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External cavity modes of semiconductor lasers with phase-conjugate feedback
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External cavity modesECMs) of a semiconductor laser with phase-conjugate feedback are defined as
time-periodic pulsating intensity solutions exhibiting a frequency close to an integer multiple of the external
cavity frequency. As the feedback rate progressively increases from zero, they sequentially appear as stable
attractors in the bifurcation diagram. We construct a simple analytical approximation of these pulsating inten-
sity solutions and determine their frequencies. We show that branches of ECMs are isolated. Finally, the
validity of our approximation is tested by comparing numerical bifurcation diagrams obtained by simulation
and continuation techniques with our analytical results.
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[. INTRODUCTION duce the conjugated return wap&. Second, earlier numeri-
cal simulations[15,17,21 and linear stability analyses

The response of a laser subject to optical feedback is fl4,18,2Q revealed a rich variety of possible outputs but
key problem for both applied and theoretical resedfich4].  with little insight on simple bifurcation mechanisms. This
A weak optical feedback from a distant surface modifies théhas motivated the recent development of numerical continu-
laser frequencies suggesting interesting imaging techniquestion methods. In particular, the application of terLAB
[5,6]. For semiconductor lasers, a weak optical feedbackpackageppe-BIFTOOL [21] has revealed important features
generates undesired dynamical instabilities because the delaf both the COF and PCF lasers. For the COF laser, bran-
of the feedback is large compared to the photon lifetimeches emanating from Hopf bifurcations have been found
[7-11). Examples of such laser systems include the laseconnecting pairs of external cavity mode®-called bridges
subject to conventional optical feedba@&OP from an ex- [22-26. For the PCF laser, a sequence of isolated branches
ternal mirror [12,13 and the laser with phase-conjugate of pulsating intensity solutions exhibiting simple properties
feedback(PCP from a phase-conjugating mirrdri4,15, has been found27]. Their apparent simplicity encourages
which is considered here. analytical investigation. An asymptotic method that took ad-

Phase conjugation is a process in which the light that isyantage of the natural values of the laser parameters has been
reflected back from the phase conjugator has not only itsised in order to construct the bifurcation bridges in the COF
direction of propagation reversed but it is also wave-frontlaser [28]. In this paper, we use the same technique and
inverted[16]. The most important application of phase con-construct an approximation of the PCF time-periodic inten-
jugation is the correction of optical distortions. In particular, sity solutions found in Ref.27].
for a distortion that occurs between the source and the phase As the feedback rate is progressively increased from zero,
conjugator, the light passing through the distortion after restable branches of pulsating intensity solutions sequentially
flection from the phase conjugator returns to its original un-appear between domains of chaotic dynanjitg]. Due to
distorted state. Phase conjugation is used today extensivetiie fact that the intensity oscillates at a frequency close to an
in lasers to eliminate phase distortions due to heating anthteger multiple of the external cavity frequency, these stable
stress effects in the laser medium. A second interest of phasegimes have been called external cavity mod&sSMs) by
conjugation is stability; that is, PCF is preferred over COFanalogy to the ECMs of the COF lasg29]. Our analytical
because the full external round-trip phase vanishes and thepproximation of the ECMs of the PCF laser show that they
PCF laser cannot lock to an external cavity frequency. sequentially appear as isolated branches in the bifurcation

There are, however, two difficulties that have delayed sysdiagram and that they exhibit the expected frequencies. A
tematic comparisons between experiments and theory. Firdarge part of this paper is devoted to a comparison between
PCF is more difficult to realize than COF. The most commonanalytical and numerical bifurcation diagrams.
way of making a phase conjugator is through a four-wave The paper is organized as follows. In Sec. Il we formulate
mixing process in which two pump waves are coupled withthe PCF laser equations in their dimensionless form and de-
the incident wave through a third-order susceptibility to pro-termine approximations to the Hopf bifurcation points. These
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approximations are based on specific scalings of the paranvalue of T and look for an approximation f&€ ando. To this
eters and reveal two classes of Hopf bifurcation points. Thend, we introduce a small parametedefined by

first class of Hopf points appears at low feedback rates and

exhibits a frequency close to the relaxation oscillation fre- e=T7! (4)
guency of the solitary laser. The second class of Hopf points . . .
appears for much higher values of the feedback ratz gnd if@."th_Wh'Ch we scaleC ando. We also neeql to sp_ec_lfy the
frequencies are proportional to the external cavity frequency>c&lings of the other laser parameters since distinguished
In Sec. Il we determine the ECM pulsating intensity soly- Imits of _th(_a Hopf equationtB8) and(B9) are possible in the
tions by constructing an asymptotic solution. In Sec. IV weSmall e limit. o ,

investigate their relationship with the Hopf bifurcation points The simplest approximation is based on the |de.a that' for
found in Sec. Il. The validity of our approximation is sys- low feedback rates, the frequency at the Hopf bifurcation

tematically investigated in Sec. V where numerical bifurca-MuSt be close to the laser relaxation frequency defined in

tion diagrams obtained by simulation and continuation ardef. [36] as
compared with the analytical bifurcation diagrams. Finally, wg=(2eP)12 (5)
in Sec. VI we discuss the physical significance of our main R '
results and review a series of open problems. Assuming the scalings
Il. FORMULATION AND HOPF BIFURCATIONS P=0(1), C=0(¢), 6=0(¢ ), and
We consider rate equations for a semiconductor laser sub- o=0(e'?), (6)

ject to instantaneous PCF in dimensionless form; this formu-

lation is briefly described in Appendix A. For analytical sim- we collect the leading terms in Eqd8) and (B9). We find
plicity, we neglect nonlinear gain saturation, an effect 3 ) ,

included in Refs[19,27,30—-32 and, as is usual in the lit- 03+2eP[—(1+a®)Csin(oh)—o]=0, 7
erature, set the phase and frequency shift at the PCM to zero. _ ) )
These simplifications are, however, not limitations of our —20°C+e(1+2P)0"+2eP(1+a”)Clcog 0 6) +1]=0,
analysis. The PCF equations for the complex electric field ®

and the carrier density are then given by where all neglected terms are of ord®(z>?) or smaller.

Using Eq.(8), we determineC
Y'=(1+ia)ZY+yY*(t—6), (1) sing Eq.(8), we determineC as

B e(1+2P)c?
 20%—2eP(1+a?)[cogof)+1]

TZ'=P-Z—(1+22)|Y|?, 2) 9
where the prime denotes differentiation with respect to
the dimensionless timeé In these equationsy is the line-

width enhancement factory is the dimensionless feed-

Inserting Eq.(9) into Eq.(7), we obtain the following equa-
tion for o only:

back rate,#=17/7, is the external cavity round-trip time F(o)=0?—2eP—2eP(1+a?)
normalized by the photon lifetimel = 7./ 7, is defined as
the ratio of the carrier and photon lifetimes, aRdis the e(1+2P)osin(oh)

pump parameter above threshold. Using the values given X— 2
in Refs.[19,27,30—32 we find 20°=2eP(1+a%)[cog o) +1]
=0. (10)
a=3, =476, T=1429, andP=4.17x102. (3)

This equation resembles the equation for the Hopf frequency
Equations(1) and (2) haveZ, symmetry in the transforma- of the COF lasefsee Eq(19) in Ref.[36]] except that in the
tion (Y,Z)—(—Y,Z). This means that any solution will ei- denominator of the last term, there is an extee? Zontribu-
ther be symmetric or have a symmetric counterpart obtainetion and coéo6)+1 replaces cds6)—1. We use the values
by a rotation by of the Y plane[33]. Apart from the trivial ~ of the parameter$3) and solve Eq.(10) for o. We then
steady-state solution, that i& (Z)=(0,P), there exist two determineCé from Eq. (9) and y6=1+a?/C|# comes
distinct branches of nonsymmetric steady states given bfrom the steady-state relatioriB5) and (B6). A graphical

Egs.(B5)—(B7) in Appendix B. study of the functior(o) as a function ofo indicates four
The conditions for a Hopf bifurcation are given by Egs. roots. They are listed in Table I.
(B8) and (B9) whereC and o represent the amplitude & The approximations of the first three Hopf bifurcations

and the frequency of the oscillations at the Hopf bifurcationshown in Table | are in excellent agreement with the values
point, respectively. These equations are transcendental equabtained by continuation usinDDE-BIFTOOL; see Table Il
tions which are difficult to solve even numerically. Our An analysis of the real eigenvalues of the characteristic equa-
analysis differs from previous attempts to solve the Hopftion indicates that the steady state with>0 is always un-
conditions[17,20 by the application of asymptotic tech- stable, namely a saddle. Thus only the Hopf bifurcation with
niques[34,35. Specifically, we take advantage of the large C<0 may lead to stable oscillations. The first three solutions
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TABLE |. Hopf bifurcations for low feedback rate and close TABLE lIl. Values of the bifurcation parameteyé, frequency

to wg=7.6x10"3. The first three Hopf bifurcation points have o6, and steady-state value of the carrier dengity at the Hopf

been labeled in terms of increasing valuesyéf The last solution  bifurcation pointsH,—H-. All values were calculated usinppE-

exhibits a large value of¢ which contradicts our scaling assump- BIFTooL. The last column indicates the approximate values deter-

tions (6). The approximated Hopf points have been labeled accordmined analytically(repeated from Tables | and)ll

ing to their relation with the numerical solutions shown in Table IlI.

vo g COnum COanal

v0 o C o Co
Hy 0.522 4.318 —-0.165 -0.17
H, 0.53 8.%10°° —-3.6x10°4 423 -0.17 H, 0.756 3.337 0.239 0.20
H, 0.63 7.1x10°3 42x10°4 3.38 020  H, 0.906 2.647 —0.287 —-0.23
Hs 0.73 54103 —4.9<1074 255 —0.23 H, 3.942 7.883 1.247 1.20
950 1.7x10°2 6.5x10°%  7.95 300  Hg 6.449 7.648 —2.039 -2.02
Heg 6.550 11.18 —-2.071 -2.13
7.624 5.474 2.411 2.66

satisfy y6<1 and agree with our assumption thais a small
O(e) quantity. The last solution in Table | corresponds to a

large value ofy and is not a valid approximation. However,  Comparing these results with the numerical solutions
it suggests that there exist other Hopf bifurcations that satisfyisted in Table IlI, the agreement is good fl; but not for

different scaling laws.

the other points. In order to improve our approximations, we

We may obtain a different approximation of the Hopf bi- need to take into account the relatively large valuegof

furcation fory=0O(1) if we consider the case
P=0(1), C6=0(1), and 06=0(1) (12)

as e—0. Neglecting alle terms in Eqgs.(B8) and (B9), the
Hopf bifurcation conditions then reduce to

(1+ a®)C?[cog206)— 1]+ 0?=0, (12
(1+ a®)Csin(206)—20=0. (13
From Eq.(13), we extractC as

20
C= .
(1+ a®)sin(206)

(14)

Inserting Eq.(14) into Eq. (12), we obtain an equation far
only. The solutions withr#0 satisfy the condition

[ 2
cogofh)==+ oo (15

We determinesd from Egq. (15), obtainCé from Eq. (14),
and computeyf= 1+ «?|C|6. Solutions with 1.5 |C#|
<3 are listed in Table Il in the colum@é (¢=0).

TABLE Il. Hopf bifurcation points foro6=0(1), £=0 [col-
umnCé (£=0)], ande #?=0(1) [columnC# (£ #0)]. Thelatter

values were computed with an improved approximation and the
are much closer to the respective numerical solutions shown i

Table IlI.

v0 ab Co (e=0) Co (e#0)
Hy 5.84 7.39 1.85 1.20
Hs 6.58 8.32 —2.08 —-2.02
Hg 9.06 11.46 —2.87 —-2.13
H- 8.33 10.53 2.63 2.66

From the Hopf condition§B8) and (B9), we note that the
neglected terms are proportional 4@ and £ > which are
numerically significant. We may take into account the effect
of ¢ by investigating the double limi&—0, 6—« but keep-
ing

£6>=0(1) (16)

fixed. With Egs.(11) and (16), Egs.(B8) and (B9) now re-
duce to

0=c{(1+ a?®)C?cog206)— 1]+ o?}
—2eP[(1+a®)Csin(o )+ o], (17

0=0[(1+a®Csin(206)—20]+2eP(1+a?)
X[cog o h)+1]. (18

The solution of these equations f@¥ ande can be found
analytically in parametric form. We determir@ from Eq.
(18) and insert its expression into E@.7). This results in a
quadratic equation fog which we solve in terms ofr. Hav-
ing e=¢(0), we determineC=C(c). In Table II, the new
values forC# (in the column fore#0) are compared with
their earlier estimates obtained wigh=0.

In Fig. 1 we plot the steady-state branches, which are
determined from Eqs(B5)—(B7), together with the Hopf
bifurcation points from Tables | and II. The lower branch
is always unstable and the upper branch is stable until the

)rﬁrst Hopf bifurcationH,. The relevance of the Hopf bifur-

cation points for the ECM intensity solutions is discussed in
Sec. IV.

IIl. EXTERNAL CAVITY MODES

We now concentrate on the pulsating intensity solutions
described in Ref[27]. These solutions are characterized by
oscillating frequencies that are comparable to the external
cavity frequency. This suggests to seek a solution that de-
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0.22} H; Hg
4.
ma,XlYl 13'1 H3
T
02f H,
H, 3
ECM1
018 : : o S
FIG. 1. Analytical bifurcation diagram of the two steady-state
branches. The upper branch is stable until the first Hopf bifurcation ECM2
H,. The lower branch is always unstable. Other Hopf bifurcation 1t ]
points have been determined analytically and are shown in the fig- ECMS
ure. At these Hopf bifurcations, nearly vertical Hopf branches ap- , , ]
pear and connect steady-state and ECMs branches; compare Fig.. 0 2 4 6 ~6 8
The bifurcation details of these connections are not revealed by the
leading-order bifurcation equations. FIG. 2. Analytical bifurcation diagram of the first three ECMs.

The figure represents the periob=2n/w of Y(t) (shown in
pends on the basic time We take advantage of the large multiples of §) as a function ofyf. The frequencyw is determined
value of T and seek a solution of Egl) and(2) of the form  from Eq.(32). Comparing with the numerical solutions obtained by

DDE-BIFTOOL in Fig. 5, a lower part of each isolated branch corre-

Y=Yo(t)+eYy(t)+---, (19  sponds to a stable ECM.
Z=Zy(t)+eZy(t)+- -, (20 — w?+(1+a?)C?— y?cog2wh) =0, (29
wheree is defined by Eq(4). Introducing Eqs(19) and(20) —2wC+ y2SiN(2w6) =0. (30)

into Egs.(1) and(2) and equating to zero the coefficients of
each power ok leads to a sequence of linear problems toUsing Eq.(30), we have
solve. The equations for,, Z,, andZ, are given by

Y2sin(2w 6)
Yi=(1+ia)ZoYo+ yYE(t—0), (21) C=——, (3D
Z,=0, (22 and inserting Eq(31) into Eq.(29), we obtain the following

equation forw only:
Z1=P—Zy—(1+2Zy)|Y,|?. (23 »
2, Y siP(2w6)

4w?

Equation(22) implies that (1+a®) =y’cog2wf). (32

Zo=C (24) Equation(32) is a quadratic equation fop?= y*(») which

can be solved. Figure 2 represents the pefieR7/w as a
function of y6. The threeX-shaped branches are similar to
the branches shown in Fig. 4 in R¢27], and verified later
Yo=Aexpiwt)+Aexp —iwt) (25) in Sec. V, where it is shown that a lower part of each pulsat-
ing intensity branch corresponds to stable solutions. The
provided thatA,, A, satisfy the following homogeneous sys- lower branches are close to their asymptotic values as
tem of equations: v6—oo; that is,

is a unknown constant. Equati@81) is then linear and ad-
mits a solution of the form

[—iw+(1+ia)C]A+ yAsexp —iwd) =0, (26) To =2/, (33

yA* expliw) +[iw+(1+ia)C]A,=0. (27) wheren=1,2, . .. .Using Eq.(25), we compute the intensity
! of the laser field as
These equations have a nontrivial solutiowifindC satisfy

the characteristic equation [YI2=[Aq[?+|Ag|?+ 2| Ag||Aglcod 2wt +4),  (34)

wherey is a constant phase. The intensity exhibits harmonic

i i i i _ A2 Y
[Flot(Itia)Cl~io+(1-Ta)C]~ yexp —2iw0) oscillations with a period equal te/w or T/2.

=0. (28 The leading solutior(25) is not completely determined.
Equation(26) [or Eq. (27)] provides a first relationship be-
From the real and imaginary parts of Eg8), we find tweenA; andA,. To find a second relationship betwean
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and A,, we apply a solvability condition for E¢q23). In-
deed, the condition for a bound&d requires that

P—C—(1+2C)(|A4)%2+|A,]»H=0. (35)
Using Eq.(27), |A,|? is given by
2
Y
AgP= A% 36
ot (36
which, by inserting into Eq(35), gives|A,|? as
, [P-C C?’+(w+Ca)?
|A|*= 2 > 5 (37)
1+2C/\ C?2+(w+Ca) +y

Knowing |A;| and|A,|, we determine the intensity from Eq.
(34). The w/w-periodic intensity oscillates with extrema

given by|Y[?=(|A| = |A,])2

IV. HOPF BIFURCATION BRANCHES

Our previous analysis of the ECM solutions needs to b
revised near particular points where the ECM solution an

the steady-state solution admits the same valu€ ¢game
carrier numbeZ,=C). At and near these points, we have
solution of Eq.(21) of the form

Yo= A0+AleX[Z(i wt) + Azexq —i wt), (38)

PHYSICAL REVIEW B8, 066205 (2003

FIG. 3. Numerical bifurcation diagram of the stable attractors
obtained by simulation. The figure shows the valueZ@f) when-
ever the intensityY(t)|? crosses its average value in the increasing
direction as a function ofé.

[ 2
coSwh)==+ .
wb) 1+ a?

Equations(44) and(45) are identical to the Hopf bifurcation

(45)

?onditions (14) and (15) if we replacew by o and y by

C|V1+a? Note that|A;|=|A,|=0 at the steady-state
branches whergA,|#0, and thaiAy|=0 at the ECM solu-
tion branches wherpA;|#0 and|A,|#0. All three ampli-
tudes are not completely determined by the leading-order
equations (39—(41) and require a higher-order analysis
which will not be presented here. We have found that the

whereA,, A;, andA, are three unknowns. Substituting Eq. Hopf bifurcation branches are vertical &s-0 and they pro-

(38) into Eq. (21), we find that such a solution is possible vide a plausible connection between steady state and ECM
provided that the three amplitudes satisfy both the steadyPranches. Figure 4 shows the bifurcation diagram of the
state equation and the pulsating intensity solution equationsteéady states obtained numerically by continuation, and it

They are given by

—C(1+ia)Ag= A}, (39
iwA;—C(1+ia)A;=yASexp —iwb), (40
—iwA,—C(1l+ia)A,=yATexpiwb). (41)

From EQs.(39—(41), we find that a solution with all three

amplitudes differing from zero is possible providédy, and
w satisfy the conditions

Yy y?sin(2w 6)

e 20 “
Asir?(2

_ 2+L(2w0)(1+a2)=yzcos(2w0). (43
4w

Equations(42) and (43) lead to critical values fory and w.
Using Eq.(42), we first determiney as

2w
y== - >0
V1+a?sin2w6)

and by substituting Eq44) into Eq.(43), we obtain a simple
equation forw given by

(44)

exhibits practically vertical bifurcation branches. Figure 5
shows the Hopf bifurcation branch emerging frétp, which
connects to the second ECM branch.

V. NUMERICAL BIFURCATION DIAGRAMS

In this section we investigate the bifurcation diagram of
the stable solutions of the PCF equations. We first consider
the parameters listed in E¢Q); that is, the values used in
Refs.[19,27,30—32 without nonlinear gain saturation. Fig-
ure 3 shows that, as the feedback rateprogressively in-
creases from zero, the stable steady state undergoes a Hopf
bifurcationH, at y#~0.53 leading to stable periodic oscilla-
tions exhibiting a frequency close to the laser relaxation os-
cillation frequency(5). The stable periodic solution then un-
dergoes a period-doubling bifurcationg~0.73, the first of
a period-doubling cascade to a domain of more complex,
chaotic dynamics. Aty6~1.29 we observe that the laser
locks into the first ECM solution with an intensity oscillating
at a frequency close to29~ 1. This agrees with our analysis
indicating that the first ECM branch admits a period close to
To 1=2m(wh) 1=2. This impliesw= 76" and since the
frequency of the intensity equalss2we find 276~ 1. The
first branch of ECM solutions is stable unii~1.67 where
it undergoes a torus bifurcation, before a new domain of
chaotic dynamics. This torus bifurcation and the subsequent
route to chaos in the PCF laser with nonlinear gain was de-
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0.25

max|Y|
0.23}

[%]
T
1

0.21p

ECM1
0.19f

N
T
o

SCA
FIG. 4. Numerical bifurcation diagram of the steady-state solu- H;
tions obtained by continuation; compare Fig. 1. The figure shows
the maximum of Y| as a function ofy6. Stable(unstabl¢ steady- 1r ECM2
state solutions are drawn by thidkhin) lines. Hopf bifurcation %
points are shown by stars. Also shown are the branches of periodi  ECM3
solutions emanating from the Hopf bifurcation points located onthe 0 2 4 6 v
upper steady-state branch. They are nearly vertical as anticipated by

the analysis. FIG. 5. Numerical bifurcation diagram of the first three ECMs
obtained by continuation; compare Fig. 2. The figure represents the

tailed in Ref.[31]. The chaotic dynamics ends in a suddenPeriodT of Y(t) (shown in multiples o#) as a function ofy6. The

transition to the second ECM solution g8~3.46. Again stable ECM solutions are drawn by thick lines. They are born at

this branch of stable solutions undergoes a torus bifurcatioff™it POINts in saddle-node bifurcationsx) and destabilized in

at v6~3.82. before a third domain of chaotic dvnamics Thetorus bifurcationg*). Also shown is the stable branch of periodic

thil?/d sta.ble’ ECM appears a9~6.28 and is degtabilizec'i in solutions emanating from the first Hopf bifurcatibh, and desta-

another torus bifurcation ay#~7.39, before a fourth and bilized in a period doubling bifurcatiof).

final domain of chaotic dynamics in oy range of consid- ] ) o

eration. Hopf bifurcations exhibit much larger values fgrand o (y6

In the next section, we investigate the steady-state and'l); see Table ll. , ,

periodic solutions of the PCF laser using the continuation From the Hopf bifurcation points emanate branches of

packageppe-BIFTOOL [21]. This approach has the advantage”on_s)_’mme”_'c periodic orblt_s. Symmetric p_erlodlc solutions

that one is able to compute solutions irrespective of thei€Xhibit a pegod #rl o for the fieldY and a periodr/w for the

stability. Furthermore, as well as providing stability informa- intensity | Y|. Nonsymmetric periodic solutions exhibit the

tion of solutions, the position and the frequency of the HopfSame period 2/ for both the field and the intensifg4].
bifurcation points can be obtained. The isolated branches of periodic intensity solutions deter-

mined analytically correspond to the branches of symmetric
periodic solutions emerging at the limit poinig~1.295,
A. Steady states v0~3.733, andy#~6.283, respectively; see Fig. 5. These

Figure 4 shows a bifurcation diagram obtained by Con_values are slightly lower than those documented analytically;

tinuation with DDE-BIFTOOL. Stable solutions are drawn as a see Fig. 2. Figure 4 shows that the Hopf bifurcation branches

thick line, unstable solutions by a thin line. Two branches ofe practically vertical close to the Hopf points, again in

steady-state solutions are seen to be born at the onset gﬁreement with the analytical results. In RE27] it was
feedback. The upper branch is initially stable. It is destabi- own that these branches connect the branches of pulsating

N : : - : - Intensity solutions. This is confirmed here, with some minor
ltlrf:dv;?uz gggir?(l,fctijrgatfir:n_'ulla?itoﬁzgngzi’ agre_?rl]r:ag e\’\r']'ézindifferences. Specifically, in Ref27], the first Hopf bifurca-
branch of unstable g{teady—state’solutiongs. uﬁdergo furth Jon branch was shown to connect to_the first E(-:M’ how_e ver
Hoof bif tionsH. M dH. at v6~0.906. 6.449. and Sh the case presented here, that is without nonlinear gain, we
pt biturcationstis, Hs, andHe at yo=1).9vo, 6.443, an ind that the branch emerging frokt; connects to the sec-
.6'550’ respecduvely. Jheflgyfver br.arr;ilzﬂ '|S_| alwaga unstable. | nd ECM. The branch of periodic solutions emanating from
is seen to undergo Hopf bifurcatioht,, H, andH-, at vy :
~0.756, 3.942, and 7.624, respectively. Referefiggsand H; does not connect to any ECMs. The branch emanating

: . . . ; ) from Hg connects to the third ECM branch, and the branch
g?éﬂt?ggltam detailed continuation studies of this Steady'Stat%manating fronH, leaves ouryd range of consideration.
Table Il contains further information, obtained wibibe-
BIFTOOL, on the frequencyr and the amplitude oZ=C at
the Hopf bifurcation points. These values agree well with the Figure 5 shows three isolated branches of symmetric pe-
analytical estimates listed in Tables | and Il. The first threeriodic solutions corresponding to the pulsating intensity so-
Hopf bifurcations are characterized by frequencies close ttutions constructed analytically. They have been obtained
the relaxation oscillation frequency of the lasewg@  with DDE-BIFTOOL. Also shown is the branch of nonsymmet-
=3.602) and values ofy6<1; see Table I. The next four ric periodic solutions emanating from the Hopf bifurcation

8

B. Periodic solutions
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point H; and connecting to the second isolated branch of TABLE IV. Comparison between numerical and analytical esti-
symmetric periodic solutions. The solutions are stable wheimates of the ECM limit points foll =3429 andg=76.

drawn as a thick curve and unstable when drawn as a thif : : : —
curve. The three isolated branches agree with the branches Analytical Simulation Continuation
pomputed in Ref[g?] and_ are in very good agreement both ECM, 16 16 157

in shape and position with the branches computed analquCNI 40 42 4.08
cally and shown in Fig. 2. They are born in saddle—nodeECM 6.6 6.7 6.53
bifurcations of limit cycles at the limit pointgy6~1.295, 3 : ' i
v0~3.733, andy#~6.283, respectively. These values are
slightly lower than those given analytically; compare with ) .
Fig. 2. Finally, we note that the second stable ECM does novtical results. From numerical experiments not presented

lie on the lower branch of the second isolated branch ohere, we note that the first Hopf bifurcation exhibits a fre-
symmetric periodic solutions but on a very close branch ofiuency close to the relaxation oscillation frequencyyét
nonsymmetric periodic solutions exhibiting a limit point at ~0.04 and is then followed by a burst of chaotic dynamics.
v6~3.453. This branch of solutions has not been found anaAt y6~0.95, the stable steady state reappears and undergoes
lytically. a new Hopf bifurcation aty#~1.55. This bifurcation is
quickly followed by a small domain of complex oscillations
C. Comparison with analytical results that terminate as the laser locks to the first ECM. The same
Pattern then appears sequentially. In Table IV, we compare
the numerical and analytical estimates for the limit points
vided ¢ 6 is sufficiently small rather thaa small. By inves- (lsaddle-no.de pifurcqtions of.periodic orbitghere the three
tigating the double limit of small andd large, keeping: 62 first pulsating intensity solutions or ECMs appear. The ana-

fixed, we obtained a better estimate for the Hopf bifurcatiorfYtical estimate of the ECM limit points use the expressions
points. In this section, we review the laser equations by inderived in Sec. Ill, now evaluated with the new valuesTof
troducing full scalings for all dependent and independengnd 6.

variables. From Sec. Il we know that an ECM solution ex-

hibits a frequencyw proportional tog~ !, thatY is propor-

As we already discussed in Sec. I, the determination o
the Hopf bifurcation points assuming/=0O(1) is valid pro-

tional to P, and thatZ~C is proportional tof~*. This VI. DISCUSSION
Lnyotlvates introducing the new variablesy, andz defined We have shown analytically that the pulsating intensity
solution branches investigated in RgR27], and called
_ ECMs, belong to isolated branches of periodic solutions. The
= = = l !
s=t6.Y \/Ey, andz=6""z. (46 intensity exhibitsz/w-periodic oscillations where is close
From Egs.(1) and(2), we then obtain to a multiple of 76~ . All the solution branches were ob-
tained by investigating the leading order solvability condi-
y'=(1+ia)yz+ yoy* (s—1) (47 tions which were relatively easy to derive. The approxima-

tions of the Hopf points and the branches of ECMs were
shown to be in very good agreement with the values found
by a numerical bifurcation study for realistic laser param-

where the prime means differentiation with respect to thefters.

=g, [1-6"P 12— (1+26 12)|y|?], (48)

new times, y9=0(1), ande=T ! is now replaced by We have foupd deggnerate Hopf bifurc.ation poin'ts that
result from the interaction between pulsating intensity and
e1=0*PT 1. (49)  steady-state branches. We did not find the branching to non-

) ] ) symmetric periodic solutions that were noted numerically. A
The parameters3) imply that e,~7, that is, e, is large,  pigher-order analysis is necessary in order to unfold these
which explains the relatively poor quantitative agreement begegeneracies and determine other bifurcations, but this
tween the analytical and the numerical ECM limit po'nts'analysis is outside the scope of this paper

However, as the successive ECMs sequentially appear at Our asymptotic theory is sufficiently simple so that com-

:ﬁ;]g:;\ﬂ;izgza)’/;Zea?]%fi?z;ﬁxg;n:gmve since rescal- plications of the PCF equations can be considered, such as
detuning between the frequencies of the reflected and inci-
(500  dent waves. The linear stability analysis of the ECM solu-
tions is also possible but again requires a higher-order analy-
as the coefficient multiplying the right-hand side of the sis. Physically, the leading approximati¢®5) of the field
equation. Ify#=10, the small parameter is,~0.07. describes the ECM regimes as the sum of two oscillatory
In order to quantitatively evaluate the validity of our modes satisfying a resonance condition. A beating phenom-
asymptotic analysis, we consider the exaggerated value @nhon between these oscillatory modes is inevitable and leads
T=3429 and a smaller value 6=76. We now find from Eq. to rapidly pulsating intensity regimes exhibiting frequencies
(49 thate,~0.07, and this is sufficiently small for our ana- close to multiples of the external cavity frequency.

ea=e1(76) ?
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APPENDIX A: DIMENSIONLESS PCF EQUATIONS : - .
Q The steady-state solution satisfies the conditi®tis= ¢’

Assuming no nonlinear gain saturation and setting the=Z'=0. From the steady-state equations, we find two
phase shift¢ppcy=0, the laser rate equations introduced inbranches of solutions fat given by
Ref.[30] can be written as

dE 1 1 ) 2¢=—arctarfa), Z=C=— 4 , (B5)
JZE[(GN(N_NO)_TP )(1+Ia)]E+KE*(t/—T), 1+ «
(A1)
2¢=m—arctafa), Z=C= L4 , (B6)
WL N G N-N)[E? (A2) Ita
. d 7o " o
) . ] where
Introducing the new variables Y, andZ defined by
P-C
7.G 2=
GnTp Since there exist two branches of steady stateZ ftiffering
Z=——(N=Nso) (A3) by the sign ofC, it is mathematically more convenient to use
C as our bifurcation parameter. From the linearized equa-
into Egs.(A1) and (A2), we obtain tions, we determine the characteristic equation for the growth
rate\ of a small perturbation. A Hopf bifurcation is possible
dy ) . if A is purely imaginary. Introducing =io into the charac-
dat (L+ia)YZ+yY*(t—0), teristic equation, we obtain from the real and imaginary parts
two equations foiC and o given by
dz
Tazp—z—(1+22)|v|2, (A4) 1+2pP
— 2 2 _ 2
0=oc{(1+a“)C7cog206)—1]+0o }+81+2C
where
X[ = (14 a?)C?sin(200) +20C]+2e(P—C)
Y=KTp, O=1l7,, T= TeTgl, (A5) 5 ]
X[—=(1+a”)Csin(oh)—a], (B8)
N |q GNT T I _I h
ly=—, P=—5t2| —2 (A6) 1+2P
Te 2 q 0=0[(1+ a?)C?sin(200)—20C]+e
1+2C
APPENDIX B: BASIC STEADY-STATE AND HOPF 2\ 2 B 2
BIFURCATION CONDITIONS X{(1+a%)CTcod200) ~ 1]+ 07}
_ 2
Introducing the decomposition +2e(P=C)(1+a”)Clcod ) +1], (B9)
Y=Rexpi®) (B1)  wheree is defined by Eq(4).
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