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External cavity modes of semiconductor lasers with phase-conjugate feedback
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External cavity modes~ECMs! of a semiconductor laser with phase-conjugate feedback are defined as
time-periodic pulsating intensity solutions exhibiting a frequency close to an integer multiple of the external
cavity frequency. As the feedback rate progressively increases from zero, they sequentially appear as stable
attractors in the bifurcation diagram. We construct a simple analytical approximation of these pulsating inten-
sity solutions and determine their frequencies. We show that branches of ECMs are isolated. Finally, the
validity of our approximation is tested by comparing numerical bifurcation diagrams obtained by simulation
and continuation techniques with our analytical results.
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I. INTRODUCTION

The response of a laser subject to optical feedback
key problem for both applied and theoretical research@1–4#.
A weak optical feedback from a distant surface modifies
laser frequencies suggesting interesting imaging techniq
@5,6#. For semiconductor lasers, a weak optical feedb
generates undesired dynamical instabilities because the d
of the feedback is large compared to the photon lifeti
@7–11#. Examples of such laser systems include the la
subject to conventional optical feedback~COF! from an ex-
ternal mirror @12,13# and the laser with phase-conjuga
feedback~PCF! from a phase-conjugating mirror@14,15#,
which is considered here.

Phase conjugation is a process in which the light tha
reflected back from the phase conjugator has not only
direction of propagation reversed but it is also wave-fro
inverted@16#. The most important application of phase co
jugation is the correction of optical distortions. In particul
for a distortion that occurs between the source and the p
conjugator, the light passing through the distortion after
flection from the phase conjugator returns to its original u
distorted state. Phase conjugation is used today extens
in lasers to eliminate phase distortions due to heating
stress effects in the laser medium. A second interest of ph
conjugation is stability; that is, PCF is preferred over CO
because the full external round-trip phase vanishes and
PCF laser cannot lock to an external cavity frequency.

There are, however, two difficulties that have delayed s
tematic comparisons between experiments and theory. F
PCF is more difficult to realize than COF. The most comm
way of making a phase conjugator is through a four-wa
mixing process in which two pump waves are coupled w
the incident wave through a third-order susceptibility to p
1063-651X/2003/68~6!/066205~9!/$20.00 68 0662
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duce the conjugated return wave@3#. Second, earlier numeri
cal simulations @15,17,21# and linear stability analyse
@14,18,20# revealed a rich variety of possible outputs b
with little insight on simple bifurcation mechanisms. Th
has motivated the recent development of numerical cont
ation methods. In particular, the application of theMATLAB

packageDDE-BIFTOOL @21# has revealed important feature
of both the COF and PCF lasers. For the COF laser, b
ches emanating from Hopf bifurcations have been fou
connecting pairs of external cavity modes~so-called bridges!
@22–26#. For the PCF laser, a sequence of isolated branc
of pulsating intensity solutions exhibiting simple properti
has been found@27#. Their apparent simplicity encourage
analytical investigation. An asymptotic method that took a
vantage of the natural values of the laser parameters has
used in order to construct the bifurcation bridges in the C
laser @28#. In this paper, we use the same technique a
construct an approximation of the PCF time-periodic inte
sity solutions found in Ref.@27#.

As the feedback rate is progressively increased from z
stable branches of pulsating intensity solutions sequenti
appear between domains of chaotic dynamics@19#. Due to
the fact that the intensity oscillates at a frequency close to
integer multiple of the external cavity frequency, these sta
regimes have been called external cavity modes~ECMs! by
analogy to the ECMs of the COF laser@29#. Our analytical
approximation of the ECMs of the PCF laser show that th
sequentially appear as isolated branches in the bifurca
diagram and that they exhibit the expected frequencies
large part of this paper is devoted to a comparison betw
analytical and numerical bifurcation diagrams.

The paper is organized as follows. In Sec. II we formula
the PCF laser equations in their dimensionless form and
termine approximations to the Hopf bifurcation points. The
©2003 The American Physical Society05-1
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approximations are based on specific scalings of the par
eters and reveal two classes of Hopf bifurcation points. T
first class of Hopf points appears at low feedback rates
exhibits a frequency close to the relaxation oscillation f
quency of the solitary laser. The second class of Hopf po
appears for much higher values of the feedback rate an
frequencies are proportional to the external cavity frequen
In Sec. III we determine the ECM pulsating intensity so
tions by constructing an asymptotic solution. In Sec. IV
investigate their relationship with the Hopf bifurcation poin
found in Sec. II. The validity of our approximation is sy
tematically investigated in Sec. V where numerical bifurc
tion diagrams obtained by simulation and continuation
compared with the analytical bifurcation diagrams. Fina
in Sec. VI we discuss the physical significance of our m
results and review a series of open problems.

II. FORMULATION AND HOPF BIFURCATIONS

We consider rate equations for a semiconductor laser
ject to instantaneous PCF in dimensionless form; this form
lation is briefly described in Appendix A. For analytical sim
plicity, we neglect nonlinear gain saturation, an effe
included in Refs.@19,27,30–32#, and, as is usual in the lit
erature, set the phase and frequency shift at the PCM to z
These simplifications are, however, not limitations of o
analysis. The PCF equations for the complex electric fielY
and the carrier densityZ are then given by

Y85~11 ia!ZY1gY* ~ t2u!, ~1!

TZ85P2Z2~112Z!uYu2, ~2!

where the prime denotes differentiation with respect
the dimensionless timet. In these equations,a is the line-
width enhancement factor,g is the dimensionless feed
back rate,u5t/tp is the external cavity round-trip time
normalized by the photon lifetime,T5te /tp is defined as
the ratio of the carrier and photon lifetimes, andP is the
pump parameter above threshold. Using the values g
in Refs.@19,27,30–32#, we find

a53, u5476, T51429, andP54.1731022. ~3!

Equations~1! and ~2! haveZ2 symmetry in the transforma
tion (Y,Z)→(2Y,Z). This means that any solution will ei
ther be symmetric or have a symmetric counterpart obtai
by a rotation byp of theY plane@33#. Apart from the trivial
steady-state solution, that is (Y,Z)[(0,P), there exist two
distinct branches of nonsymmetric steady states given
Eqs.~B5!–~B7! in Appendix B.

The conditions for a Hopf bifurcation are given by Eq
~B8! and ~B9! whereC and s represent the amplitude ofZ
and the frequency of the oscillations at the Hopf bifurcat
point, respectively. These equations are transcendental e
tions which are difficult to solve even numerically. O
analysis differs from previous attempts to solve the Ho
conditions @17,20# by the application of asymptotic tech
niques@34,35#. Specifically, we take advantage of the lar
06620
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value ofT and look for an approximation forC ands. To this
end, we introduce a small parameter« defined by

«[T21 ~4!

with which we scaleC and s. We also need to specify th
scalings of the other laser parameters since distinguis
limits of the Hopf equations~B8! and~B9! are possible in the
small « limit.

The simplest approximation is based on the idea that
low feedback rates, the frequency at the Hopf bifurcat
must be close to the laser relaxation frequency defined
Ref. @36# as

vR[~2«P!1/2. ~5!

Assuming the scalings

P5O~1!, C5O~«!, u5O~«21!, and

s5O~«1/2!, ~6!

we collect the leading terms in Eqs.~B8! and ~B9!. We find

s312«P@2~11a2!C sin~su!2s#50, ~7!

22s2C1«~112P!s212«P~11a2!C@cos~su!11#50,
~8!

where all neglected terms are of orderO(«5/2) or smaller.
Using Eq.~8!, we determineC as

C5
«~112P!s2

2s222«P~11a2!@cos~su!11#
. ~9!

Inserting Eq.~9! into Eq. ~7!, we obtain the following equa-
tion for s only:

F~s![s222«P22«P~11a2!

3
«~112P!s sin~su!

2s222«P~11a2!@cos~su!11#

50. ~10!

This equation resembles the equation for the Hopf freque
of the COF laser@see Eq.~19! in Ref. @36## except that in the
denominator of the last term, there is an extra 2s2 contribu-
tion and cos~su!11 replaces cos~su!21. We use the values
of the parameters~3! and solve Eq.~10! for s. We then
determineCu from Eq. ~9! and gu5A11a2uCuu comes
from the steady-state relations~B5! and ~B6!. A graphical
study of the functionF(s) as a function ofs indicates four
roots. They are listed in Table I.

The approximations of the first three Hopf bifurcatio
shown in Table I are in excellent agreement with the valu
obtained by continuation usingDDE-BIFTOOL; see Table III.
An analysis of the real eigenvalues of the characteristic eq
tion indicates that the steady state withC.0 is always un-
stable, namely a saddle. Thus only the Hopf bifurcation w
C,0 may lead to stable oscillations. The first three solutio
5-2
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satisfygu,1 and agree with our assumption thatg is a small
O(«) quantity. The last solution in Table I corresponds to
large value ofg and is not a valid approximation. Howeve
it suggests that there exist other Hopf bifurcations that sat
different scaling laws.

We may obtain a different approximation of the Hopf b
furcation forgu5O(1) if we consider the case

P5O~1!, Cu5O~1!, and su5O~1! ~11!

as «→0. Neglecting all« terms in Eqs.~B8! and ~B9!, the
Hopf bifurcation conditions then reduce to

~11a2!C2@cos~2su!21#1s250, ~12!

~11a2!C sin~2su!22s50. ~13!

From Eq.~13!, we extractC as

C5
2s

~11a2!sin~2su!
. ~14!

Inserting Eq.~14! into Eq. ~12!, we obtain an equation fors
only. The solutions withsÞ0 satisfy the condition

cos~su!56A 2

11a2
. ~15!

We determinesu from Eq. ~15!, obtainCu from Eq. ~14!,
and computegu5A11a2uCuu. Solutions with 1.5,uCuu
,3 are listed in Table II in the columnCu ~«50!.

TABLE I. Hopf bifurcations for low feedback rate ands close
to vR57.631023. The first three Hopf bifurcation points hav
been labeled in terms of increasing values ofgu. The last solution
exhibits a large value ofgu which contradicts our scaling assum
tions ~6!. The approximated Hopf points have been labeled acc
ing to their relation with the numerical solutions shown in Table I

gu s C su Cu

H1 0.53 8.931023 23.631024 4.23 20.17
H2 0.63 7.131023 4.231024 3.38 0.20
H3 0.73 5.431023 24.931024 2.55 20.23

9.50 1.731022 6.531023 7.95 3.00

TABLE II. Hopf bifurcation points forsu5O(1), «50 @col-
umnCu («50)], and«u25O(1) @columnCu («Þ0)]. Thelatter
values were computed with an improved approximation and t
are much closer to the respective numerical solutions show
Table III.

gu su Cu ~«50! Cu ~«Þ0!

H4 5.84 7.39 1.85 1.20
H5 6.58 8.32 22.08 22.02
H6 9.06 11.46 22.87 22.13
H7 8.33 10.53 2.63 2.66
06620
fy
Comparing these results with the numerical solutio

listed in Table III, the agreement is good forH5 but not for
the other points. In order to improve our approximations,
need to take into account the relatively large value ofu.
From the Hopf conditions~B8! and ~B9!, we note that the
neglected terms are proportional to«u and «u2 which are
numerically significant. We may take into account the effe
of « by investigating the double limit«→0, u→` but keep-
ing

«u25O~1! ~16!

fixed. With Eqs.~11! and ~16!, Eqs.~B8! and ~B9! now re-
duce to

05s$~11a2!C2@cos~2su!21#1s2%

22«P@~11a2!C sin~su!1s#, ~17!

05s@~11a2!C sin~2su!22s#12«P~11a2!

3@cos~su!11#. ~18!

The solution of these equations forCu and« can be found
analytically in parametric form. We determineC from Eq.
~18! and insert its expression into Eq.~17!. This results in a
quadratic equation for« which we solve in terms ofs. Hav-
ing «5«~s!, we determineC5C(s). In Table II, the new
values forCu ~in the column for«Þ0! are compared with
their earlier estimates obtained with«50.

In Fig. 1 we plot the steady-state branches, which
determined from Eqs.~B5!–~B7!, together with the Hopf
bifurcation points from Tables I and II. The lower branc
is always unstable and the upper branch is stable until
first Hopf bifurcationH1. The relevance of the Hopf bifur
cation points for the ECM intensity solutions is discussed
Sec. IV.

III. EXTERNAL CAVITY MODES

We now concentrate on the pulsating intensity solutio
described in Ref.@27#. These solutions are characterized
oscillating frequencies that are comparable to the exte
cavity frequency. This suggests to seek a solution that

-

y
in

TABLE III. Values of the bifurcation parametergu, frequency
su, and steady-state value of the carrier densityCu at the Hopf
bifurcation pointsH1–H7. All values were calculated usingDDE-

BIFTOOL. The last column indicates the approximate values de
mined analytically~repeated from Tables I and II!.

gu su Cunum Cuanal

H1 0.522 4.318 20.165 20.17
H2 0.756 3.337 0.239 0.20
H3 0.906 2.647 20.287 20.23
H4 3.942 7.883 1.247 1.20
H5 6.449 7.648 22.039 22.02
H6 6.550 11.18 22.071 22.13
H7 7.624 5.474 2.411 2.66
5-3
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pends on the basic timet. We take advantage of the larg
value ofT and seek a solution of Eqs.~1! and~2! of the form

Y5Y0~ t !1«Y1~ t !1•••, ~19!

Z5Z0~ t !1«Z1~ t !1•••, ~20!

where« is defined by Eq.~4!. Introducing Eqs.~19! and~20!
into Eqs.~1! and~2! and equating to zero the coefficients
each power of« leads to a sequence of linear problems
solve. The equations forY0 , Z0, andZ1 are given by

Y085~11 ia!Z0Y01gY0* ~ t2u!, ~21!

Z0850, ~22!

Z185P2Z02~112Z0!uY0u2. ~23!

Equation~22! implies that

Z05C ~24!

is a unknown constant. Equation~21! is then linear and ad
mits a solution of the form

Y05A1exp~ ivt !1A2exp~2 ivt ! ~25!

provided thatA1 , A2 satisfy the following homogeneous sy
tem of equations:

@2 iv1~11 ia!C#A11gA2* exp~2 ivu!50, ~26!

gA1* exp~ ivu!1@ iv1~11 ia!C#A250. ~27!

These equations have a nontrivial solution ifv andC satisfy
the characteristic equation

@2 iv1~11 ia!C#@2 iv1~12 ia!C#2g2exp~22ivu!

50. ~28!

From the real and imaginary parts of Eq.~28!, we find

FIG. 1. Analytical bifurcation diagram of the two steady-sta
branches. The upper branch is stable until the first Hopf bifurca
H1. The lower branch is always unstable. Other Hopf bifurcat
points have been determined analytically and are shown in the
ure. At these Hopf bifurcations, nearly vertical Hopf branches
pear and connect steady-state and ECMs branches; compare F
The bifurcation details of these connections are not revealed by
leading-order bifurcation equations.
06620
2v21~11a2!C22g2cos~2vu!50, ~29!

22vC1g2sin~2vu!50. ~30!

Using Eq.~30!, we have

C5
g2sin~2vu!

2v
, ~31!

and inserting Eq.~31! into Eq. ~29!, we obtain the following
equation forv only:

2v21
g4sin2~2vu!

4v2
~11a2!5g2cos~2vu!. ~32!

Equation~32! is a quadratic equation forg25g2(v) which
can be solved. Figure 2 represents the periodT[2p/v as a
function of gu. The threeS-shaped branches are similar
the branches shown in Fig. 4 in Ref.@27#, and verified later
in Sec. V, where it is shown that a lower part of each puls
ing intensity branch corresponds to stable solutions. T
lower branches are close to their asymptotic values
gu→`; that is,

Tu2152/n, ~33!

wheren51,2, . . . .Using Eq.~25!, we compute the intensity
of the laser field as

uYu2.uA1u21uA2u212uA1uuA2ucos~2vt1c!, ~34!

wherec is a constant phase. The intensity exhibits harmo
oscillations with a period equal top/v or T/2.

The leading solution~25! is not completely determined
Equation~26! @or Eq. ~27!# provides a first relationship be
tweenA1 andA2. To find a second relationship betweenA1

n

g-
-
. 4.
he

FIG. 2. Analytical bifurcation diagram of the first three ECM
The figure represents the periodT52p/v of Y(t) ~shown in
multiples ofu! as a function ofgu. The frequencyv is determined
from Eq.~32!. Comparing with the numerical solutions obtained
DDE-BIFTOOL in Fig. 5, a lower part of each isolated branch corr
sponds to a stable ECM.
5-4
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and A2, we apply a solvability condition for Eq.~23!. In-
deed, the condition for a boundedZ1 requires that

P2C2~112C!~ uA1u21uA2u2!50. ~35!

Using Eq.~27!, uA2u2 is given by

uA2u25
g2

C21~v1Ca!2
uA1u2, ~36!

which, by inserting into Eq.~35!, givesuA1u2 as

uA1u25S P2C

112CD S C21~v1Ca!2

C21~v1Ca!21g2D . ~37!

Knowing uA1u anduA2u, we determine the intensity from Eq
~34!. The p/v-periodic intensity oscillates with extrem
given by uYu25(uA1u6uA2u)2.

IV. HOPF BIFURCATION BRANCHES

Our previous analysis of the ECM solutions needs to
revised near particular points where the ECM solution a
the steady-state solution admits the same value ofC ~same
carrier numberZ05C). At and near these points, we have
solution of Eq.~21! of the form

Y05A01A1exp~ ivt !1A2exp~2 ivt !, ~38!

whereA0 , A1, andA2 are three unknowns. Substituting E
~38! into Eq. ~21!, we find that such a solution is possib
provided that the three amplitudes satisfy both the stea
state equation and the pulsating intensity solution equati
They are given by

2C~11 ia!A05gA0* , ~39!

ivA12C~11 ia!A15gA2* exp~2 ivu!, ~40!

2 ivA22C~11 ia!A25gA1* exp~ ivu!. ~41!

From Eqs.~39!–~41!, we find that a solution with all three
amplitudes differing from zero is possible providedC, g, and
v satisfy the conditions

C56
g

A11a2
5

g2sin~2vu!

2v
, ~42!

2v21
g4sin2~2vu!

4v2
~11a2!5g2cos~2vu!. ~43!

Equations~42! and ~43! lead to critical values forg andv.
Using Eq.~42!, we first determineg as

g56
2v

A11a2 sin~2vu!
.0 ~44!

and by substituting Eq.~44! into Eq.~43!, we obtain a simple
equation forv given by
06620
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cos~vu!56A 2

11a2
. ~45!

Equations~44! and~45! are identical to the Hopf bifurcation
conditions ~14! and ~15! if we replacev by s and g by
uCuA11a2. Note that uA1u5uA2u50 at the steady-state
branches whereuA0uÞ0, and thatuA0u50 at the ECM solu-
tion branches whereuA1uÞ0 and uA2uÞ0. All three ampli-
tudes are not completely determined by the leading-or
equations ~39!–~41! and require a higher-order analys
which will not be presented here. We have found that
Hopf bifurcation branches are vertical as«→0 and they pro-
vide a plausible connection between steady state and E
branches. Figure 4 shows the bifurcation diagram of
steady states obtained numerically by continuation, an
exhibits practically vertical bifurcation branches. Figure
shows the Hopf bifurcation branch emerging fromH1, which
connects to the second ECM branch.

V. NUMERICAL BIFURCATION DIAGRAMS

In this section we investigate the bifurcation diagram
the stable solutions of the PCF equations. We first cons
the parameters listed in Eq.~3!; that is, the values used in
Refs. @19,27,30–32# without nonlinear gain saturation. Fig
ure 3 shows that, as the feedback rategu progressively in-
creases from zero, the stable steady state undergoes a
bifurcationH1 at gu'0.53 leading to stable periodic oscilla
tions exhibiting a frequency close to the laser relaxation
cillation frequency~5!. The stable periodic solution then un
dergoes a period-doubling bifurcation atgu'0.73, the first of
a period-doubling cascade to a domain of more comp
chaotic dynamics. Atgu'1.29 we observe that the lase
locks into the first ECM solution with an intensity oscillatin
at a frequency close to 2pu21. This agrees with our analysi
indicating that the first ECM branch admits a period close
Tu2152p(vu)2152. This impliesv5pu21 and since the
frequency of the intensity equals 2v, we find 2pu21. The
first branch of ECM solutions is stable untilgu'1.67 where
it undergoes a torus bifurcation, before a new domain
chaotic dynamics. This torus bifurcation and the subsequ
route to chaos in the PCF laser with nonlinear gain was

FIG. 3. Numerical bifurcation diagram of the stable attracto
obtained by simulation. The figure shows the value ofZ(t) when-
ever the intensityuY(t)u2 crosses its average value in the increas
direction as a function ofgu.
5-5
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tailed in Ref.@31#. The chaotic dynamics ends in a sudd
transition to the second ECM solution atgu'3.46. Again,
this branch of stable solutions undergoes a torus bifurca
at gu'3.82, before a third domain of chaotic dynamics. T
third stable ECM appears atgu'6.28 and is destabilized in
another torus bifurcation atgu'7.39, before a fourth and
final domain of chaotic dynamics in ourgu range of consid-
eration.

In the next section, we investigate the steady-state
periodic solutions of the PCF laser using the continuat
packageDDE-BIFTOOL @21#. This approach has the advanta
that one is able to compute solutions irrespective of th
stability. Furthermore, as well as providing stability inform
tion of solutions, the position and the frequency of the Ho
bifurcation points can be obtained.

A. Steady states

Figure 4 shows a bifurcation diagram obtained by co
tinuation withDDE-BIFTOOL. Stable solutions are drawn as
thick line, unstable solutions by a thin line. Two branches
steady-state solutions are seen to be born at the ons
feedback. The upper branch is initially stable. It is desta
lized in a Hopf bifurcationH1 at gu'0.522, agreeing with
the value obtained by simulation; see Fig. 3. The ensu
branch of unstable steady-state solutions undergo fur
Hopf bifurcationsH3 , H5, andH6 at gu'0.906, 6.449, and
6.550, respectively. The lower branch is always unstable
is seen to undergo Hopf bifurcationsH2 , H4 and H7 at gu
'0.756, 3.942, and 7.624, respectively. References@30# and
@32# contain detailed continuation studies of this steady-s
solution.

Table III contains further information, obtained withDDE-

BIFTOOL, on the frequencys and the amplitude ofZ[C at
the Hopf bifurcation points. These values agree well with
analytical estimates listed in Tables I and II. The first thr
Hopf bifurcations are characterized by frequencies close
the relaxation oscillation frequency of the laser (vRu
53.602) and values ofgu,1; see Table I. The next fou

FIG. 4. Numerical bifurcation diagram of the steady-state so
tions obtained by continuation; compare Fig. 1. The figure sho
the maximum ofuYu as a function ofgu. Stable~unstable! steady-
state solutions are drawn by thick~thin! lines. Hopf bifurcation
points are shown by stars. Also shown are the branches of per
solutions emanating from the Hopf bifurcation points located on
upper steady-state branch. They are nearly vertical as anticipate
the analysis.
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Hopf bifurcations exhibit much larger values forg ands ~gu
.1!; see Table II.

From the Hopf bifurcation points emanate branches
nonsymmetric periodic orbits. Symmetric periodic solutio
exhibit a period 2p/v for the fieldY and a periodp/v for the
intensity uYu2. Nonsymmetric periodic solutions exhibit th
same period 2p/v for both the field and the intensity@34#.
The isolated branches of periodic intensity solutions de
mined analytically correspond to the branches of symme
periodic solutions emerging at the limit pointsgu'1.295,
gu'3.733, andgu'6.283, respectively; see Fig. 5. The
values are slightly lower than those documented analytica
see Fig. 2. Figure 4 shows that the Hopf bifurcation branc
are practically vertical close to the Hopf points, again
agreement with the analytical results. In Ref.@27# it was
shown that these branches connect the branches of puls
intensity solutions. This is confirmed here, with some min
differences. Specifically, in Ref.@27#, the first Hopf bifurca-
tion branch was shown to connect to the first ECM, howev
in the case presented here, that is without nonlinear gain
find that the branch emerging fromH1 connects to the sec
ond ECM. The branch of periodic solutions emanating fro
H3 does not connect to any ECMs. The branch emana
from H5 connects to the third ECM branch, and the bran
emanating fromH6 leaves ourgu range of consideration.

B. Periodic solutions

Figure 5 shows three isolated branches of symmetric
riodic solutions corresponding to the pulsating intensity
lutions constructed analytically. They have been obtain
with DDE-BIFTOOL. Also shown is the branch of nonsymme
ric periodic solutions emanating from the Hopf bifurcatio

-
s

ic
e
by

FIG. 5. Numerical bifurcation diagram of the first three ECM
obtained by continuation; compare Fig. 2. The figure represents
periodT of Y(t) ~shown in multiples ofu! as a function ofgu. The
stable ECM solutions are drawn by thick lines. They are born
limit points in saddle-node bifurcations~3! and destabilized in
torus bifurcations~* !. Also shown is the stable branch of period
solutions emanating from the first Hopf bifurcationH1 and desta-
bilized in a period doubling bifurcation~L!.
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EXTERNAL CAVITY MODES OF SEMICONDUCTOR . . . PHYSICAL REVIEW E68, 066205 ~2003!
point H1 and connecting to the second isolated branch
symmetric periodic solutions. The solutions are stable w
drawn as a thick curve and unstable when drawn as a
curve. The three isolated branches agree with the bran
computed in Ref.@27# and are in very good agreement bo
in shape and position with the branches computed ana
cally and shown in Fig. 2. They are born in saddle-no
bifurcations of limit cycles at the limit pointsgu'1.295,
gu'3.733, andgu'6.283, respectively. These values a
slightly lower than those given analytically; compare w
Fig. 2. Finally, we note that the second stable ECM does
lie on the lower branch of the second isolated branch
symmetric periodic solutions but on a very close branch
nonsymmetric periodic solutions exhibiting a limit point
gu'3.453. This branch of solutions has not been found a
lytically.

C. Comparison with analytical results

As we already discussed in Sec. II, the determination
the Hopf bifurcation points assuminggu5O(1) is valid pro-
vided«u2 is sufficiently small rather than« small. By inves-
tigating the double limit of« small andu large, keeping«u2

fixed, we obtained a better estimate for the Hopf bifurcat
points. In this section, we review the laser equations by
troducing full scalings for all dependent and independ
variables. From Sec. II we know that an ECM solution e
hibits a frequencyv proportional tou21, that Y is propor-
tional to AP, and thatZ'C is proportional tou21. This
motivates introducing the new variabless, y, andz defined
by

s5t/u,Y5APy, andZ5u21z. ~46!

From Eqs.~1! and ~2!, we then obtain

y85~11 ia!yz1guy* ~s21!, ~47!

z85«1@12u21P21z2~112u21z!uyu2#, ~48!

where the prime means differentiation with respect to
new times, gu5O(1), and«5T21 is now replaced by

«1[u2PT21. ~49!

The parameters~3! imply that «1'7, that is,«1 is large,
which explains the relatively poor quantitative agreement
tween the analytical and the numerical ECM limit poin
However, as the successive ECMs sequentially appea
larger values ofgu, the agreement will improve since resca
ing s andz as s̄5gus andz5gu z̄ leads to

«25«1~gu!22 ~50!

as the coefficient multiplying the right-hand side of thez̄
equation. Ifgu510, the small parameter is«2'0.07.

In order to quantitatively evaluate the validity of ou
asymptotic analysis, we consider the exaggerated valu
T53429 and a smaller value ofu576. We now find from Eq.
~49! that«1'0.07, and this is sufficiently small for our ana
06620
f
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es

ti-
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n
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e
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lytical results. From numerical experiments not presen
here, we note that the first Hopf bifurcation exhibits a fr
quency close to the relaxation oscillation frequency atgu
'0.04 and is then followed by a burst of chaotic dynami
At gu'0.95, the stable steady state reappears and under
a new Hopf bifurcation atgu'1.55. This bifurcation is
quickly followed by a small domain of complex oscillation
that terminate as the laser locks to the first ECM. The sa
pattern then appears sequentially. In Table IV, we comp
the numerical and analytical estimates for the limit poin
~saddle-node bifurcations of periodic orbits! where the three
first pulsating intensity solutions or ECMs appear. The a
lytical estimate of the ECM limit points use the expressio
derived in Sec. III, now evaluated with the new values oT
andu.

VI. DISCUSSION

We have shown analytically that the pulsating intens
solution branches investigated in Ref.@27#, and called
ECMs, belong to isolated branches of periodic solutions. T
intensity exhibitsp/v-periodic oscillations wherev is close
to a multiple ofpu21. All the solution branches were ob
tained by investigating the leading order solvability con
tions which were relatively easy to derive. The approxim
tions of the Hopf points and the branches of ECMs we
shown to be in very good agreement with the values fou
by a numerical bifurcation study for realistic laser para
eters.

We have found degenerate Hopf bifurcation points t
result from the interaction between pulsating intensity a
steady-state branches. We did not find the branching to n
symmetric periodic solutions that were noted numerically
higher-order analysis is necessary in order to unfold th
degeneracies and determine other bifurcations, but
analysis is outside the scope of this paper.

Our asymptotic theory is sufficiently simple so that com
plications of the PCF equations can be considered, suc
detuning between the frequencies of the reflected and i
dent waves. The linear stability analysis of the ECM so
tions is also possible but again requires a higher-order an
sis. Physically, the leading approximation~25! of the field
describes the ECM regimes as the sum of two oscillat
modes satisfying a resonance condition. A beating phen
enon between these oscillatory modes is inevitable and le
to rapidly pulsating intensity regimes exhibiting frequenc
close to multiples of the external cavity frequency.

TABLE IV. Comparison between numerical and analytical es
mates of the ECM limit points forT53429 andu576.

Analytical Simulation Continuation

ECM1 1.6 1.6 1.57
ECM2 4.0 4.2 4.08
ECM3 6.6 6.7 6.53
5-7
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APPENDIX A: DIMENSIONLESS PCF EQUATIONS

Assuming no nonlinear gain saturation and setting
phase shiftfPCM50, the laser rate equations introduced
Ref. @30# can be written as

dE

dt8
5

1

2
@~GN~N2N0!2tp

21!~11 ia!#E1kE* ~ t82t!,

~A1!

dN

dt8
5

I

q
2

N

te
2GN~N2N0!uEu2. ~A2!

Introducing the new variablest, Y, andZ defined by

t[t8/tp , Y[AteGN

2
E, and

Z[
GNtp

2
~N2Nsol! ~A3!

into Eqs.~A1! and ~A2!, we obtain

dY

dt
5~11 ia!YZ1gY* ~ t2u!,

T
dZ

dt
5P2Z2~112Z!uYu2, ~A4!

where

g5ktp , u5t/tp , T5tetp
21 , ~A5!

I th5
Nsolq

te
, P5

GNtpte

2 S I 2I th

q D . ~A6!

APPENDIX B: BASIC STEADY-STATE AND HOPF
BIFURCATION CONDITIONS

Introducing the decomposition

Y5R exp~ if! ~B1!

@1# C. O. Weiss and R. Vilaseca,Dynamics of Lasers~VCH, Wein-
heim, 1991!.

@2# Quantum Semiclass. Opt.9, 655 ~1997!, special issue on fun-
damental nonlinear dynamics of semiconductor lasers, ed
by D. Lenstra.
06620
.

nt
i-

.

e

into Eqs.~1! and ~2!, we obtain

R85ZR1gR~ t2u!cos@f1f~ t2u!#, ~B2!

f85aZ2g
R~ t2u!

R
sin@f1f~ t2u!#, ~B3!

TZ85P2Z2~112Z!R2. ~B4!

The steady-state solution satisfies the conditionsR85f8
5Z850. From the steady-state equations, we find t
branches of solutions forZ given by

2f52arctan~a!, Z5C52
g

A11a2
, ~B5!

2f5p2arctan~a!, Z5C5
g

A11a2
, ~B6!

where

R25
P2C

112C
.0. ~B7!

Since there exist two branches of steady states forZ differing
by the sign ofC, it is mathematically more convenient to us
C as our bifurcation parameter. From the linearized eq
tions, we determine the characteristic equation for the gro
ratel of a small perturbation. A Hopf bifurcation is possib
if l is purely imaginary. Introducingl5 is into the charac-
teristic equation, we obtain from the real and imaginary pa
two equations forC ands given by

05s$~11a2!C2@cos~2su!21#1s2%1«
112P

112C

3@2~11a2!C2sin~2su!12sC#12«~P2C!

3@2~11a2!C sin~su!2s#, ~B8!

05s@~11a2!C2sin~2su!22sC#1«
112P

112C

3$~11a2!C2@cos~2su!21#1s2%

12«~P2C!~11a2!C@cos~su!11#, ~B9!

where« is defined by Eq.~4!.

d

@3# G.H.M. Van Tartwijk and G.P. Agrawal, Prog. Quantum Ele
tron. 22, 43 ~1998!.

@4# Nonlinear Laser Dynamics: Concepts, Mathematics, Phys
and Applications, edited by B. Krauskopf and D. Lenstra, AI
Conf. Proc. No. 548~AIP, Melville, NY, 2000!.
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