscillations occur! even for strongly coupled
quantum wells, as has been demonstrated by a detailed c
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parison of the velocity-field characteristics with a full qua
tum transport model@31#. In Ref. @17# our model was suc-
cessfully applied to reproduce the observed high-freque
oscillations in a strongly coupled superlattice. The result
tunneling current densityJm→m11(Fm ,nm ,nm11) from well
m to well m11 depends only on the electric fieldFm be-
tween both wells and the electron densitiesnm andnm11 in
the respective wells~in units of cm22). A typical dependence
of Jm→m11 on the electric field between two consecuti
wells isN shaped and exhibits a pronounced regime of ne
tive differential conductivity.

The total applied voltageU between emitter and collecto
imposes a global constraintU52(m50

N Fmd, whered is the
superlattice period. This, together with Gauss’s law, allo
us to calculate the fieldsFm(n1 , . . . ,nN ,U) for a given elec-
tron density distribution.

The rate of variation of the electron density in wellm is
governed by the continuity equation

e
dnm

dt
5Jm21→m2Jm→m11 for m51, . . . ,N, ~1!

where N is the number of wells in the superlattice, ande
,0 is the electron charge.

At the contacts we choose Ohmic boundary conditions
the contact conductivitys is chosen appropriately, electro
accumulation and depletion fronts are generated at the e
ter @16#. Those fronts form a traveling high-field domai
with leading electron depletion front and trailing accumu
tion front. This leads to self-generated current oscillations
fixed voltageU imposes a constraint on the lengths of t
high-field domains and thus on the front velocities. IfNa
accumulation fronts andNd depletion fronts are present, th
respective front velocitiesva and vd must obey vd /va
5Na /Nd . Since the accumulation and depletion fronts c
have different velocities, they may collide in pairs and an
hilate. At certain combinations of contact conductivitys and
voltage U, chaotic motion arises, when the annihilation
fronts of opposite polarity occurs at irregular positio
within the superlattice@16#. The inset of Fig. 1 shows th
plane ofs and U, where regions with distinct regimes a
marked by different shading. As a computationally conv
nient criterion for chaos we have used the rapid decay of
autocorrelation function estimated fromn20(t). Chaotic re-
gimes are found at low contact conductivity and low vo
ages, and at higher contact conductivity and higher volta
Although chaotic motion occurs only in relatively small po
tions of the control parameter plane, the chaotic regim
have an intricate structure, and it appears difficult to pred
and avoid these in real experiments. For a stable opera
even in case of parameter fluctuations it is desirable to s
press these throughout the oscillatory regime. In Fig. 1
one-parameter bifurcation diagram is given, obtained
plotting the time differencesDt between two consecutiv
maxima of the electron density in a specified well. Chao
bands and periodic windows can be clearly seen.

The transition from periodic to chaotic oscillations is e
lightened by considering the space-time plot for the evo
tion of the electron densities@Fig. 2~a!#. At U51.15 V cha-
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otic front patterns with irregular sequences of annihilation
front pairs at varying positions within the superlattice occ
We have calculated the largest Lyapunov exponent
1.13109 s21, which is a clear indication of chaos.

We shall now introduce a feedback loop to control t
chaotic front motion and stabilize a periodic oscillation mo
which is inherent in the chaotic attractor. Our scope is tw
fold. We want to suppress the chaotic motion, but in addit
the control force should be small, i.e., asymptotically zero
order to stabilize a proper periodic state of the system. T
we have to resort to noninvasive control schemes. For
noninvasive stabilization of time-periodic target states a v
simple and successful scheme has been proposed@18# using
time-delayed signals. An extension of that idea was s
gested by Socolaret al. @34#, using multiple-time delays in
order to improve the control performance. Analytical insig
into those schemes has been gained only recently@35–37#,
and various ways of coupling of the control force, includin
local and global schemes, have been compared@30,38–40#.
Whereas local coupling schemes usually lead to effici
control in a large control domain, they are not easily imp
mented in real systems since local, spatially resolved m
surements are necessary. Therefore, here we propose a
simpler global scheme.

In our problem, as a global output signal that is coup
back in the feedback loop, it is natural to use the total curr
density J defined as follows:J5(m50

N Jm→m111/(N11)
@31#. For the uncontrolled chaotic oscillations,J is given in
Fig. 2~a! by gray, showing irregular spikes at those tim
when two fronts annihilate. Note that the gray current tim
trace is modulated by fast small-amplitude oscillations~due

FIG. 1. One-parameter bifurcation diagram: Time differenc
between consecutive maxima of the electron density in well no
vs voltageU at s50.5 V21m21. Time series of length 600 ns
have been used for each value of the voltage. The inset sho
two-parameter bifurcation diagram: black squares denote cha
oscillations, light shading indicates periodic oscillations, and
white region shows the absence of oscillations. Simulation of aN
5100 superlattice with Al0.3Ga0.7As barriers of widthb55 nm and
GaAs quantum wells of widthw58 nm, doping densityND

51.031011 cm22 and scattering induced broadeningG58 meV at
T520 K.
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to well-to-well hopping of depletion and accumulation fron
in our discrete model!, which are not resolved in the plo
However, as the variableJ is fed back to the system for th
purposes of control, these high-frequency oscillations ren
the control loop unstable. They need to be filtered out
using, e.g., the following low-pass filter

J̄~ t !5aE
0

t

J~ t8!e2a(t2t8)dt8, ~2!

with a cutoff frequencya.
The information contained in the low-frequency part

the current~Fig. 2, black curve! is then used as input in th
extended multiple-time autosynchronization scheme. T
voltage across the superlattice is modulated by multiple
ferences of the filtered signal at timet and at delayed times
t2t

U5U01Uc~ t !

Uc~ t !52K„J̄~ t !2 J̄~ t2t!…1RUc~ t2t!

52K (
n50

`

Rn
„J̄~ t2nt!2 J̄@ t2~n11!t#…, ~3!

FIG. 2. Control of chaotic front dynamics by extended tim
delay autosynchronization.~a! Space-time plot of the uncontrolle
charge density, and current densityJ vs time.~b! Same with global
voltage control with exponentially weighted current density~de-
noted by the black curve!. Parameters as in Fig. 1,U51.15 V, t
52.29 ns,K5331026 V mm2/A, R50.2, a5109 s21. Light and
dark regions denote electron accumulation and depletion front
the space-time plots of the charge densities, respectively.
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whereU0 denotes a time-independent external bias andUc is
the control voltage. The control parameters are given by
amplitude of the control forceK and the memory paramete
R, whereas the delay timet is adjusted to the period of th
orbit. The periodt, i.e., suitable choices for the delay tim
can be determineda priori by observing the resonance-lik
behavior of the mean control force versust. A sketch of the
whole control circuit is displayed in Fig. 3~a!. Such a global
control scheme is easy to implement experimentally. It
noninvasive in the sense that the control force vanishes w

in

FIG. 3. ~a! Control circuit including the low-pass filter with
cutoff frequencya and the time-delayed feedback loop~K! and its
extension to multiple time delays (R). ~b! Control domain for glo-
bal voltage control. Full circles denote successful control, sm
dots denote no control. Parameters as in Fig. 2.

FIG. 4. Fourier power spectra of controlled oscillations as co
pared to those of uncontrolled ones. Fors50.5 V21 m21 three
values of applied voltageU are taken at which the system demo
strates chaotic oscillations~see Fig. 1!: ~a!,~b! U51 V, t
52.0091 ns,~c!,~d! U51.15 V, t52.2900 ns,~e!,~f! U51.25 V,
t52.4469 ns,R50.5. Left column: without control, right column
with control. Other parameters as in Fig. 2.
8-3
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the target state of periodt has been reached. This target sta
is an unstable periodic orbit of the uncontrolled system. T
result of the control is shown in Fig. 2~b!. The front dynam-
ics exhibits annihilation of front pairs at fixed position
within the superlattice, and stable periodic oscillations of
current are obtained.

In Fig. 3~b! the control domain is depicted in the param
eter plane ofR and K. A typical hornlike control domain
similar to those known from other coupling schemes@30# is
found. Control is achieved in a range of values of the con
amplitudeK, which is widened and shifted to largerK with
increasing memory parameterR. Typically, the left-hand con-
trol boundary corresponds to a period-doubling bifurcat
leading to chaos for smallerK, while the right-hand bound
ary is associated with a Hopf bifurcation. The shape of
control domain and its size resemble the results obtai
analytically for diagonal control schemes where observab
are measured and controlled locally. In particular we do
observe the influence of other branches of the Floquet eig
value problem, which might reduce the size of the cont
domain severely@41#. Thus our control scheme is of simila
control performance as local control.

To illustrate the effect of control on the distribution o
oscillation energy over the frequencies, we present Fou
power spectra of the current densityJ without control, to be
compared with those when the control is applied. We fixs
50.5 V21 m21 as in Fig. 1, and select three values ofU
where chaotic oscillations exist. The Fourier spectra of
J.

J.
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controlled oscillations are given in Figs. 4~a!, 4~c!, and 4~e!
for U51 V, U51.15 V, andU51.25 V, respectively. All
three spectra are continuous over frequency, although
contain distinct peaks. The spectra of the controlled osci
tions become discrete@Figs. 4~b!, 4~d!, and 4~f!# thus reflect-
ing their periodicity. The spiky shape of the oscillations r
sults in a large content of harmonics. With respect to
implications of global chaos control for the generation
tunable high-frequency oscillations, it is important to no
that the fundamental frequency decreases with increa
voltage U from 0.5 GHz @U51 V, ~b!# to 0.4 GHz @U
51.25 V, ~f!#.

To conclude, we have demonstrated that time-delay a
synchronization represents a convenient and simple sch
for the self-stabilization of high-frequency current oscill
tions due to moving domains in superlattices. This appro
lacks the drawback of synchronization by an exter
ultrahigh-frequency forcing, since it requires nothing but d
laying of the global electrical system output by the specifi
time lag. The proposed low-pass filtering of the output sig
presents a solution of the problem one necessarily encoun
when trying to control a nanosystem with a crucially discre
quantum structure leading to superimposed fast well-to-w
hopping oscillations in our case.
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Schöll, Appl. Phys. Lett.81, 1515~2002!.
@9# L.L. Bonilla, J. Phys.: Condens. Matter14, R341~2002!.

@10# H. Kroemer, e-print cond-mat/0009311.
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